Estimates for Hilbertian Koszul homology

Xiang Fang ${ }^{1}$
Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA

Received 21 March 2007; accepted 19 December 2007
Available online 14 April 2008
Communicated by G. Pisier

Abstract

The objective of this paper is to give new kind of estimates for Hilbertian Koszul homology, inspired by commutative algebra, in multivariable Fredholm theory.

© 2008 Elsevier Inc. All rights reserved.
Keywords: Multivariable Fredholm theory; Koszul complex; Homology; Lech's formula

0. Introduction

The Fredholm index of a single operator admits a generalization to several variables via Koszul complexes over Hilbert spaces, which is, in general, difficult to calculate. In particular, in sharp contrast with rich results on Noetherian algebraic modules, over Hilbert modules currently there are essentially no systematic estimates for higher Koszul homology groups.

In [13-15], we initiated a study of Fredholm theory through the asymptotic behavior of higher powers of a tuple \bar{T}. See also Eschmeier's [12]. In this paper, the asymptotic methods lead to estimates for all powers of \bar{T}.

Let $\bar{T}=\left(T_{1}, \ldots, T_{n}\right)(n \in \mathbb{N})$ be a Fredholm tuple of commuting operators on a Hilbert space H. This means that the homology groups $H_{i}\left(K\left(T_{1}, \ldots, T_{n}\right)\right)(i=0,1, \ldots, n)$ of the associated Koszul complex $K\left(T_{1}, \ldots, T_{n}\right)$ of T_{i} over the Hilbert space H are all finite-dimensional. Let $\mathrm{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$ be a multi-index, and $\bar{T}^{\mathrm{k}}=\left(T_{1}^{k_{1}}, \ldots, T_{n}^{k_{n}}\right)$. If \bar{T} is Fredholm, then so

[^0]is \bar{T}^{k}. For convenience, let $h_{i}\left(k_{1}, \ldots, k_{n}\right)=\operatorname{dim}\left(H_{i}\left(K\left(T_{1}^{k_{1}}, \ldots, T_{n}^{k_{n}}\right)\right)\right)$. The main result of this paper is

Theorem 1. For any Fredholm tuple $\left(T_{1}, \ldots, T_{n}\right)$, there exist $e_{0}, e_{1}, \ldots, e_{n} \in \mathbb{Z}$, and a constant $C>0$ such that for all $i=0,1, \ldots, n$, and $k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{N}$,

$$
k_{1} k_{2} \cdots k_{n} \cdot e_{i} \leqslant h_{i}\left(k_{1}, \ldots, k_{n}\right) \leqslant k_{1} k_{2} \cdots k_{n}\left(e_{i}+\frac{C}{\min k_{i}}\right) .
$$

A few remarks follow:

- Considering the multi-index k is indeed useful, say, in [14], where $n=2$, and $\sup _{k} h_{i}(1, k)<\infty$ implies $e_{i}=0$.
- Clearly, our result implies that $e_{i}=\lim _{k \rightarrow \infty} \frac{h_{i}\left(T_{1}^{k}, \ldots, T_{n}^{k}\right)}{k^{n}}$ (see Corollary 2.3 in [12]) and that index $\operatorname{index}(\bar{T})=\sum_{i=0}^{n}(-1)^{i} e_{i}$ by the multiplicity formula $\operatorname{index}\left(T_{1}^{k_{1}}, \ldots, T_{n}^{k_{n}}\right)=$ $k_{1} \cdots k_{n}$ index $\left(T_{1}, \ldots, T_{n}\right)$.
- When H is replaced by a finitely generated module over a Noetherian ring, the corresponding function h_{i} is dominated by a polynomial of k_{i} with degree $n-i$, hence $e_{i}=0$ except for possibly e_{0} [26]. It is not clear whether $\lim _{k \rightarrow \infty} \frac{h_{i}(k, \ldots, k)}{k^{n-i}}$ exists.

Two main ingredients in the proof of Theorem 1. Many arguments in this paper refine those of Eschmeier's [12] in order to obtain quantitative results. The first set of techniques is sheaf theoretic. First touched upon by Markoe [22], sheaf theory for operators was systematically investigated later [25], and the primary reference is the monograph [11]. The second set is commutative algebra in nature, and is more closely related to our previous work. In particular, we own a deep intellectual debt to C. Lech [14,18,19], from which we borrow many ideas.

Both sets of techniques are well known, and in fact easy, to experts in algebra and analysis, respectively. What we do here is to bring them together to yield estimates which appear of value in operator theory.

1. Background

Definitions. In order to study the spectral theory of a tuple of commuting operators, instead of a single operator, J.L. Taylor, in 1970, introduced a seminal approach via Koszul complexes over Banach spaces [28,29]. For a commuting tuple $\bar{T}=\left(T_{1}, \ldots, T_{n}\right)$ on a Banach space H, its Koszul complex $K\left(T_{1}, \ldots, T_{n}\right)$ is

$$
K(\bar{T}): \quad 0 \rightarrow H \otimes \bigwedge^{n} \mathbb{C}^{n} \rightarrow H \otimes \bigwedge^{n-1} \mathbb{C}^{n} \rightarrow \cdots \rightarrow H \otimes \bigwedge^{0} \mathbb{C}^{n} \rightarrow 0
$$

Here $\bigwedge^{n} \mathbb{C}^{n}$ is the k th exterior power of \mathbb{C}^{n}. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis for \mathbb{C}^{n}, and let c_{i} be the creation operator associated with e_{i}, that is, $c_{i}(\xi)=e_{i} \wedge \xi$ for $\xi \in \bigwedge \mathbb{C}^{n}$. Then the boundary operator is $B=T_{1} \otimes c_{1}^{*}+\cdots+T_{n} \otimes c_{n}^{*}$. The tuple (T_{1}, \ldots, T_{n}) is called invertible if the complex $K(\bar{T})$ is exact.

