Relative Hopf Modules for (Dual) Quasi-Hopf Algebras

Daniel Bulacu ${ }^{1}$

Iniversitu of Rucharest Facultu of Mathomatics Str Acadomioi 14
metadata, citation and similar papers at core.ac.uk
and

Erna Nauwelaerts
Department of Mathematics, Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium

Communicated by Susan Montgomery
Received July 20, 1999

INTRODUCTION

Quasi-bialgebras and quasi-Hopf algebras were introduced by Drinfel'd [6] and used in his treatment of the Knizhnik-Zamolodchikov equations [7]. From a purely algebraic point of view, they appear naturally as follows: Let (H, Δ, ε) be a bialgebra and $F \in H \otimes H$ an invertible element such that $(\varepsilon \otimes \operatorname{Id})(F)=(\operatorname{Id} \otimes \varepsilon)(F)=1$ (such an element was called by Drinfel'd a "gauge transformation") and define a new comultiplication on H by $\Delta_{F}(h)=F \Delta(h) F^{-1}$, then $\left(H, \Delta_{F}, \varepsilon\right)$ is no longer a bialgebra, but it is a quasi-bialgebra. In this way, we can get a lot of quasi-bialgebras (and quasi-Hopf algebras). If H is a finite-dimensional cocommutative Hopf algebra and $\omega \in(H \otimes H \otimes H)^{*}$ is a normalized 3-cocycle in the Sweedler cohomology, then a structure of a quasitriangular quasi-Hopf algebra can be constructed on the k-linear space $H^{*} \otimes H$, denoted by $D^{\omega}(H)$ [2]. This generalizes Dijkgraaf-Pasquier-Roche's quasi-Hopf algebra $D^{\omega}(G)$ [1]. There exists a construction more general than the above $D^{\omega}(H)$, namely the quantum double of any finite-dimensional quasi-Hopf algebra H, denoted by $D(H)$ [8].

[^0]It is well known [15] that a left integral in a finite-dimensional Hopf algebra always exists and it is unique up to a scalar multiple. The proof in [15] uses the fundamental structure theorem on Hopf modules by Larson and Sweedler [11]. Now, quasi-Hopf H-bimodules for a quasi-Hopf algebra H have been introduced by F. Hausser and F. Nill in [9]. If H is a quasi-Hopf algebra and M is an H-bimodule, roughly speaking, M is called a right quasi-Hopf H-bimodule if there exists a bimodule map ρ : $M \rightarrow M \otimes H$ which turns M into an "almost" right H-comodule (in a sense similar to the fact that the comultiplication of a quasi-Hopf algebra is "almost" coassociative). Also, they proved a structure theorem for quasi-Hopf bimodules and used it as the essential tool to show that a finite-dimensional quasi-Hopf algebra is a Frobenius algebra, and therefore the space of left (right) integrals in H is one-dimensional.

In this paper we shall study relative Hopf modules for (dual) quasi-bialgebras. If H is a dual quasi-bialgebra, a right H-comodule algebra A is defined as being an algebra in the tensor category of right H-comodules \mathscr{M}^{H} (so that A is not necessarily associative, because the associativity constraints of \mathscr{M}^{H} are not the trivial ones, but the ones given by the reassociator φ). An example of an H-comodule algebra is the following: if H is finite-dimensional then, in general, H^{*} is not necessarily an algebra in \mathscr{M}^{H}, but if we define on H^{*} a new multiplication and we denote this new structure on H^{*} by H_{0}^{*}, then H_{0}^{*} becomes a right H-comodule algebra. This construction is a dual case of [3, Proposition 2.2] (see Remark 2.2 below). For usual Hopf algebras that is just the right coadjoint coaction of H on H^{*}.

A general procedure for constructing comodule algebras over dual quasi-bialgebras is the following: if A is a right H-comodule algebra (in the Hopf sense or dual quasi-Hopf sense) and $\tau \in(H \otimes H)^{*}$ a gauge transformation, and if we denote by H_{τ} the dual quasi-bialgebra obtained by twisting the multiplication of H via τ, then we can change the multiplication of A via τ^{-1} (we denote by $A_{\tau^{-1}}$ the resulting structure on A) such that $A_{\tau^{-1}}$ is also a right $H_{\tau^{-}}$-comodule algebra. Moreover, if H is finite-dimensional, then the smash product $A \# H^{*}$ (in the Hopf sense or quasi-Hopf sense) is isomorphic to the smash product (in the quasi-Hopf sense) $A_{\tau^{-1}} \# H_{\tau}^{*}$ as algebras (Proposition 2.3). For the definition of smash products in the quasi-Hopf sense see Section 1, Preliminaries.
In Section 2, we shall describe the category of (H, A)-Hopf modules when H is a finite-dimensional dual quasi-Hopf algebra. In fact, as in the Hopf case, we have that the above category is isomorphic to the category of modules over the smash product $A \# H^{*}$. Next, we shall prove that [5, Theorem 1] is still true for our Hopf modules, and the existence of a right H-comodule map $\lambda: H \rightarrow A$ such that $\lambda(1)=1$ is equivalent to the fact that A is an injective H-comodule (Proposition 2.9, Corollary 2.10). The
main result of this section is a structure theorem for our Hopf modules (Theorem 2.11) which generalizes [5, Theorem 3]. Whether this structure theorem is functorially related to existence and uniqueness of integrals in a finite-dimensional quasi-Hopf algebra remains unclear at the moment.

