
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Functional Analysis 255 (2008) 1–12

www.elsevier.com/locate/jfa

Estimates for Hilbertian Koszul homology

Xiang Fang 1

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA

Received 21 March 2007; accepted 19 December 2007

Available online 14 April 2008

Communicated by G. Pisier

Abstract

The objective of this paper is to give new kind of estimates for Hilbertian Koszul homology, inspired by
commutative algebra, in multivariable Fredholm theory.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Multivariable Fredholm theory; Koszul complex; Homology; Lech’s formula

0. Introduction

The Fredholm index of a single operator admits a generalization to several variables via
Koszul complexes over Hilbert spaces, which is, in general, difficult to calculate. In particu-
lar, in sharp contrast with rich results on Noetherian algebraic modules, over Hilbert modules
currently there are essentially no systematic estimates for higher Koszul homology groups.

In [13–15], we initiated a study of Fredholm theory through the asymptotic behavior of higher
powers of a tuple T̄ . See also Eschmeier’s [12]. In this paper, the asymptotic methods lead to
estimates for all powers of T̄ .

Let T̄ = (T1, . . . , Tn) (n ∈ N) be a Fredholm tuple of commuting operators on a Hilbert
space H . This means that the homology groups Hi(K(T1, . . . , Tn)) (i = 0,1, . . . , n) of the asso-
ciated Koszul complex K(T1, . . . , Tn) of Ti over the Hilbert space H are all finite-dimensional.
Let k= (k1, . . . , kn) ∈ N

n be a multi-index, and T̄ k = (T
k1

1 , . . . , T
kn
n ). If T̄ is Fredholm, then so
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is T̄ k. For convenience, let hi(k1, . . . , kn) = dim(Hi(K(T
k1

1 , . . . , T
kn
n ))). The main result of this

paper is

Theorem 1. For any Fredholm tuple (T1, . . . , Tn), there exist e0, e1, . . . , en ∈ Z, and a constant
C > 0 such that for all i = 0,1, . . . , n, and k1, k2, . . . , kn ∈ N,

k1k2 · · ·kn · ei � hi(k1, . . . , kn) � k1k2 · · ·kn

(
ei + C

minki

)
.

A few remarks follow:

• Considering the multi-index k is indeed useful, say, in [14], where n = 2, and
supk hi(1, k) < ∞ implies ei = 0.

• Clearly, our result implies that ei = limk→∞
hi(T

k
1 ,...,T k

n )

kn (see Corollary 2.3 in [12]) and

that index index(T̄ ) = ∑n
i=0(−1)iei by the multiplicity formula index(T

k1
1 , . . . , T

kn
n ) =

k1 · · ·kn index(T1, . . . , Tn).
• When H is replaced by a finitely generated module over a Noetherian ring, the corresponding

function hi is dominated by a polynomial of ki with degree n − i, hence ei = 0 except for

possibly e0 [26]. It is not clear whether limk→∞ hi(k,...,k)

kn−i exists.

Two main ingredients in the proof of Theorem 1. Many arguments in this paper refine those
of Eschmeier’s [12] in order to obtain quantitative results. The first set of techniques is sheaf
theoretic. First touched upon by Markoe [22], sheaf theory for operators was systematically
investigated later [25], and the primary reference is the monograph [11]. The second set is com-
mutative algebra in nature, and is more closely related to our previous work. In particular, we
own a deep intellectual debt to C. Lech [14,18,19], from which we borrow many ideas.

Both sets of techniques are well known, and in fact easy, to experts in algebra and analysis,
respectively. What we do here is to bring them together to yield estimates which appear of value
in operator theory.

1. Background

Definitions. In order to study the spectral theory of a tuple of commuting operators, instead of
a single operator, J.L. Taylor, in 1970, introduced a seminal approach via Koszul complexes over
Banach spaces [28,29]. For a commuting tuple T̄ = (T1, . . . , Tn) on a Banach space H , its Koszul
complex K(T1, . . . , Tn) is

K(T̄ ): 0 → H ⊗ ∧n
C

n → H ⊗ ∧n−1
C

n → ·· · → H ⊗ ∧0
C

n → 0.