Subsequently, a multivariable Fredholm theory is formulated: a tuple \bar{T} of commuting operators is Fredholm if $K(\bar{T})$ has a finite-dimensional homology group at each stage, that is,

$$
\operatorname{dim}_{\mathbb{C}} H_{i}(K(\bar{T}))<\infty
$$

for all $i=0,1, \ldots, n[1,2,7,8,11,30]$. We also write $H_{i}(\bar{T})$ instead of $H_{i}(K(\bar{T}))$ for convenience. The $n+1$ homology groups of $K(\bar{T})$ are the multivariable analogs of the kernel $\operatorname{ker}(T)$ and cokernel $H / T H$ of a single operator $T \in B(H)$. When $\left(T_{1}, \ldots, T_{n}\right)$ is Fredholm, define the multivariable Fredholm index by

$$
\operatorname{index}\left(T_{1}, \ldots, T_{n}\right)=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H_{i}(K(\bar{T}))
$$

the Euler characteristic of $K(\bar{T})$.
The multivariable index index (\bar{T}) is connected with a variety of problems in both classical analysis and algebraic topology [$3,11,20,21$]. Currently, however, there is essentially no effective computational tools, especially for higher homology groups $H_{i}(\cdot)$, that is, for those groups with $i>0$. Most known examples are, or are reduced to, acyclic tuples: $H_{i}(\cdot)=0$ except for $i=0$, hence index $(\cdot)=\operatorname{dim}\left(H_{0}(\cdot)\right)$. Consequently, there is a current need to get a better grasp on those higher homology groups.

Motivation. Our approach to $H_{i}(\cdot)$ originates from an effort to generalize the following simple arguments from [14] to several variables: for a single Fredholm operator T acting on a separable Hilbert space H, by the definition of Fredholm index, and the multiplicity formula,

$$
\begin{aligned}
\operatorname{index}(T) & =\frac{\operatorname{index}\left(T^{k}\right)}{k} \\
& =\frac{\operatorname{dim}\left(\operatorname{ker}\left(T^{k}\right)\right)}{k}-\frac{\operatorname{dim}\left(H / T^{k} H\right)}{k} \\
& =\lim _{k \rightarrow \infty} \frac{\operatorname{dim}\left(\operatorname{ker}\left(T^{k}\right)\right)}{k}-\lim _{k \rightarrow \infty} \frac{\operatorname{dim}\left(H / T^{k} H\right)}{k}
\end{aligned}
$$

Here both limits exist, and are in fact integers. This leads to links to commutative algebra through the Hilbert function $k \rightarrow \operatorname{dim}\left(H / T^{k} H\right)$, [10], and a celebrated result of J.-P. Serre, relating the Euler characteristics of Koszul complexes to Samuel multiplicities [27].

2. Correction modules $C(M, L ; J)$

This section is purely commutative algebra. We introduce a notion of correction modules, which, simple as it is, seems not discussed explicitly in literature. For operator theorists wanting more algebraic references, see standard texts [4,10] for Samuel multiplicity, and see [14,18,19], and [26] for Lech's formulas.

Definition 2. Let R be a ring, $J \subset R$ be an ideal, and $M \subset L$ be a submodule of an R-module L. Define the correction module of M in L with respect to an ideal J to be

$$
C(M, L ; J)=\frac{M \cap J L}{J M} .
$$

Remark. When R and L are Noetherian, the Artin-Rees lemma is useful for the study of the asymptotic behavior of $C\left(M, L ; J^{k}\right)$ when $k \rightarrow \infty$.

Lemma 3. Let R be a local Noetherian ring, $I=\left(x_{1}, \ldots, x_{n}\right) \subset R$ be its maximal ideal, and $I_{\mathrm{k}}=\left(x_{1}^{k_{1}}, \ldots, x_{n}^{k_{n}}\right)$ for any $\mathrm{k} \in \mathbb{N}^{n}$.

If L is a finitely generated R-module, and $M \subset L$ is a submodule, then there exists a constant C such that for all $\mathrm{k} \in \mathbb{N}^{n}$,

$$
\text { length }\left(C\left(M, L ; I_{k}\right)\right) \leqslant k_{1} k_{2} \cdots k_{n} \cdot \frac{C}{\min k_{j}}
$$

Proof. Let $N=L / M$ be the quotient module. For any ideal $J \subset R$, applying the functor $(\cdot) \otimes_{R} R / J$, which is only right-exact, to a short exact sequence of R-modules

$$
\begin{equation*}
0 \rightarrow M \rightarrow L \rightarrow N \rightarrow 0 \tag{2.1}
\end{equation*}
$$

we get a right-exact sequence

$$
\begin{equation*}
\rightarrow M / J M \rightarrow L / J L \rightarrow N / J N \rightarrow 0 . \tag{2.2}
\end{equation*}
$$

By the definition of correction module, it follows

$$
\begin{equation*}
0 \rightarrow C(M, L ; J) \rightarrow M / J M \rightarrow L / J L \rightarrow N / J N \rightarrow 0 \tag{2.3}
\end{equation*}
$$

Consider $J=I_{\mathrm{k}}$, and by the algebraic Lech's formula (see Lemma 4), there exists a constant C_{E} for the modules $E=M, L$, or N, such that

$$
\begin{equation*}
k_{1} \cdots k_{n} \cdot e(E) \leqslant \operatorname{length}\left(E / I_{\mathrm{k}} E\right) \leqslant k_{1} \cdots k_{n}\left(e(E)+\frac{C_{E}}{\min k_{j}}\right) . \tag{2.4}
\end{equation*}
$$