Finally, in Section 3 we will define the dual concept, $[C, H]$-Hopf modules for a quasi-Hopf algebra H and a coalgebra C in the tensor category \mathscr{M}_{H}. We shall prove that if C is finite-dimensional then the above category is isomorphic to a category of modules over the smash product $C^{*} \# H$. Since the proof of Theorem 2.11 is not so easily dualized, for the sake of the reader we will just sketch the proof of Theorem 3.5. Further, we dualize (without proofs) the results given in Section 2.

1. PRELIMINARIES

In this section we recall some definitions and results and fix notation. Throughout, k will be a fixed field and all algebras, linear spaces, etc., will be over k; unadorned \otimes means \otimes_{k}. For coalgebras and dual quasi-Hopf algebras we shall use Σ-notation: $\Delta(h)=\Sigma h_{1} \otimes h_{2}$, etc.

Definition 1.1. Let H be a k-algebra, and $\Delta: H \rightarrow H \otimes H, \varepsilon: H \rightarrow k$ two algebra homomorphisms. H is called a quasi-bialgebra if there exists an invertible element $\Phi \in H \otimes H \otimes H$ such that, for all elements $h \in H$, we have:

$$
\begin{gather*}
(\operatorname{Id} \otimes \Delta)(\Delta(h))=\Phi(\Delta \otimes \mathrm{Id})(\Delta(h)) \Phi^{-1} \tag{1.1}\\
(\mathrm{Id} \otimes \mathrm{Id} \otimes \Delta)(\Phi)(\Delta \otimes \mathrm{Id} \otimes \mathrm{Id})(\Phi) \\
=(1 \otimes \Phi)(\mathrm{Id} \otimes \Delta \otimes \mathrm{Id})(\Phi)(\Phi \otimes 1) \tag{1.2}\\
(\varepsilon \otimes \mathrm{Id})(\Delta(h))=1 \otimes h \quad \text { and } \quad(\mathrm{Id} \otimes \varepsilon)(\Delta(h))=h \otimes 1, \tag{1.3}\\
(\mathrm{Id} \otimes \varepsilon \otimes \mathrm{Id})(\Phi)=1 \otimes 1 \otimes 1 \tag{1.4}
\end{gather*}
$$

where $\mathrm{Id}=\mathrm{id}_{H}$. The map Δ is called the coproduct or the comultiplication and ε the counit. H is called a quasi-Hopf algebra if, moreover, there exist an anti-automorphism S of the algebra H and elements α and β of H such that, for all $h \in H$, we have:

$$
\begin{gather*}
\sum S\left(h_{1}\right) \alpha h_{2}=\varepsilon(h) \alpha \quad \text { and } \quad \sum h_{1} \beta S\left(h_{2}\right)=\varepsilon(h) \beta, \tag{1.5}\\
\sum X^{1} \beta S\left(X^{2}\right) \alpha X^{3}=1 \quad \text { and } \quad \sum S\left(x^{1}\right) \alpha x^{2} \beta S\left(x^{3}\right)=1, \tag{1.6}
\end{gather*}
$$

where $\Phi=\Sigma X^{1} \otimes X^{2} \otimes X^{3}, \Phi^{-1}=\sum x^{1} \otimes x^{2} \otimes x^{3}$ (formal notation), and we used the Σ-notation: $\Delta(h)=\sum h_{1} \otimes h_{2}$. In this case, S is called the antipode of H.

Note that every Hopf algebra with bijective antipode is a quasi-Hopf algebra with $\Phi=1 \otimes 1 \otimes 1$ and $\alpha=\beta=1$.
We note the following two consequences of the definitions of S, α, β : $\varepsilon(\alpha) \varepsilon(\beta)=1, \varepsilon \circ S=\varepsilon$. Moreover, (1.2) and (1.4) imply $(\varepsilon \otimes I \otimes I)(\Phi)$ $=(I \otimes I \otimes \varepsilon)(\Phi)=1$.
If we denote:

$$
\begin{align*}
& \sum A^{1} \otimes A^{2} \otimes A^{3} \otimes A^{4}=(\Phi \otimes 1)(\Delta \otimes \mathrm{Id} \otimes \mathrm{Id})\left(\Phi^{-1}\right) \tag{1.7}\\
& \sum B^{1} \otimes B^{2} \otimes B^{3} \otimes B^{4}=(\Delta \otimes \mathrm{Id} \otimes \mathrm{Id})(\Phi)\left(\Phi^{-1} \otimes 1\right) \tag{1.8}
\end{align*}
$$

and we define

$$
\begin{gather*}
\rho=\sum S\left(A^{2}\right) \alpha A^{3} \otimes S\left(A^{1}\right) \alpha A^{4}, \tag{1.9}\\
\delta=\sum B^{1} \beta S\left(B^{4}\right) \otimes B^{2} \beta S\left(B^{3}\right), \tag{1.10}\\
f=\sum(S \otimes S)\left(\Delta^{\operatorname{cop}}\left(x^{1}\right)\right) \rho \Delta\left(x^{2} \beta S\left(x^{3}\right)\right), \tag{1.11}
\end{gather*}
$$