Here
∧n

C
n is the kth exterior power of C

n. Let {e1, . . . , en} be an orthonormal basis for C
n,

and let ci be the creation operator associated with ei , that is, ci(ξ) = ei ∧ ξ for ξ ∈ ∧
C

n. Then
the boundary operator is B = T1 ⊗ c∗

1 + · · · + Tn ⊗ c∗
n. The tuple (T1, . . . , Tn) is called invertible

if the complex K(T̄ ) is exact.
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Subsequently, a multivariable Fredholm theory is formulated: a tuple T̄ of commuting opera-
tors is Fredholm if K(T̄ ) has a finite-dimensional homology group at each stage, that is,

dimC Hi

(
K(T̄ )

)
< ∞

for all i = 0,1, . . . , n [1,2,7,8,11,30]. We also write Hi(T̄ ) instead of Hi(K(T̄ )) for convenience.
The n + 1 homology groups of K(T̄ ) are the multivariable analogs of the kernel ker(T ) and
cokernel H/T H of a single operator T ∈ B(H). When (T1, . . . , Tn) is Fredholm, define the
multivariable Fredholm index by

index(T1, . . . , Tn) =
n∑

i=0

(−1)i dimC Hi

(
K(T̄ )

)
,

the Euler characteristic of K(T̄ ).
The multivariable index index(T̄ ) is connected with a variety of problems in both classical

analysis and algebraic topology [3,11,20,21]. Currently, however, there is essentially no effective
computational tools, especially for higher homology groups Hi(·), that is, for those groups with
i > 0. Most known examples are, or are reduced to, acyclic tuples: Hi(·) = 0 except for i = 0,
hence index(·) = dim(H0(·)). Consequently, there is a current need to get a better grasp on those
higher homology groups.

Motivation. Our approach to Hi(·) originates from an effort to generalize the following simple
arguments from [14] to several variables: for a single Fredholm operator T acting on a separable
Hilbert space H , by the definition of Fredholm index, and the multiplicity formula,

index(T ) = index(T k)

k

= dim(ker(T k))

k
− dim(H/T kH)

k

= lim
k→∞

dim(ker(T k))

k
− lim

k→∞
dim(H/T kH)

k
.

Here both limits exist, and are in fact integers. This leads to links to commutative algebra through
the Hilbert function k → dim(H/T kH), [10], and a celebrated result of J.-P. Serre, relating the
Euler characteristics of Koszul complexes to Samuel multiplicities [27].

2. Correction modules C(M,L;J)

This section is purely commutative algebra. We introduce a notion of correction modules,
which, simple as it is, seems not discussed explicitly in literature. For operator theorists wanting
more algebraic references, see standard texts [4,10] for Samuel multiplicity, and see [14,18,19],
and [26] for Lech’s formulas.
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Definition 2. Let R be a ring, J ⊂ R be an ideal, and M ⊂ L be a submodule of an R-module L.
Define the correction module of M in L with respect to an ideal J to be

C(M,L;J ) = M ∩ JL

JM
.

Remark. When R and L are Noetherian, the Artin–Rees lemma is useful for the study of the
asymptotic behavior of C(M,L;J k) when k → ∞.

Lemma 3. Let R be a local Noetherian ring, I = (x1, . . . , xn) ⊂ R be its maximal ideal, and
Ik = (x

k1
1 , . . . , x

kn
n ) for any k ∈ N

n.
If L is a finitely generated R-module, and M ⊂ L is a submodule, then there exists a con-

stant C such that for all k ∈ N
n,

length
(
C(M,L; Ik)

)
� k1k2 · · ·kn · C

minkj

.