Here

$$
e(E)=n!\lim _{t \rightarrow \infty} \frac{\operatorname{length}\left(E / I^{t} E\right)}{t^{n}}
$$

is the Samuel multiplicity of E with respect to I. By the additivity of Samuel multiplicity over short exact sequence (2.1), we have

$$
e(L)=e(M)+e(N)
$$

Now the proof is completed by observing

$$
\begin{aligned}
\operatorname{length}\left(C\left(M, L ; I_{\mathrm{k}}\right)\right) & =\operatorname{length}\left(M / I_{\mathrm{k}} M\right)+\operatorname{length}\left(N / I_{\mathrm{k}} N\right)-\operatorname{length}\left(L / I_{\mathrm{k}} L\right) \\
& \leqslant k_{1} k_{2} \cdots k_{n} \cdot \frac{C_{M}+C_{N}}{\min k_{j}}
\end{aligned}
$$

Remarks. (1) We derive the name of $C(M, L ; J)$ from (2.3).
(2) For the proof of Theorem 1, the only case we need is $R=\mathcal{O}_{0}$, the local ring of germs of holomorphic functions around the origin in \mathbb{C}^{n}.

For readers' convenience we record the following.
Lemma 4 (Lech's inequality). Let $J=\left(x_{1}, \ldots, x_{n}\right)$ be an ideal of a local ring R, generated by x_{i}, and let M be a Noetherian R-module such that length $(M / J M)<\infty$, then there exists a constant C such that

$$
k_{1} \cdots k_{n} e(M, J) \leqslant \operatorname{length}\left(M /\left(x_{1}^{k_{1}}, \ldots, x_{n}^{k_{n}}\right) M\right) \leqslant k_{1} \cdots k_{n}\left(e(M, J)+\frac{C}{\min _{j} k_{j}}\right)
$$

here $e(M, J)$ is the Samuel multiplicity of M with respect to J.
The original proof of Lech is contained in the proof of Theorem 2 in [18], which in fact only covers the case $M=R$. The (Hilbert) module case is treated in [14]. Both proofs can be easily adopted to prove Lemma 4.

3. Difference between $H_{p}\left(L_{\bullet} / J L_{\bullet}\right)$ and $H_{p}\left(L_{\bullet}\right) / J H_{p}\left(L_{\bullet}\right)$ as correction modules

This section is still purely algebraic. Let R be any commutative ring, and

$$
L_{\bullet}: \quad \cdots \rightarrow L_{p} \rightarrow L_{p-1} \rightarrow \cdots
$$

be a complex of R-modules, with $H_{p}\left(L_{\bullet}\right)$ denoting the homology group at the p th stage, $p \in \mathbb{Z}$. For any ideal $J \subset R$, we represent the difference between $H_{p}\left(L_{\bullet} / J L_{\bullet}\right)$ and $H_{p}\left(L_{\bullet}\right) / J H_{p}\left(L_{\bullet}\right)$ as correction modules in this section. This is also considered in [12]. Here we refine the arguments in [12] and obtain more quantitative results.

Since the difference between $H_{p}\left(L_{\bullet} / J L_{\bullet}\right)$ and $H_{p}\left(L_{\bullet}\right) / J H_{p}\left(L_{\bullet}\right)$ is often encountered, say in base change theorems, in algebraic geometry, our results here may be of interests to algebraists.

Recall that for any R-module M, there exists a natural morphism (say, by [5])

$$
H_{p}\left(L_{\bullet}\right) \otimes_{R} M \rightarrow H_{p}\left(L_{\bullet} \otimes_{R} M\right)
$$

Here we will consider $M=J$, and R / J.
Let $Z_{p} \subset L_{p}$ be the set of closed elements, that is, $Z_{p}=\operatorname{ker}\left(L_{p} \rightarrow L_{p-1}\right)$, and let $B_{p} \subset L_{p}$ be the set of boundary elements, that is, $B_{p}=\operatorname{Image}\left(L_{p+1} \rightarrow L_{p}\right)$. Note that $H_{p}\left(L_{\mathbf{\bullet}}\right)=Z_{p} / B_{p}$.

Lemma 5. For the natural morphism $j: H_{p}\left(L_{\bullet}\right) / J H_{p}\left(L_{\bullet}\right) \rightarrow H_{p}\left(L_{\bullet} / J L_{\bullet}\right)$, the cokernel is isomorphic to

$$
\operatorname{coker}(j) \cong C\left(B_{p-1}, L_{p-1} ; J\right)
$$

The kernel $\operatorname{ker}(j)$ is resolved by an exact sequence of correction modules

$$
0 \rightarrow C\left(B_{p}, Z_{p} ; J\right) \rightarrow C\left(B_{p}, L_{p} ; J\right) \rightarrow C\left(Z_{p}, L_{p} ; J\right) \rightarrow \operatorname{ker}(j) \rightarrow 0 .
$$

Proof. The standard strategy in algebra is to analyze the natural morphism

$$
j: H_{p}\left(L_{\bullet}\right) / J H_{p}\left(L_{\bullet}\right) \rightarrow H_{p}\left(L_{\bullet} / J L_{\bullet}\right)
$$

by embedding it into a commutative diagram. To resolve $H_{p}\left(L_{\bullet} / L_{\bullet}\right)$, we consider the long exact sequence associated with

$$
0 \rightarrow J L_{\bullet} \rightarrow L_{\bullet} \rightarrow L_{\bullet} / J L_{\bullet} \rightarrow 0
$$

and get the first row of the diagram (3.1). To resolve $H_{p}\left(L_{\bullet}\right) / J H_{p}\left(L_{\bullet}\right)$ we consider the straightforward short exact sequence which leads to the second row of the diagram (3.1). Together with the natural morphisms $j_{1}, j_{2}=\mathrm{id}$, and j, we obtain a commutative diagram