where $\Delta^{\mathrm{cop}}(h)=\Sigma h_{2} \otimes h_{1}$, then f is invertible with inverse given by

$$
\begin{equation*}
f^{-1}=\sum \Delta\left(S\left(x^{1}\right) \alpha x^{2}\right) \delta(S \otimes S)\left(\Delta^{\mathrm{cop}}\left(x^{3}\right)\right) \tag{1.12}
\end{equation*}
$$

and the relations (see $[1,8]$)

$$
\begin{gather*}
f \Delta(h) f^{-1}=(S \otimes S)\left(\Delta^{\mathrm{cop}} \circ S^{-1}(h)\right) \quad \text { for all } h \in H, \tag{1.13}\\
\rho=f \Delta(\alpha), \quad \delta=\Delta(\beta) f^{-1}, \tag{1.14}
\end{gather*}
$$

$(1 \otimes f)(\operatorname{Id} \otimes \Delta)(f) \Phi(\Delta \otimes \operatorname{Id})\left(f^{-1}\right)\left(f^{-1} \otimes 1\right)=(S \otimes S \otimes S)\left(\Phi^{321}\right)$,
hold, where if $\Phi=\sum X^{1} \otimes X^{2} \otimes X^{3}$ then $\Phi^{321}=\sum X^{3} \otimes X^{2} \otimes X^{1}$.
If H is a quasi-bialgebra with Drinfel'd associator Φ, then we shall denote the tensor components of Φ with big letters, for instance

$$
\Phi=\sum X^{1} \otimes X^{2} \otimes X^{3}=\sum T^{1} \otimes T^{2} \otimes T^{3}=\sum V^{1} \otimes V^{2} \otimes V^{3}
$$

etc., and the tensor components of Φ^{-1} with small letters, for instance

$$
\Phi^{-1}=\sum x^{1} \otimes x^{2} \otimes x^{3}=\sum t^{1} \otimes t^{2} \otimes t^{3}=\sum v^{1} \otimes v^{2} \otimes v^{3}
$$

etc.
Together with a quasi-Hopf algebra $H=(H, \Delta, \varepsilon, \Phi, S, \alpha, \beta)$ we also have $H^{\mathrm{op}}, H^{\text {cop }}$, and $H^{\mathrm{op} \text {, cop }}$ as quasi-Hopf algebras, where "op" means opposite multiplication and "cop" means opposite comultiplication. The
quasi-Hopf structures are obtained by putting $\Phi_{\text {op }}=\Phi^{-1}, \Phi_{\text {cop }}=\left(\Phi^{-1}\right)^{321}$, $\Phi_{\text {op, cop }}=\Phi^{321}, \quad S_{\text {op }}=S_{\text {cop }}=\left(S_{\text {op }, \text { cop }}\right)^{-1}=S^{-1}, \quad \alpha_{\text {op }}=S^{-1}(\beta), \quad \beta_{\text {op }}=$ $S^{-1}(\alpha), \alpha_{\mathrm{cop}}=S^{-1}(\alpha), \beta_{\mathrm{cop}}=S^{-1}(\beta), \alpha_{\mathrm{op}, \mathrm{cop}}=\beta$, and $\beta_{\mathrm{op}, \mathrm{cop}}=\alpha$.

Next we recall that the definition of a quasi-bialgebra is "twist covariant" in the following sense. An invertible element $F \in H \otimes H$ is called a gauge transformation if it satisfies the relation $(\varepsilon \otimes \operatorname{Id})(F)=(\operatorname{Id} \otimes \varepsilon)(F)=1$. If $(H, \Delta, \varepsilon, \Phi)$ is a quasi-bialgebra and $F \in H \otimes H$ is a gauge transformation, then one can define a new quasi-bialgebra $H_{F}=\left(H, \Delta_{F}, \varepsilon, \Phi_{F}\right)$ (see [10]) by taking the algebra structure of H and

$$
\begin{gathered}
\Delta_{F}: H \rightarrow H \otimes H, \quad \Delta_{F}(h)=F \Delta(h) F^{-1}, \\
\Phi_{F}=F_{23}(\operatorname{Id} \otimes \Delta)(F) \Phi(\Delta \otimes \operatorname{Id})\left(F^{-1}\right) F_{12}^{-1},
\end{gathered}
$$

where $F_{i j}$ means F acting non-trivially in the i th and j th positions of $H \otimes H \otimes H$ and F^{-1} is the inverse of F.

Suppose that $(H, \Delta, \varepsilon, \Phi)$ is a quasi-bialgebra. If U, V, W are left H modules, define $a_{U, V, W}:(U \otimes V) \otimes W \rightarrow U \otimes(V \otimes W)$ by

$$
a_{U, V, W}((u \otimes v) \otimes w)=\Phi \cdot(u \otimes(v \otimes w)) .
$$

Then the category ${ }_{H} \mathscr{M}$ of left H-modules becomes a tensor category (see [10] for the terminology) with tensor product \otimes given via Δ, associativity constraints $a_{U, V, W}$, unit k as a trivial H-module, and the usual left and right unit constraints.