Proof. Let N = L/M be the quotient module. For any ideal J ⊂ R, applying the functor
(·) ⊗R R/J , which is only right-exact, to a short exact sequence of R-modules

0 → M → L → N → 0, (2.1)

we get a right-exact sequence

→ M/JM → L/JL → N/JN → 0. (2.2)

By the definition of correction module, it follows

0 → C(M,L;J ) → M/JM → L/JL → N/JN → 0. (2.3)

Consider J = Ik, and by the algebraic Lech’s formula (see Lemma 4), there exists a constant CE

for the modules E = M , L, or N , such that

k1 · · ·kn · e(E) � length(E/IkE) � k1 · · · kn

(
e(E) + CE

minkj

)
. (2.4)

Here

e(E) = n! lim
t→∞

length(E/I tE)

tn

is the Samuel multiplicity of E with respect to I . By the additivity of Samuel multiplicity over
short exact sequence (2.1), we have

e(L) = e(M) + e(N).

Now the proof is completed by observing
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length
(
C(M,L; Ik)

) = length(M/IkM) + length(N/IkN) − length(L/IkL)

� k1k2 · · ·kn · CM + CN

minkj

. �
Remarks. (1) We derive the name of C(M,L;J ) from (2.3).

(2) For the proof of Theorem 1, the only case we need is R = O0, the local ring of germs of
holomorphic functions around the origin in C

n.

For readers’ convenience we record the following.

Lemma 4 (Lech’s inequality). Let J = (x1, . . . , xn) be an ideal of a local ring R, generated
by xi , and let M be a Noetherian R-module such that length(M/JM) < ∞, then there exists a
constant C such that

k1 · · ·kne(M,J ) � length
(
M/

(
x

k1
1 , . . . , xkn

n

)
M

)
� k1 · · ·kn

(
e(M,J ) + C

minj kj

)
,

here e(M,J ) is the Samuel multiplicity of M with respect to J .

The original proof of Lech is contained in the proof of Theorem 2 in [18], which in fact only
covers the case M = R. The (Hilbert) module case is treated in [14]. Both proofs can be easily
adopted to prove Lemma 4.

3. Difference between Hp(L•/JL•) and Hp(L•)/JHp(L•) as correction modules

This section is still purely algebraic. Let R be any commutative ring, and

L•: · · · → Lp → Lp−1 → ·· ·

be a complex of R-modules, with Hp(L•) denoting the homology group at the pth stage, p ∈ Z.
For any ideal J ⊂ R, we represent the difference between Hp(L•/JL•) and Hp(L•)/JHp(L•)
as correction modules in this section. This is also considered in [12]. Here we refine the argu-
ments in [12] and obtain more quantitative results.

Since the difference between Hp(L•/JL•) and Hp(L•)/JHp(L•) is often encountered, say
in base change theorems, in algebraic geometry, our results here may be of interests to algebraists.

Recall that for any R-module M , there exists a natural morphism (say, by [5])

Hp(L•) ⊗R M → Hp(L• ⊗R M).

Here we will consider M = J , and R/J .
Let Zp ⊂ Lp be the set of closed elements, that is, Zp = ker(Lp → Lp−1), and let Bp ⊂ Lp

be the set of boundary elements, that is, Bp = Image(Lp+1 → Lp). Note that Hp(L•) = Zp/Bp .

Lemma 5. For the natural morphism j : Hp(L•)/JHp(L•) → Hp(L•/JL•), the cokernel is
isomorphic to

coker(j) ∼= C(Bp−1,Lp−1;J ).
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The kernel ker(j) is resolved by an exact sequence of correction modules

0 → C(Bp,Zp;J ) → C(Bp,Lp;J ) → C(Zp,Lp;J ) → ker(j) → 0.

Proof. The standard strategy in algebra is to analyze the natural morphism

j : Hp(L•)/JHp(L•) → Hp(L•/JL•)

by embedding it into a commutative diagram. To resolve Hp(L•/JL•), we consider the long
exact sequence associated with

0 → JL• → L• → L•/JL• → 0,

and get the first row of the diagram (3.1). To resolve Hp(L•)/JHp(L•) we consider the straight-
forward short exact sequence which leads to the second row of the diagram (3.1). Together with
the natural morphisms j1, j2 = id, and j , we obtain a commutative diagram

Hp(JL•)
d1

Hp(L•)
d2

Hp(L•/JL•)
δ

Hp−1(JL•)
d3

Hp−1(L•)

0 JHp(L•)

j1

Hp(L•)

j2

Hp(L•)/JHp(L•)

j

0.