The cokernel part is easier. By the second commutative square in the diagram (3.1), and the exactness of the first row in (3.1),

$$
\operatorname{coker}(j)=\operatorname{coker}\left(d_{2}\right) \cong \operatorname{Image}(\delta)=\operatorname{ker}\left(d_{3}\right)
$$

Let $Z_{*}\left(J L_{\bullet}\right)$ (respectively $\left.B_{*}\left(J L_{\bullet}\right)\right)$ denote the closed (respectively boundary) elements of the complex $J L_{\text {. }}$. Then

$$
\operatorname{ker}\left(d_{3}\right)=\frac{Z_{p-1}\left(J L_{\bullet}\right) \cap B_{p-1}}{B_{p-1}\left(J L_{\bullet}\right)}=\frac{J L_{p-1} \cap Z_{p-1} \cap B_{p-1}}{J B_{p-1}}=\frac{J L_{p-1} \cap B_{p-1}}{J B_{p-1}} .
$$

Now consider $\operatorname{ker}(j)$. By the second commutative square, and exactness of both rows in (3.1),

$$
\operatorname{ker}(j)=\frac{\operatorname{ker}\left(d_{2}\right)}{J H_{p}\left(L_{\bullet}\right)}=\frac{\operatorname{Image}\left(d_{1}\right)}{J H_{p}\left(L_{\bullet}\right)}
$$

Note that

$$
\text { Image }\left(d_{1}\right)=\frac{J L_{p} \cap Z_{p}+B_{p}}{B_{p}} \quad \text { and } \quad J H_{p}\left(L_{\bullet}\right)=\frac{J Z_{p}+B_{p}}{B_{p}} .
$$

Hence we can resolve $\operatorname{ker}(j)$ by $C\left(Z_{p}, L_{p} ; J\right)$

$$
\begin{equation*}
0 \rightarrow \frac{\left(J L_{p} \cap Z_{p}\right) \cap\left(J Z_{p}+B_{p}\right)}{J Z_{p}} \rightarrow \frac{J L_{p} \cap Z_{p}}{J Z_{p}} \rightarrow \frac{J L_{p} \cap Z_{p}+B_{p}}{J Z_{p}+B_{p}} \rightarrow 0 \tag{3.2}
\end{equation*}
$$

Observe that

$$
\left(J L_{p} \cap Z_{p}\right) \cap\left(J Z_{p}+B_{p}\right)=\left(J L_{p} \cap Z_{p}\right) \cap B_{p}+J Z_{p}=J L_{p} \cap B_{p}+J Z_{p}
$$

Here the first equality is because if $x \in J Z_{p}, y \in B_{p}$ such that $x+y \in J L_{p} \cap Z_{p}$, then $y \in$ $J L_{p} \cap Z_{p}$ since $x \in J Z_{p} \subset J L_{p} \cap Z_{p}$. Hence the left-hand side of (3.2) is isomorphic to

$$
\frac{J L_{p} \cap B_{p}+J Z_{p}}{J Z_{p}} \cong \frac{J L_{p} \cap B_{p}}{\left(J L_{p} \cap B_{p}\right) \cap J Z_{p}}=\frac{J L_{p} \cap B_{p}}{J Z_{p} \cap B_{p}}
$$

But the last one is resolved by correction modules $C\left(B_{p}, Z_{p} ; J\right)$ and $C\left(B_{p}, L_{p} ; J\right)$

$$
\begin{equation*}
0 \rightarrow \frac{J Z_{p} \cap B_{p}}{J B_{p}} \rightarrow \frac{J L_{p} \cap B_{p}}{J B_{p}} \rightarrow \frac{J L_{p} \cap B_{p}}{J Z_{p} \cap B_{p}} \rightarrow 0 \tag{3.3}
\end{equation*}
$$

Now patching (3.2) and (3.3) completes the proof of the lemma.

4. Parametrized Koszul complexes

In this section sheaf theory comes into the play. For more background interested readers should see [11], especially those arguments related to Lemma 2.1.5, Proposition 9.4.5, and Theorem 10.3.13. Here our approach is slightly more algebraic. It allows conceptual proofs and leads to conjectures for further development.

We start with a connection between a Hilbert module H over a ring R, associated with an operator tuple $\bar{T}=\left(T_{1}, \ldots, T_{n}\right)$, and its sheaf model [11,25],

$$
\mathrm{h}=\mathcal{O}(H) /(z-\bar{T}) \mathcal{O}(H)
$$

as well as its stalk at the origin $h_{0}=\mathcal{O}_{0}(H) /(z-\bar{T}) \mathcal{O}_{0}(H)$. Here R is any of the following three rings

$$
\mathbb{C}\left[z_{1}, \ldots, z_{n}\right], \quad \mathcal{O}\left(\mathbb{C}^{n}\right), \quad \text { and } \quad \mathcal{O}(U)
$$

with U being a Stein neighborhood of the Taylor spectrum $\sigma(\bar{T})$. In any case, and even for \mathcal{O}_{0}, let $I=\left(z_{1}, \ldots, z_{n}\right)$ be the maximal ideal at the origin. We usually assume that $\operatorname{dim}(H / I H)<\infty$ and $0 \in \sigma(\bar{T})$.