We now recall the concept of a module algebra over a quasi-bialgebra introduced in [3].

Definition 1.2. Let H be a quasi-bialgebra and A a k-linear space. We say that A is a (left) H-module algebra if A is an algebra in the tensor category ${ }_{H} \mathscr{M}$, i.e., A has a multiplication and a usual unit 1_{A} satisfying the following conditions:

$$
\begin{gather*}
(a b) c=\sum\left(X^{1} \cdot a\right)\left[\left(X^{2} \cdot b\right)\left(X^{3} \cdot c\right)\right], \tag{1.16}\\
h \cdot(a b)=\sum\left(h_{1} \cdot a\right)\left(h_{2} \cdot b\right), \tag{1.17}\\
h \cdot 1_{A}=\varepsilon(h) 1_{A}, \tag{1.18}
\end{gather*}
$$

for all $a, b, c \in A$ and $h \in H$, where $\Phi=\sum X^{1} \otimes X^{2} \otimes X^{3}$ and $h \otimes a \mapsto$ $h \cdot a$ is the H-module structure of A.

For a left H-module algebra A as above we define the smash product $A \# H$ as follows: as vector space $A \# H$ is $A \otimes H$ (elements $a \otimes h$ will be written $a \# h$) with multiplication given by

$$
\begin{equation*}
(a \# h)(b \# g)=\sum\left(x^{1} \cdot a\right)\left(x^{2} h_{1} \cdot b\right) \# x^{3} h_{2} g, \tag{1.19}
\end{equation*}
$$

for all $a, b \in A, h, g \in H$. This $A \# H$ is an associative algebra and it is defined by a universal property (as Heyneman and Sweedler did for Hopf algebras, see [3]). It is easy to see that H is a subalgebra of A \# H via $h \mapsto 1 \# h, A$ is a k-subspace of $A \# H$ via $a \mapsto a \# 1$, and (1\#h)(a\#1) $=\sum h_{1} \cdot a \# h_{2}$. In the Hopf case, if the antipode S is bijective then $A \# H=(1 \# H)(A \# 1) \cong H \otimes A$ as vector space, where the correspondence is given by

$$
a \# h=\sum\left(1 \# h_{2}\right)\left(S^{-1}\left(h_{1}\right) \cdot a \# 1\right) .
$$

In the quasi-Hopf case we have the following:
Lemma 1.3. Let H be a quasi-Hopf algebra, A an H-module algebra, and $a \in A, h \in H$. Then in A \# H,

$$
a \# h=\sum\left(1 \# x^{3} h_{2}\right)\left(S^{-1}\left(S\left(x^{1}\right) \alpha x^{2} h_{1} X^{1} \beta S\left(X^{2}\right)\right) \cdot a \# X^{3}\right) .
$$

Proof. We calculate:

$$
\begin{align*}
\sum(1 & \left.\# x^{3} h_{2}\right)\left(S^{-1}\left(S\left(x^{1}\right) \alpha x^{2} h_{1} X^{1} \beta S\left(X^{2}\right)\right) \cdot a \# X^{3}\right) \\
& =\sum x_{1}^{3}\left(h_{2}\right)_{1} S^{-1}\left(S\left(x^{1}\right) \alpha x^{2} h_{1} X^{1} \beta S\left(X^{2}\right)\right) \cdot a \# x_{2}^{3}\left(h_{2}\right)_{2} X^{3} \\
& =\sum x_{1}^{3} S^{-1}\left(S\left(x^{1}\right) \alpha x^{2} h_{1} X^{1} \beta S\left(\left(h_{2}\right)_{1} X^{2}\right)\right) \cdot a \# x_{2}^{3}\left(h_{2}\right)_{2} X^{3} \\
& =\sum x_{1}^{3} S^{-1}\left(S\left(x^{1}\right) \alpha x^{2} X^{1}\left(h_{1}\right)_{1} \beta S\left(X^{2}\left(h_{1}\right)\right)\right) \cdot a \# x_{2}^{3} X^{3} h_{2} \tag{1.1}
\end{align*}
$$

$=\sum S^{-1}\left(S\left(x^{1}\right) \alpha x^{2} X^{1} \beta S\left(x_{1}^{3} X^{2}\right)\right) \cdot a \# x_{2}^{3} X^{3} h \quad$ by (1.5)
$=\sum S^{-1}\left(S\left(X_{1}^{1} x^{1} y^{1}\right) \alpha X_{2}^{1} x^{2} y_{1}^{2} \beta S\left(X^{2} x^{3} y_{2}^{2}\right)\right) \cdot a \# X^{3} y^{3} h$

$$
\begin{equation*}
=\sum S^{-1}\left(S\left(x^{1}\right) \alpha x^{2} \beta S\left(x^{3}\right)\right) \cdot a \# h \quad \text { by (1.5) } \tag{1.2}
\end{equation*}
$$