(3.1)

The cokernel part is easier. By the second commutative square in the diagram (3.1), and the
exactness of the first row in (3.1),

coker(j) = coker(d2) ∼= Image(δ) = ker(d3).

Let Z∗(JL•) (respectively B∗(JL•)) denote the closed (respectively boundary) elements of the
complex JL•. Then

ker(d3) = Zp−1(JL•) ∩ Bp−1

Bp−1(JL•)
= JLp−1 ∩ Zp−1 ∩ Bp−1

JBp−1
= JLp−1 ∩ Bp−1

JBp−1
.

Now consider ker(j). By the second commutative square, and exactness of both rows in (3.1),

ker(j) = ker(d2)

JHp(L•)
= Image(d1)

JHp(L•)
.

Note that

Image(d1) = JLp ∩ Zp + Bp

Bp

and JHp(L•) = JZp + Bp

Bp

.

Hence we can resolve ker(j) by C(Zp,Lp;J )

0 → (JLp ∩ Zp) ∩ (JZp + Bp) → JLp ∩ Zp → JLp ∩ Zp + Bp → 0. (3.2)

JZp JZp JZp + Bp
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Observe that

(JLp ∩ Zp) ∩ (JZp + Bp) = (JLp ∩ Zp) ∩ Bp + JZp = JLp ∩ Bp + JZp.

Here the first equality is because if x ∈ JZp , y ∈ Bp such that x + y ∈ JLp ∩ Zp , then y ∈
JLp ∩ Zp since x ∈ JZp ⊂ JLp ∩ Zp . Hence the left-hand side of (3.2) is isomorphic to

JLp ∩ Bp + JZp

JZp

∼= JLp ∩ Bp

(JLp ∩ Bp) ∩ JZp

= JLp ∩ Bp

JZp ∩ Bp

.

But the last one is resolved by correction modules C(Bp,Zp;J ) and C(Bp,Lp;J )

0 → JZp ∩ Bp

JBp

→ JLp ∩ Bp

JBp

→ JLp ∩ Bp

JZp ∩ Bp

→ 0. (3.3)

Now patching (3.2) and (3.3) completes the proof of the lemma. �
4. Parametrized Koszul complexes

In this section sheaf theory comes into the play. For more background interested readers
should see [11], especially those arguments related to Lemma 2.1.5, Proposition 9.4.5, and Theo-
rem 10.3.13. Here our approach is slightly more algebraic. It allows conceptual proofs and leads
to conjectures for further development.

We start with a connection between a Hilbert module H over a ring R, associated with an
operator tuple T̄ = (T1, . . . , Tn), and its sheaf model [11,25],

h= O(H)/(z − T̄ )O(H),

as well as its stalk at the origin h0 = O0(H)/(z− T̄ )O0(H). Here R is any of the following three
rings

C[z1, . . . , zn], O(Cn), and O(U),

with U being a Stein neighborhood of the Taylor spectrum σ(T̄ ). In any case, and even for O0,
let I = (z1, . . . , zn) be the maximal ideal at the origin. We usually assume that dim(H/IH) < ∞
and 0 ∈ σ(T̄ ).

In an effort to relate H to h0, Douglas and Yan showed in [9] that the Hilbert function of H ,
with respect to I , is greater than or equal to the Hilbert function of h0. In [15] we showed that
the inequality between the two Hilbert functions is in fact an equality. This plays a key role in the
proof of the semi-continuity of Samuel multiplicity over Hilbert modules. The result from [15]
can be reformulated as that the completions of H and h0 in the so-called I -adic topology [27]
are isomorphic,

Ĥ ∼= ĥ0, (4.1)

which is better suited for generalization. In particular, an easy consequence of (4.1) is

H/IH ∼= h0/Ih0. (4.2)
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Next we aim at the homological generalizations of (4.1) and (4.2). First, rewrite the comple-
tion Ĥ as an inverse limit

Ĥ = lim←−
k→∞

H/IkH.