In an effort to relate H to h_{0}, Douglas and Yan showed in [9] that the Hilbert function of H, with respect to I, is greater than or equal to the Hilbert function of h_{0}. In [15] we showed that the inequality between the two Hilbert functions is in fact an equality. This plays a key role in the proof of the semi-continuity of Samuel multiplicity over Hilbert modules. The result from [15] can be reformulated as that the completions of H and h_{0} in the so-called I-adic topology [27] are isomorphic,

$$
\begin{equation*}
\hat{H} \cong \hat{h}_{0} \tag{4.1}
\end{equation*}
$$

which is better suited for generalization. In particular, an easy consequence of (4.1) is

$$
\begin{equation*}
H / I H \cong h_{0} / I h_{0} \tag{4.2}
\end{equation*}
$$

Next we aim at the homological generalizations of (4.1) and (4.2). First, rewrite the completion \hat{H} as an inverse limit

$$
\hat{H}=\lim _{k \rightarrow \infty} H / I^{k} H
$$

Let $I_{k}=\left(z_{1}^{k}, \ldots, z_{n}^{k}\right) \subset R$. Then, by basic facts on inverse limits

$$
\hat{H}=\lim _{k \rightarrow \infty} H / I_{k} H
$$

Observe that $H / I_{k} H$ can be written as the 0th homology group of the Koszul complex $K\left(T_{1}^{k}, \ldots, T_{n}^{k} ; H\right)$ of $\left(T_{1}^{k}, \ldots, T_{n}^{k}\right)$ on H. On the other hand, the sheaf model h can be written as the 0th homology group $H_{0}(z-\bar{T}, \mathcal{O}(H))$ of the Koszul complex of $z-\bar{T}=\left(z_{1}-T_{1}, \ldots\right.$, $\left.z_{n}-T_{n}\right)$ on $\mathcal{O}(H)$.

To generalize Eq. (4.1), observe that, for each $i=0,1, \ldots, n$, we can form an inverse system of the Koszul homology groups, [6,16],

$$
\left\{H_{i}\left(T_{1}^{k}, \ldots, T_{n}^{k} ; H\right), k=1,2, \ldots\right\} .
$$

Definition 6. For each $i=0,1, \ldots, n$, we define

$$
\hat{H}_{i}=\lim _{k \rightarrow \infty} H_{i}\left(T_{1}^{k}, \ldots, T_{n}^{k} ; H\right)
$$

For the sheaf side, as generalization of the sheaf model $h=h_{(0)}$, we call

$$
\mathrm{h}_{(i)}=H_{i}(z-\bar{T}, \mathcal{O}(H)), \quad i=0,1, \ldots, n,
$$

the homological sheaf models of H.
The modules \hat{H}_{i} are reminiscent of Grothendieck's local cohomology modules in algebraic geometry [16]. According to Markoe [22], $\mathrm{h}_{(i)}$ is in fact a coherent analytic sheaf around the origin for each i when \bar{T} is Fredholm. The significance of \hat{H}_{i} and $h_{(i)}$ is yet to be understood. As a first step, and as a generalization of (4.1), we offer the following conjecture. Let $\mathrm{h}_{(i), 0}$ denote the stalk at the origin, and $\hat{\mathrm{h}}_{(i), 0}$ its I-adic completion.

Conjecture. For any Fredholm tuple \bar{T} and each $i=0,1, \ldots, n$, we have a natural isomorphism $\hat{H}_{i} \cong \hat{h}_{(i), 0}$ of modules over the ring of power series $\mathbb{C}\left\langle z_{1}, \ldots, z_{n}\right\rangle$.

As for Eq. (4.2), observe that $h_{0} / I h_{0}$ can be written as the 0th homology group of the Koszul complex $K(z-\bar{T} ; R / I \otimes H)$ of $z-\bar{T}=\left(z_{1}-T_{1}, \ldots, z_{n}-T_{n}\right)$ on $\mathcal{O}_{0}(H) / I \mathcal{O}_{0}(H)=$ $R / I \otimes_{\mathbb{C}} H$. Note that $\mathcal{O}_{0} / I \mathcal{O}_{0}$ are isomorphic to R / I, as Artinian rings, for any of $R=$ $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right], \mathcal{O}\left(\mathbb{C}^{n}\right)$, and $\mathcal{O}(U)$. For each of these three rings, we generalize (4.2) to

Lemma 7. Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a regular sequence in R, and (f) be the ideal generated by f_{j}. Then

$$
H_{i}\left(f_{1}(\bar{T}), \ldots, f_{n}(\bar{T}) ; H\right) \cong H_{i}\left(z-\bar{T}, R /(f) \otimes_{\mathbb{C}} H\right)
$$

Remarks. (1) Here f being regular means that the Koszul complex of f on R yields a free resolution of $R /(f)$ [10]. In particular, length $(R /(f))<\infty$.
(2) Under the condition $f^{-1}(0)=0$, Lemma 7 is already covered in [12] which, in turn, is modeled after the proof of Theorem 10.3.13 in [11]. Modulo technical matters, what is new here is just the way it is presented.
(3) Our proof is essentially only a series observations in homological algebra, which can establish the result for a larger category, and motivates a further conjecture-see the remark at the end of the paper.

Proof. When $i=0$, both sides are directly verified to be $H / \sum f_{j}(\bar{T}) H$. In fact one has

$$
H_{0}\left(z-\bar{T}, R /(f) \otimes_{\mathbb{C}} H\right) \cong(R /(f)) \otimes_{R} H
$$

The natural map from the left to the right is the class of $x \otimes y \in R /(f) \otimes_{\mathbb{C}} H$ being sent to the class of $x \otimes y \in(R /(f)) \otimes H$. It is clearly surjective with kernel being the submodule generated by $r x \otimes_{\mathbb{C}} y-x \otimes_{\mathbb{C}} r y$, which is the same as that generated by $\left(z_{i}-T_{i}\right)\left(x \otimes_{\mathbb{C}} y\right)=z_{i} x \otimes_{\mathbb{C}} y-$ $x \otimes_{\mathbb{C}} T_{i} y$ [10].