$$
=a \# h \quad \text { by (1.6). }
$$

Now recall from [13] the following:
Definition 1.4. A dual quasi-bialgebra (H, M, u, φ) is a coassociative coalgebra H with counit ε together with coalgebra morphisms $M: H \otimes H$ $\rightarrow H$ (the multiplication-we denote $M(h, g)=h g$ for all $h, g \in H)$ and $u: k \rightarrow H$ (the unit-we denote $u(1)=1$), and an invertible element
$\varphi \in(H \otimes H \otimes H)^{*}$ (the reassociator), such that:

$$
\begin{gather*}
\sum h_{1}\left(g_{1} k_{1}\right) \varphi\left(h_{2}, g_{2}, k_{2}\right)=\sum \varphi\left(h_{1}, g_{1}, k_{1}\right)\left(h_{2} g_{2}\right) k_{2}, \tag{1.20}\\
1 h=h 1=h, \tag{1.21}\\
\sum \varphi\left(h_{1}, g_{1}, k_{1} l_{1}\right) \varphi\left(h_{2} g_{2}, k_{2}, l_{2}\right) \\
=\sum \varphi\left(g_{1}, k_{1}, l_{1}\right) \varphi\left(h_{1}, g_{2} k_{2}, l_{2}\right) \varphi\left(h_{2}, g_{3}, k_{3}\right), \tag{1.22}\\
\varphi(h, 1, g)=\varepsilon(h) \varepsilon(g), \tag{1.23}
\end{gather*}
$$

for all $h, g, k, l \in H$.
A dual quasi-bialgebra is called a dual quasi-Hopf algebra, if there exist a coalgebra antihomomorphism $S: H \rightarrow H$ and elements $\alpha, \beta \in H^{*}$ satisfying for all $h \in H$:

$$
\begin{align*}
& \sum S\left(h_{1}\right) \alpha\left(h_{2}\right) h_{3}=\alpha(h) 1, \quad \sum h_{1} \beta\left(h_{2}\right) S\left(h_{3}\right)=\beta(h) 1, \tag{1.24}\\
& \quad \sum \varphi\left(h_{1} \beta\left(h_{2}\right), S\left(h_{3}\right), \alpha\left(h_{4}\right) h_{5}\right) \\
& \quad=\sum \varphi^{-1}\left(S\left(h_{1}\right), \alpha\left(h_{2}\right) h_{3} \beta\left(h_{4}\right), S\left(h_{5}\right)\right)=\varepsilon_{H}(h) \tag{1.25}
\end{align*}
$$

We note the following two consequences of α, β, and $S: \alpha(1) \beta(1)=1$, $S(1)=1$. Moreover, it is easy to see that (1.22)-(1.23) also imply the identities:

$$
\varphi(1, g, h)=\varphi(g, h, 1)=\varepsilon(g) \varepsilon(h) \quad \text { for all } g, h \in H
$$

Also, the definition of a dual quasi-bialgebra is "twist coinvariant." A convolution invertible element $\tau \in(H \otimes H)^{*}$ is called a gauge transformation if it satisfies the relation $\tau(h, 1)=\tau(1, h)=\varepsilon(h)$ for all $h \in H$. If (H, M, u, φ) is a dual quasi-bialgebra and $\tau \in(H \otimes H)^{*}$ is a gauge transformation one can define a new dual quasi-bialgebra $H_{\tau}=$ ($H, M_{\tau}, u, \varphi_{\tau}$) by taking the coalgebra structure of H and

$$
g \cdot_{\tau} h=\sum \tau\left(g_{1}, h_{1}\right) g_{2} h_{2} \tau^{-1}\left(g_{3}, h_{3}\right),
$$

$$
\begin{aligned}
& \varphi_{\tau}(g, h, l) \\
& \quad=\sum \tau\left(h_{1}, l_{1}\right) \tau\left(g_{1}, h_{2} l_{2}\right) \varphi\left(g_{2}, h_{3}, l_{3}\right) \tau^{-1}\left(g_{3} h_{4}, l_{4}\right) \tau^{-1}\left(g_{4}, h_{5}\right)
\end{aligned}
$$

for all $g, h, l \in H$, where τ^{-1} is the convolution inverse of τ.
Suppose that (H, M, u, φ) is a dual quasi-bialgebra. If U, V, W are right H-comodules, define $a_{U, V, W}^{\prime}:(U \otimes V) \otimes W \rightarrow U \otimes(V \otimes W)$ by

$$
a_{U, V, W}^{\prime}((u \otimes v) \otimes w)=\sum \varphi\left(u_{(1)}, v_{(1)}, w_{(1)}\right) u_{(0)} \otimes\left(v_{0} \otimes w_{(0)}\right),
$$

where $u \mapsto \sum u_{(0)} \otimes u_{(1)}$ is the H-comodule structure map of U, etc.

Then the category \mathscr{M}^{H} of right H-comodules becomes a tensor category with tensor product \otimes given via M, associativity constraints $a_{U, V, W}^{\prime}$, unit k as a trivial right H-comodule, and the usual left and right unit constraints.