Let Ik = (zk
1, . . . , z

k
n) ⊂ R. Then, by basic facts on inverse limits

Ĥ = lim←−
k→∞

H/IkH.

Observe that H/IkH can be written as the 0th homology group of the Koszul complex
K(T k

1 , . . . , T k
n ;H) of (T k

1 , . . . , T k
n ) on H . On the other hand, the sheaf model h can be written

as the 0th homology group H0(z − T̄ ,O(H)) of the Koszul complex of z − T̄ = (z1 − T1, . . . ,

zn − Tn) on O(H).
To generalize Eq. (4.1), observe that, for each i = 0,1, . . . , n, we can form an inverse system

of the Koszul homology groups, [6,16],

{
Hi

(
T k

1 , . . . , T k
n ;H )

, k = 1,2, . . .
}
.

Definition 6. For each i = 0,1, . . . , n, we define

Ĥi = lim←−
k→∞

Hi

(
T k

1 , . . . , T k
n ;H )

.

For the sheaf side, as generalization of the sheaf model h= h(0), we call

h(i) = Hi

(
z − T̄ ,O(H)

)
, i = 0,1, . . . , n,

the homological sheaf models of H .

The modules Ĥi are reminiscent of Grothendieck’s local cohomology modules in algebraic
geometry [16]. According to Markoe [22], h(i) is in fact a coherent analytic sheaf around the
origin for each i when T̄ is Fredholm. The significance of Ĥi and h(i) is yet to be understood. As
a first step, and as a generalization of (4.1), we offer the following conjecture. Let h(i),0 denote
the stalk at the origin, and ĥ(i),0 its I -adic completion.

Conjecture. For any Fredholm tuple T̄ and each i = 0,1, . . . , n, we have a natural isomorphism
Ĥi

∼= ĥ(i),0 of modules over the ring of power series C〈z1, . . . , zn〉.

As for Eq. (4.2), observe that h0/Ih0 can be written as the 0th homology group of the
Koszul complex K(z − T̄ ;R/I ⊗ H) of z − T̄ = (z1 − T1, . . . , zn − Tn) on O0(H)/IO0(H) =
R/I ⊗C H . Note that O0/IO0 are isomorphic to R/I , as Artinian rings, for any of R =
C[z1, . . . , zn], O(Cn), and O(U). For each of these three rings, we generalize (4.2) to

Lemma 7. Let f = (f1, . . . , fn) be a regular sequence in R, and (f ) be the ideal generated
by fj . Then

Hi

(
f1(T̄ ), . . . , fn(T̄ );H ) ∼= Hi

(
z − T̄ ,R/(f ) ⊗C H

)
.
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Remarks. (1) Here f being regular means that the Koszul complex of f on R yields a free
resolution of R/(f ) [10]. In particular, length(R/(f )) < ∞.

(2) Under the condition f −1(0) = 0, Lemma 7 is already covered in [12] which, in turn, is
modeled after the proof of Theorem 10.3.13 in [11]. Modulo technical matters, what is new here
is just the way it is presented.

(3) Our proof is essentially only a series observations in homological algebra, which can
establish the result for a larger category, and motivates a further conjecture—see the remark at
the end of the paper.

Proof. When i = 0, both sides are directly verified to be H/
∑

fj (T̄ )H . In fact one has

H0
(
z − T̄ ,R/(f ) ⊗C H

) ∼= (
R/(f )

) ⊗R H.

The natural map from the left to the right is the class of x ⊗ y ∈ R/(f ) ⊗C H being sent to the
class of x ⊗ y ∈ (R/(f ))⊗H . It is clearly surjective with kernel being the submodule generated
by rx ⊗C y − x ⊗C ry, which is the same as that generated by (zi − Ti)(x ⊗C y) = zix ⊗C y −
x ⊗C Tiy [10].

For general i, since f is regular, the Koszul homology is also given by the derived functors
TorRi (·, ·),

Hi

(
f1(T̄ ), . . . , fn(T̄ );H ) = TorRi

(
R/(f ),H

)
.