For general i, since f is regular, the Koszul homology is also given by the derived functors $\operatorname{Tor}_{i}^{R}(\cdot, \cdot)$,

$$
H_{i}\left(f_{1}(\bar{T}), \ldots, f_{n}(\bar{T}) ; H\right)=\operatorname{Tor}_{i}^{R}(R /(f), H)
$$

Let R_{w} denote the ring R with variables written in $w=\left(w_{1}, \ldots, w_{n}\right)$, and consider H as a module over R_{w}. Then $H_{i}\left(z-\bar{T}, R /(f) \otimes_{\mathbb{C}} H\right)$, viewed as a module over $R_{z} \otimes R_{w}$, is naturally a module over R_{w}. Hence, the functors $F_{i}: M \rightarrow H_{i}\left(z-\bar{T}, R /(f) \otimes_{\mathbb{C}} M\right)$ can be regarded as over the category of $R_{w}(=R)$-modules.

To show the sequence of functors $F_{i}: M \rightarrow H_{i}\left(z-\bar{T}, R /(f) \otimes_{\mathbb{C}} M\right)$ coincide with the derived functors $M \rightarrow \operatorname{Tor}_{i}^{R}(R /(f), M)$ for any R-module M, we only need to show that $F=\left(F_{i}\right)$ is a universal δ-functor-here we use the machinery in homological algebra as explained in Section 3.1, [17]. Being a δ-functor is clear by definition. To show it is universal, it suffices to show that F_{i} is coeffaceable for $i>0$. This can be verified by (1) the category of all R-modules have enough projectives, and (2) $F_{i}(R)=0$ when $i>0$. The first is algebraic folklore, and the second follows easily from the definition of regular sequence.

Next we give more details for

$$
H_{i}\left(z-w, \mathcal{O}(U) /(f) \otimes_{\mathbb{C}} \mathcal{O}(U)\right)=0 \quad(i>0)
$$

for readers' convenience [10]. Because $(z-w)$ forms a regular sequence in $\mathcal{O}(U) \otimes_{\mathbb{C}} \mathcal{O}(U)$, the Koszul homology can be calculated via

$$
\operatorname{Tor}_{i}^{\mathcal{O}(U) \otimes_{\mathbb{C}} \mathcal{O}(U)}\left(\mathcal{O}(U) \otimes_{\mathbb{C}} \mathcal{O}(U) /(z-w), \mathcal{O}(U) /(f) \otimes_{\mathbb{C}} \mathcal{O}(U)\right)
$$

Since (f) is regular by assumption, the Koszul complex $K(f, \mathcal{O}(U))$ provides a free resolution of $\mathcal{O}(U) /(f)$, hence $K(f, \mathcal{O}(U)) \otimes_{\mathbb{C}} \mathcal{O}(U)$ a free resolution of $\mathcal{O}(U) /(f) \otimes_{\mathbb{C}} \mathcal{O}(U)$. Hence the above Tor_{i} can be calculated through the complex

$$
\begin{aligned}
& K(f, \mathcal{O}(U)) \otimes_{\mathbb{C}} \mathcal{O}(U) \otimes_{\mathcal{O}(U) \otimes_{\mathbb{C}} \mathcal{O}(U)} \mathcal{O}(U) \otimes_{\mathbb{C}} \mathcal{O}(U) /(z-w) \\
& \quad \cong K(f, \mathcal{O}(U)) \otimes_{\mathbb{C}} \mathcal{O}(U) /(z-w)
\end{aligned}
$$

The last term, regarded as a complex of $\mathcal{O}(U)$-modules in the variable z, is isomorphic to $K(f, \mathcal{O}(U))$, which is acyclic, hence $H_{i}(\cdots)=0$.

Let $J=(f)=\left(z_{1}^{k_{1}}, \ldots, z_{n}^{k_{n}}\right)$, then $R /(f) \otimes_{\mathbb{C}} H \cong \mathcal{O}_{0}(H) / J \mathcal{O}_{0}(H)$. If $\mathcal{L} \bullet=K(z-\bar{T}$, $\mathcal{O}_{0}(H)$) denotes the Koszul complex of $z-\bar{T}$ on $\mathcal{O}_{0}(H)$, then, by Lemma 7,

$$
H_{i}\left(T_{1}^{k_{1}}, \ldots, T_{n}^{k_{n}}\right) \cong H_{i}\left(\mathcal{L}_{\bullet} / J \mathcal{L}_{\bullet}\right)
$$

Since $\mathcal{O}_{0}(H)$ in $\mathcal{L} \bullet$ is an infinitely generated \mathcal{O}_{0}-module when $\operatorname{dim}(H)=\infty$, a standard strategy for parametrized complexes is to find a complex of finitely generated \mathcal{O}_{0}-modules with isomorphic homology groups, which will allow us to apply results from Section 3.

Lemma 8. If \bar{T} is Fredholm, then there exists a complex \mathcal{E}_{\bullet} of finitely generated \mathcal{O}_{0}-modules: $\cdots \rightarrow E_{i} \rightarrow E_{i-1} \rightarrow \cdots$, such that for $J=0$, or any $\mathrm{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$ and $J=$ $\left(z_{1}^{k_{1}}, \ldots, z_{n}^{k_{n}}\right)$,

$$
H_{i}\left(\mathcal{L}_{\bullet} / J \mathcal{L}_{\bullet}\right) \cong H_{i}\left(\mathcal{E}_{\bullet} / J \mathcal{E}_{\bullet}\right), \quad i \in \mathbb{Z}
$$

Proof. This is essentially due to [11] and [12]. The construction of \mathcal{E}_{\bullet} is detailed in [11]. The isomorphism between homology groups is verified in [12].