Finally, if \mathscr{C} and \mathscr{D} are tensor categories then, roughly speaking, we say that $T: \mathscr{C} \rightarrow \mathscr{D}$ is a monoidal functor if it respects the tensor products (in the sense that for any two objects V, W in \mathscr{C} there exists a functorial isomorphism $c_{V, W}: T(V) \otimes T(W) \rightarrow T(V \otimes W)$ such that c respects the associativity constraints), the unit objects, and the left and right unit constraints (for the complete definition see [13, p. 421]).

2. (H, A)-HOPF MODULES

Let H be a dual quasi-bialgebra over a field k. In this section we study the notion of (H, A)-Hopf bimodules for an H-comodule algebra A in the tensor category \mathscr{M}^{H}. We shall prove a structure theorem for these Hopf modules, generalizing [5, Theorem 3]. From [12], we know that the Structure Theorem of Hopf Modules also holds for Hopf algebras in braided, monoidal categories, if there exist (co)equalizers.
We now introduce the concept of a comodule algebra over a dual quasi-bialgebra.

Definition 2.1. Let H be a dual quasi-bialgebra and A a k-linear space. We say that A is a right H-comodule algebra if A is an algebra in the tensor category \mathscr{M}^{H}, i.e., A has a multiplication and a usual unit 1_{A} satisfying the conditions

$$
\begin{gather*}
(a b) c=\sum \varphi\left(a_{(1)}, b_{(1)}, c_{(1)}\right) a_{(0)}\left(b_{(0)} c_{(0)}\right), \tag{2.1}\\
\sum(a b)_{(0)} \otimes(a b)_{(1)}=\sum a_{(0)} b_{(0)} \otimes a_{(1)} b_{(1)}, \tag{2.2}\\
\rho_{A}\left(1_{A}\right)=1_{A} \otimes 1_{H}, \tag{2.3}
\end{gather*}
$$

for all $a, b, c \in A$, where $\rho_{A}: A \rightarrow A \otimes H, \rho_{A}(a)=\sum a_{(0)} \otimes a_{(1)}$ is the H-comodule structure of A.

Similarly, we say that a k-linear space A is a left H-comodule algebra if ${ }_{H}$ is an algebra in the tensor category of left H-comodules ${ }^{H} \mathscr{M}$ (note that in ${ }^{H} \mathscr{M}$ the associativity constraint \underline{a}^{\prime} is given via φ^{-1}).

Remark 2.2. Let H be a finite-dimensional quasi-bialgebra and A a k-vector space. Then A is an H-module algebra if and only if A is an H^{*}-comodule algebra.

Indeed, if A is a left H-module algebra then, as in the Hopf case, A becomes a right H^{*}-comodule via $\rho_{A}(a)=\sum_{i=1}^{n} e_{i} \cdot a \otimes e^{i}$, where $\left\{e_{i}\right\}_{i=\overline{1, n}}$
and $\left\{e^{i}\right\}_{i=\overline{1, n}}$ are dual bases in H and H^{*}. Moreover, (1.16), (1.17), and (1.18) imply (2.1), (2.2), and (2.3) respectively, so A is a right H^{*}-comodule algebra.
Conversely, if A is a right H^{*}-comodule algebra then A is a left H-module algebra via the action $h \cdot a=\sum a_{(1)}(h) a_{(0)}$.

If H is a quasi-Hopf algebra then H is not necessarily an algebra in ${ }_{H} \mathscr{M}$. But, following [3], if we define on H a new multiplication given by

$$
g \bullet h=\sum X^{1} g S\left(x^{1} X^{2}\right) \alpha x^{2} X_{1}^{3} h S\left(x^{3} X_{2}^{3}\right)
$$

and we denote this new structure on H by H_{0}, then H_{0} becomes a left H-module algebra with unit β and with the left adjoint action, that is, $g \cdot h=\sum g_{1} h S\left(h_{2}\right)$ for all $g, h \in H$. Now, if H is finite-dimensional and $\left\{e_{i}\right\}_{i=\overline{1, n}}$ and $\left\{e^{i}\right\}_{i=\overline{1, n}}$ are dual bases in H and H^{*}, then by the above Remark 2.2 we obtain that H_{0} is a right H^{*}-comodule algebra, where the structure H^{*}-comodule map is for any $h \in H$ given by

$$
\rho_{H_{0}}(h)=\sum_{i, j=1}^{n} e_{i} h S\left(e_{j}\right) \otimes e^{i} e^{j} .
$$

Dual, if we start with a finite-dimensional dual quasi-Hopf algebra H then H_{0}^{*} is a right H-comodule algebra, where $H_{0}^{*}=H^{*}$ as linear spaces, but for all $p, q \in H^{*}, h \in H$, the multiplication is given by

$$
\begin{aligned}
\langle\rho \diamond q, h\rangle= & \sum \varphi\left(h_{1}, S\left(h_{3}\right), h_{7} S\left(h_{9}\right)\right) \varphi^{-1}\left(S\left(h_{4}\right), h_{6}, S\left(h_{10}\right)\right) \\
& \times \alpha\left(h_{5}\right) p\left(h_{2}\right) q\left(h_{8}\right) .
\end{aligned}
$$