Let Rw denote the ring R with variables written in w = (w1, . . . ,wn), and consider H as a
module over Rw . Then Hi(z − T̄ ,R/(f ) ⊗C H), viewed as a module over Rz ⊗ Rw , is naturally
a module over Rw . Hence, the functors Fi : M → Hi(z − T̄ ,R/(f ) ⊗C M) can be regarded as
over the category of Rw(= R)-modules.

To show the sequence of functors Fi : M → Hi(z − T̄ ,R/(f ) ⊗C M) coincide with the de-
rived functors M → TorRi (R/(f ),M) for any R-module M , we only need to show that F = (Fi)

is a universal δ-functor—here we use the machinery in homological algebra as explained in Sec-
tion 3.1, [17]. Being a δ-functor is clear by definition. To show it is universal, it suffices to show
that Fi is coeffaceable for i > 0. This can be verified by (1) the category of all R-modules have
enough projectives, and (2) Fi(R) = 0 when i > 0. The first is algebraic folklore, and the second
follows easily from the definition of regular sequence.

Next we give more details for

Hi

(
z − w,O(U)/(f ) ⊗C O(U)

) = 0 (i > 0)

for readers’ convenience [10]. Because (z−w) forms a regular sequence in O(U)⊗C O(U), the
Koszul homology can be calculated via

TorO(U)⊗CO(U)
i

(
O(U) ⊗C O(U)/(z − w),O(U)/(f ) ⊗C O(U)

)
.

Since (f ) is regular by assumption, the Koszul complex K(f,O(U)) provides a free resolution
of O(U)/(f ), hence K(f,O(U))⊗C O(U) a free resolution of O(U)/(f )⊗C O(U). Hence the
above Tori can be calculated through the complex



10 X. Fang / Journal of Functional Analysis 255 (2008) 1–12
K
(
f,O(U)

) ⊗C O(U) ⊗O(U)⊗CO(U) O(U) ⊗C O(U)/(z − w)

∼= K
(
f,O(U)

) ⊗C O(U)/(z − w).

The last term, regarded as a complex of O(U)-modules in the variable z, is isomorphic to
K(f,O(U)), which is acyclic, hence Hi(· · ·) = 0. �

Let J = (f ) = (z
k1
1 , . . . , z

kn
n ), then R/(f ) ⊗C H ∼= O0(H)/JO0(H). If L• = K(z − T̄ ,

O0(H)) denotes the Koszul complex of z − T̄ on O0(H), then, by Lemma 7,

Hi

(
T

k1
1 , . . . , T kn

n

) ∼= Hi(L•/JL•).

Since O0(H) in L• is an infinitely generated O0-module when dim(H) = ∞, a standard strategy
for parametrized complexes is to find a complex of finitely generated O0-modules with isomor-
phic homology groups, which will allow us to apply results from Section 3.

Lemma 8. If T̄ is Fredholm, then there exists a complex E• of finitely generated O0-modules:
· · · → Ei → Ei−1 → ·· · , such that for J = 0, or any k = (k1, . . . , kn) ∈ N

n and J =
(z

k1
1 , . . . , z

kn
n ),

Hi(L•/JL•) ∼= Hi(E•/JE•), i ∈ Z.

Proof. This is essentially due to [11] and [12]. The construction of E• is detailed in [11]. The
isomorphism between homology groups is verified in [12]. �
Proof of Theorem 1. Since the components Ei in E• are finitely generated O0-modules, so are
the homology groups Hi(E•). By Lemma 4, the function

φ(k) = dim
[
Hi(E•)/JHi(E•)

]

satisfies, for some constant C,

φ(k) � k1 · · ·kn

(
ei + C

minkj

)
,

here ei = ei(T̄ ) is the Samuel multiplicity of Hi(E•) = Hi(L•) with respect to I . Now, the
estimates on correction modules, together with the representation of the difference between
Hi(E•)/JHi(E•) and Hi(E•/JE•) as correction modules, completes the proof of the upper bound
in Theorem 1.