Proof of Theorem 1. Since the components E_{i} in \mathcal{E}_{\bullet} are finitely generated \mathcal{O}_{0}-modules, so are the homology groups $H_{i}\left(\mathcal{E}_{\bullet}\right)$. By Lemma 4, the function

$$
\phi(\mathrm{k})=\operatorname{dim}\left[H_{i}\left(\mathcal{E}_{\bullet}\right) / J H_{i}\left(\mathcal{E}_{\bullet}\right)\right]
$$

satisfies, for some constant C,

$$
\phi(\mathrm{k}) \leqslant k_{1} \cdots k_{n}\left(e_{i}+\frac{C}{\min k_{j}}\right)
$$

here $e_{i}=e_{i}(\bar{T})$ is the Samuel multiplicity of $H_{i}\left(\mathcal{E}_{\bullet}\right)=H_{i}\left(\mathcal{L}_{\bullet}\right)$ with respect to I. Now, the estimates on correction modules, together with the representation of the difference between $H_{i}\left(\mathcal{E}_{\bullet}\right) / J H_{i}\left(\mathcal{E}_{\bullet}\right)$ and $H_{i}\left(\mathcal{E}_{\bullet} / J \mathcal{E}_{\bullet}\right)$ as correction modules, completes the proof of the upper bound in Theorem 1.

The lower bound is much easier, and is in fact part of Theorem 2.4 in [12]. Our treatment here is just slightly different. For fixed k , we claim that $h_{i}\left(k_{1}, \ldots, k_{n}\right)=e_{i} \cdot k_{1} \cdots k_{n}$ when the tuple is $\bar{T}-\lambda$, where λ is in a small neighborhood of the origin except for a possibly thin subvariety. Because $h_{i}\left(k_{1}, \ldots, k_{n}\right)$ is upper semi-continuous around the origin as a function of λ in $\bar{T}-\lambda$, we get the lower bound.

Since the singularity set of the coherent sheaf $H_{i}\left(\mathcal{L}_{\bullet}\right)$ is thin, we can choose small λ such that, with respect to the tuple $\bar{T}-\lambda, H_{i}\left(\mathcal{L}_{\bullet}\right)$ is free, and, for any primary ideal J, the following are naturally isomorphic: $H_{i}\left(\mathcal{L}_{\bullet} / J \mathcal{L}_{\bullet}\right) \cong H_{i}\left(\mathcal{L}_{\bullet}\right) / J H_{i}\left(\mathcal{L}_{\bullet}\right)$ (see Grauert's comparison theorem [5,17]).

Here the latter has dimension $e_{i} \cdot \operatorname{dim}\left(\mathcal{O}_{0} / J\right)$ since $H_{i}\left(\mathcal{L}_{\bullet}\right)$ is free. Choosing $J=\left(z_{1}^{k_{1}}, \ldots, z_{n}^{k_{n}}\right)$ gives us the claim.

Because $H_{i}(z-\bar{T}, \mathcal{O}(H))$ is coherent around the origin when \bar{T} is Fredholm [22], and e_{i} is the Samuel multiplicity of the stalk of $H_{i}(z-\bar{T}, \mathcal{O}(H))$ at the origin, a straightforward consequence is, by the invariance of Samuel multiplicity of stalks of a coherent analytic sheaf, that is $H_{i}(z-\bar{T}, \mathcal{O}(H))$ in our case, the local constancy of $e_{i}(\bar{T}-\lambda)$.

Corollary 9. If \bar{T} is Fredholm, then the function $\lambda \in \mathbb{C}^{n} \mapsto e_{i}(\bar{T}-\lambda)$ is locally constant in a neighborhood of the origin.

In other words, let Ω be a connected component of the Fredholm domain $\mathbb{C}^{n} \backslash \sigma_{e}(\bar{T})$, then $e_{i}(\bar{T}-\lambda)$ is a constant for $\lambda \in \Omega$.

Motivated by the base change formula for Fredholm index index $\left(f_{1}(\bar{T}), \ldots, f_{n}(\bar{T})\right)$ [24], it is natural to ask whether similar formulas hold for $H_{i}\left(f_{1}(\bar{T}), \ldots, f_{n}(\bar{T})\right)$ and $e_{i}\left(f_{1}(\bar{T}), \ldots, f_{n}(\bar{T})\right)$. In general, $H_{i}(\cdot)$ is too unstable to enjoy a nice base change formula.

For e_{i}, however, we observe that the proof of the base change formula in Theorem 10.3.16 in [11] goes, roughly, as follows. The key in reduction is that index $(\bar{T}-\lambda)$ is locally constant in λ. For a neighborhood $U \supset \sigma(\bar{T})$ of the Taylor spectrum $\sigma(T)$, and a map $F=\left(f_{1}, \ldots, f_{n}\right)$: $U \rightarrow \mathbb{C}^{n}$ with $F(0)=0$, we can consider index $(F(\bar{T})-\lambda)$ such that the fibre $(F-\lambda)^{-1}(0)$ is simple, that is, a collection of k distinct points $\left\{p_{1}, \ldots, p_{k}\right\}$, here k being the mapping degree of f at 0 . Then over each simple point p_{i}, the contribution to index can be counted directly, hence leading to the base change formula. Now, based on Corollary 9, the whole proof in [11] carries over for $e_{i}(\cdot)$.

Corollary 10. Let \bar{T} be a Fredholm tuple, and $F \in \mathcal{O}(U)^{n}$ be an n-tuple of analytic functions defined on an open neighborhood U of the Taylor spectrum $\sigma(\bar{T})$. Assume that $F(0)=0$ and $0 \notin \sigma_{e}(F(\bar{T}))$, and let $m_{z}(F)$ denote the multiplicity of F at z. Then, for each $i=0,1, \ldots, n$,

$$
e_{i}(F(\bar{T}))=\sum_{z \in F^{-1}(0) \cap \sigma(\bar{T})} m_{z}(F) e_{i}(\bar{T}-z) .
$$

We end the paper with a remark when $f=\left(f_{1}, \ldots, f_{n}\right)$ in $R=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right], \mathcal{O}\left(\mathbb{C}^{n}\right)$, or $\mathcal{O}(U)$, is not necessarily a regular sequence.