The unit for H_{0}^{*} is $\beta \in H^{*}$ and the structure H-comodule map is for any $p \in H^{*}$ given by

$$
\rho_{H_{0}^{*}}(p)=\sum_{i, j=1}^{n} e^{i} p S\left(e^{j}\right) \otimes e_{i} e_{j} .
$$

Note that, if H is a Hopf algebra, then $g \bullet h=g h(p \diamond q=p q)$; therefore $H_{0}=H\left(H_{0}^{*}=H^{*}\right)$ as algebras. In this case we just obtain the right coadjoint coaction of H^{*} on H (respectively, of H on H^{*}). Also, other examples of module algebras over a finite-dimensional quasi-Hopf algebra have been given in [3, Remark 2.4, Example 2.11]. So using the above remark we can obtain new examples of comodule algebras over a dual quasi-Hopf algebra.
Next we shall prove that a twist preserves the class of right comodule algebras over a dual quasi-bialgebra.

Proposition 2.3. Let H be a dual quasi-bialgebra, $\tau \in(H \otimes H)^{*} a$ gauge transformation, and A a right H-comodule algebra via $\rho_{A}(a)=\sum a_{(0)} \otimes$ $a_{(1)}$. If we introduce on A a new multiplication by

$$
\begin{equation*}
a \odot b=\sum \tau^{-1}\left(a_{(1)}, b_{(1)}\right) a_{(0)} b_{(0)}, \tag{2.4}
\end{equation*}
$$

where τ^{-1} is the convolution inverse of τ, and we denote by $A_{\tau^{-1}}$ the resulting structure, then $A_{\tau^{-1}}$ becomes a right $H_{\tau^{\prime}}$-comodule algebra. Moreover, if H is finite-dimensional, then the smash product $A_{\tau^{-1}} \# H_{\tau}^{*}$ is isomorphic as an algebra to the smash product A \# H^{*}.

Proof. Let us start by establishing that $A_{\tau^{-1}}$ is a right $H_{\tau^{-}}$-comodule algebra via ρ_{A} and \odot. Indeed, for all $a, b, c \in A$ we have

$$
\begin{aligned}
& \sum \varphi_{\tau}\left(a_{(1)}, b_{(1)}, c_{(1)}\right) a_{(0)} \odot\left(b_{(0)} \odot c_{(0)}\right) \\
&=\sum \varphi_{\tau}\left(a_{(2)}, b_{(3)}, c_{(3)}\right) \tau^{-1}\left(b_{(2)}, c_{(2)}\right) \tau^{-1}\left(a_{(1)}, b_{(1)} c_{(1)}\right) a_{(0)}\left(b_{(0)} c_{(0)}\right) \\
& \quad=\sum \varphi\left(a_{(1)}, b_{(1)}, c_{(1)}\right) \tau^{-1}\left(a_{(2)} b_{(2)}, c_{(2)}\right) \tau^{-1}\left(a_{(3)}, b_{(3)}\right) a_{(0)}\left(b_{(0)} c_{(0)}\right)
\end{aligned}
$$

(by definition of φ_{τ})

$$
=\sum \tau^{-1}\left(a_{(1)} b_{(1)}, c_{(1)}\right) \tau^{-1}\left(a_{(2)}, b_{(2)}\right)\left(a_{(0)} b_{(0)}\right) c_{(0)}
$$

by (2.1)

$$
=(a \odot b) \odot c .
$$

On the other hand,

$$
\begin{aligned}
\rho_{A}(a \odot b) & =\sum \tau^{-1}\left(a_{(2)}, b_{(2)}\right) a_{(0)} b_{(0)} \otimes a_{(1)} b_{(1)} \\
& =\sum \tau^{-1}\left(a_{(1)}, b_{(1)}\right) a_{(0)} b_{(0)} \otimes a_{(2)} \cdot_{\tau} b_{(2)} \\
& =\sum a_{(0)} \odot b_{(0)} \otimes a_{(1)} \cdot_{\tau} b_{(1)},
\end{aligned}
$$

so $A_{\tau^{-1}}$ is a right $H_{\tau^{-}}$-comodule algebra having the same unit as A. Moreover, if H is finite-dimensional, we shall prove that the map

$$
\eta: A \# H^{*} \rightarrow A_{\tau^{-1}} \# H_{\tau}^{*}, \quad \eta(a \# p)=\sum a_{(0)} \# \tau\left(a_{(1)}, \cdot\right) p
$$

is an algebra isomorphism. Note that the comultiplication in H_{τ}^{*} is given by

$$
\begin{aligned}
& \Delta_{H_{\tau}^{*}}(p)=\sum p_{\langle 1\rangle} \otimes p_{\langle 2\rangle} \\
& \quad \Leftrightarrow \sum p_{\langle 1\rangle}(h) p_{\langle 2\rangle}(l)=\sum \tau\left(h_{1}, l_{1}\right) p\left(h_{2} l_{2}\right) \tau^{-1}\left(h_{3}, l_{3}\right)
\end{aligned}
$$

for all $h, l \in H, p \in H_{\tau}^{*}$, and $A_{\tau^{-1}}$ becomes a left H_{τ}^{*}-module algebra as in Remark 2.2. Therefore, by (1.19), the multiplication in $A_{\tau^{-1}} \# H_{\tau}^{*}$ is