The lower bound is much easier, and is in fact part of Theorem 2.4 in [12]. Our treatment here
is just slightly different. For fixed k, we claim that hi(k1, . . . , kn) = ei · k1 · · ·kn when the tuple
is T̄ − λ, where λ is in a small neighborhood of the origin except for a possibly thin subvariety.
Because hi(k1, . . . , kn) is upper semi-continuous around the origin as a function of λ in T̄ − λ,
we get the lower bound.

Since the singularity set of the coherent sheaf Hi(L•) is thin, we can choose small λ such that,
with respect to the tuple T̄ −λ, Hi(L•) is free, and, for any primary ideal J , the following are nat-
urally isomorphic: Hi(L•/JL•) ∼= Hi(L•)/JHi(L•) (see Grauert’s comparison theorem [5,17]).
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Here the latter has dimension ei · dim(O0/J ) since Hi(L•) is free. Choosing J = (z
k1
1 , . . . , z

kn
n )

gives us the claim. �
Because Hi(z − T̄ ,O(H)) is coherent around the origin when T̄ is Fredholm [22], and ei is

the Samuel multiplicity of the stalk of Hi(z − T̄ ,O(H)) at the origin, a straightforward conse-
quence is, by the invariance of Samuel multiplicity of stalks of a coherent analytic sheaf, that is
Hi(z − T̄ ,O(H)) in our case, the local constancy of ei(T̄ − λ).

Corollary 9. If T̄ is Fredholm, then the function λ ∈ C
n �→ ei(T̄ − λ) is locally constant in a

neighborhood of the origin.
In other words, let Ω be a connected component of the Fredholm domain Cn \ σe(T̄ ), then

ei(T̄ − λ) is a constant for λ ∈ Ω .

Motivated by the base change formula for Fredholm index index(f1(T̄ ), . . . , fn(T̄ )) [24], it is
natural to ask whether similar formulas hold for Hi(f1(T̄ ), . . . , fn(T̄ )) and ei(f1(T̄ ), . . . , fn(T̄ )).
In general, Hi(·) is too unstable to enjoy a nice base change formula.

For ei , however, we observe that the proof of the base change formula in Theorem 10.3.16
in [11] goes, roughly, as follows. The key in reduction is that index(T̄ − λ) is locally constant
in λ. For a neighborhood U ⊃ σ(T̄ ) of the Taylor spectrum σ(T ), and a map F = (f1, . . . , fn) :
U → C

n with F(0) = 0, we can consider index(F (T̄ ) − λ) such that the fibre (F − λ)−1(0) is
simple, that is, a collection of k distinct points {p1, . . . , pk}, here k being the mapping degree
of f at 0. Then over each simple point pi , the contribution to index can be counted directly,
hence leading to the base change formula. Now, based on Corollary 9, the whole proof in [11]
carries over for ei(·).

Corollary 10. Let T̄ be a Fredholm tuple, and F ∈ O(U)n be an n-tuple of analytic functions
defined on an open neighborhood U of the Taylor spectrum σ(T̄ ). Assume that F(0) = 0 and
0 /∈ σe(F (T̄ )), and let mz(F ) denote the multiplicity of F at z. Then, for each i = 0,1, . . . , n,

ei

(
F(T̄ )

) =
∑

z∈F−1(0)∩σ(T̄ )

mz(F )ei(T̄ − z).

We end the paper with a remark when f = (f1, . . . , fn) in R = C[z1, . . . , zn], O(Cn), or
O(U), is not necessarily a regular sequence.

If we rewrite R/(f ) as the 0th Koszul homology of f on R, then Lemma 7 becomes

Hi

(
f1(T̄ ), . . . , fn(T̄ );H ) ∼= Hi

(
z − T̄ ,H0(f,R) ⊗C H

)
.

Hence it motivates

Conjecture. For general f , there exists a spectral sequence, with E2 page

E2
pq

∼= Hp

(
z − T̄ ,Hq(f,R) ⊗C H

)
,

convergent to Hp+q(f1(T̄ ), . . . , fn(T̄ );H).
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Adopting this viewpoint, Lemma 7, that is when f is regular, actually follows immediately
from Grothendieck’s spectral sequence of composition functors [23,31]. For the general case, we
will address the conjecture by constructing spectral sequences directly from double complexes
in a coming work.
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