If we rewrite $R /(f)$ as the 0 th Koszul homology of f on R, then Lemma 7 becomes

$$
H_{i}\left(f_{1}(\bar{T}), \ldots, f_{n}(\bar{T}) ; H\right) \cong H_{i}\left(z-\bar{T}, H_{0}(f, R) \otimes_{\mathbb{C}} H\right)
$$

Hence it motivates
Conjecture. For general f, there exists a spectral sequence, with E^{2} page

$$
E_{p q}^{2} \cong H_{p}\left(z-\bar{T}, H_{q}(f, R) \otimes_{\mathbb{C}} H\right)
$$

convergent to $H_{p+q}\left(f_{1}(\bar{T}), \ldots, f_{n}(\bar{T}) ; H\right)$.

Adopting this viewpoint, Lemma 7, that is when f is regular, actually follows immediately from Grothendieck's spectral sequence of composition functors [23,31]. For the general case, we will address the conjecture by constructing spectral sequences directly from double complexes in a coming work.

Acknowledgment

The author thanks J. Eschmeier for sending several of his manuscripts and papers, and for communications which prompt this work.

References

[1] C.-G. Ambrozie, F.-H. Vasilescu, Banach Space Complexes, Math. Appl., vol. 334, Kluwer, Dordrecht, 1995.
[2] W. Arveson, The Dirac operator of a commuting d-tuple, J. Funct. Anal. 189 (1) (2002) 53-79.
[3] M. Atiyah, A survey of K-theory, in: K-Theory and Operator Algebras, Proc. Conf., Univ. Georgia, Athens, GA, 1975, in: Lecture Notes in Math., vol. 575, Springer-Verlag, Berlin, 1977, pp. 1-9.
[4] S. Balcerzyk, T. Jozefiak, Commutative Rings. Dimension, Multiplicity and Homological Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[5] C. Banica, O. Stanasila, Algebraic Methods in the Global Theory of Complex Spaces, Wiley, 1976 (translated from Rumanian).
[6] M.P. Brodmann, R.Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Stud. Adv. Math., vol. 60, Cambridge Univ. Press, Cambridge, 1998.
[7] R.E. Curto, Fredholm and invertible n-tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1) (1981) 129-159.
[8] R.E. Curto, Applications of several complex variables to multiparameter spectral theory, in: Surveys of Some Recent Results in Operator Theory, vol. II, in: Pitman Res. Notes Math. Ser., vol. 192, Longman, Harlow, 1988, pp. 25-90.
[9] R. Douglas, K. Yan, Hilbert-Samuel polynomials for Hilbert modules, Indiana Univ. Math. J. 42 (1993) 811-820.
[10] D. Eisenbud, Commutative Algebra. With a View toward Algebraic Geometry, Grad. Texts in Math., vol. 150, Springer-Verlag, New York, 1995.
[11] J. Eschmeier, M. Putinar, Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monogr. (N.S.), vol. 10, Oxford Univ. Press, New York, 1996.
[12] J. Eschmeier, Samuel multiplicity and Fredholm theory, preprint.
[13] X. Fang, Samuel multiplicity and the structure of semi-Fredholm operators, Adv. Math. 186 (2) (2004) 411-437.
[14] X. Fang, The Fredholm index of a pair of commuting operators, Geom. Funct. Anal. 16 (2) (2006) 367-402.
[15] X. Fang, The Fredholm index of a pair of commuting operators, II, preprint.
[16] R. Hartshorne, Local Cohomology, Lecture Notes in Math., vol. 41, Springer-Verlag, Berlin, New York, 1967.
[17] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math., vol. 52, Springer-Verlag, New York, 1977.
[18] C. Lech, On the associativity formula for multiplicities, Ark. Mat. 3 (1957) 301-314.
[19] C. Lech, Notes on multiplicities of ideals, Ark. Mat. 4 (1959) 63-86.
[20] R.N. Levy, The Riemann-Roch theorem for complex spaces, Acta Math. 158 (3-4) (1987) 149-188.
[21] R.N. Levy, Algebraic and topological K-functors of commuting n-tuple of operators, J. Operator Theory 21 (2) (1989) 219-253.
[22] A. Markoe, Analytic families of differential complexes, J. Funct. Anal. 9 (1972) 181-188.
[23] J. McCleary, A User's Guide to Spectral Sequences, second ed., Cambridge Stud. Adv. Math., vol. 58, 2000.
[24] M. Putinar, Base change and the Fredholm index, Integral Equations Operator Theory 8 (5) (1985) 674-692.
[25] M. Putinar, Spectral theory and sheaf theory, II, Math. Z. 192 (3) (1986) 473-490.
[26] P. Roberts, Multiplicities and Chern Classes in Local Algebra, Cambridge Tracts in Math., vol. 133, Cambridge Univ. Press, Cambridge, 1998.
[27] J.-P. Serre, Local Algebra, Springer Monogr. Math., Springer-Verlag, Berlin, 2000.
[28] J.L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970) 172-191.
[29] J.L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970) 1-38.
[30] F.-H. Vasilescu, Analytic Functional Calculus and Spectral Decompositions, translated from the Romanian, Math. Appl. (East European Ser.), vol. 1, D. Reidel Publ. Co., Dordrecht, 1982 [Editura Academiei Republicii Socialiste Romania, Bucharest, 1982].
[31] C.A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., vol. 38, Cambridge Univ. Press, Cambridge, 1994.

[^0]: E-mail address: xfang@math.ksu.edu.
 ${ }^{1}$ Partially supported by National Science Foundation Grant DMS 0400509.