$$
\begin{aligned}
(a \# p)\left(b \# p^{\prime}\right)= & \sum\left(x_{\tau}^{1} \cdot a\right) \odot\left(x_{\tau}^{2} p_{\langle 1\rangle} \cdot b\right) \# x_{\tau}^{3} p_{\langle 2\rangle} p^{\prime} \\
= & \sum x_{\tau}^{1}\left(a_{(1)}\right) x_{\tau}^{2}\left(b_{(1)}\right) p_{\langle 1\rangle}\left(b_{(2)}\right) a_{(0)} \odot b_{(0)} \# x_{\tau}^{3} p_{\langle 2\rangle} p^{\prime} \\
= & \sum \tau^{-1}\left(a_{(1)}, b_{(1)}\right) a_{(0)} b_{(0)} \# \varphi_{\tau}^{-1}\left(a_{(2)}, b_{(2)}, \cdot\right) \tau\left(b_{(3)}, \cdot\right) \\
& \times\left(p \leftharpoonup b_{(4)}\right) \tau^{-1}\left(b_{(5)}, \cdot\right) p^{\prime},
\end{aligned}
$$

where $\sum x_{\tau}^{1} \otimes x_{\tau}^{2} \otimes x_{\tau}^{3}$ is the inverse of the reassociator in H_{τ}^{*} and for all $p \in H^{*}$ and $h, l \in H$ we define $p \leftharpoonup h \in H^{*}$ by $(p \leftharpoonup h)(l)=p(h l)$. It is easy to see that $p q \leftharpoonup h=\Sigma\left(p \leftharpoonup h_{1}\right)\left(q \leftharpoonup h_{2}\right)$ for all $p, q \in H^{*}, h \in H$. So we obtain

$$
\begin{aligned}
\eta(a \# & p) \eta\left(b \# p^{\prime}\right) \\
= & \sum\left(a_{(0)} \# \tau\left(a_{(1)}, \cdot\right) p\right)\left(b_{(0)} \# \tau\left(b_{(1)}, \cdot\right) p^{\prime}\right) \\
= & \sum a_{(0)} b_{(0)} \# \tau^{-1}\left(a_{(1)}, b_{(1)}\right) \varphi_{\tau}^{-1}\left(a_{(2)}, b_{(2)}, \cdot\right) \tau\left(b_{(3)}, \cdot\right) \\
& \times\left(\tau\left(a_{(3)}, \cdot\right) p \leftharpoonup b_{(4)}\right) p^{\prime} \\
= & \sum a_{(0)} b_{(0)} \# \tau\left(a_{(1)} b_{(1)}, \cdot\right) \varphi^{-1}\left(a_{(2)}, b_{(2)}, \cdot\right)\left(\tau^{-1}\left(a_{(3)}, \cdot\right) \leftharpoonup b_{(3)}\right) \\
& \times\left(\tau\left(a_{(4)}, \cdot\right) \leftharpoonup b_{(4)}\right)\left(p \leftharpoonup b_{(5)}\right) p^{\prime}
\end{aligned}
$$

(by definition of φ_{τ})

$$
\begin{aligned}
& =\sum a_{(0)} b_{(0)} \# \tau\left(a_{(1)} b_{(1)} \cdot \cdot\right) \varphi^{-1}\left(a_{(2)}, b_{(2)}, \cdot\right)\left(p \leftharpoonup b_{(3)}\right) p^{\prime} \\
& =\eta\left(\sum a_{(0)} b_{(0)} \# \varphi^{-1}\left(a_{(1)}, b_{(1)}, \cdot\right)\left(p \leftharpoonup b_{(2)}\right) p^{\prime}\right) \\
& =\eta\left(\sum\left(x^{1} \cdot a\right)\left(x^{2} p_{1} \cdot b\right) \# x^{3} p_{2} p^{\prime}\right) \\
& =\eta\left((a \# p)\left(b \# p^{\prime}\right)\right),
\end{aligned}
$$

where $\sum x^{1} \otimes x^{2} \otimes x^{3}$ is the inverse of the reassociator in H^{*}.
It is easy to see that $\eta(1 \# \varepsilon)=1 \# \varepsilon$ and the fact that the inverse of η is $\eta^{-1}(a \# p)=\sum a_{(0)} \# \tau^{-1}\left(a_{(1)}, \cdot\right) p$.

We now define the relative Hopf modules in the context of dual quasi-bialgebras.

Definition 2.4. Let H be a dual quasi-bialgebra and A a right H-comodule algebra. A k-vector space M is called a right (H, A)-Hopf
module if M is a right H-comodule and a right A-module in the tensor category \mathscr{M}^{H}, i.e., A acts on M to the right such that $m 1_{A}=m$ and the relations

$$
\begin{gather*}
(m a) b=\sum \varphi\left(m_{(1)}, a_{(1)}, b_{(1)}\right) m_{(0)}\left(a_{(0)} b_{(0)}\right), \tag{2.5}\\
\rho_{M}(m a)=\sum m_{(0)} a_{(0)} \otimes m_{(1)} a_{(1)} \tag{2.6}
\end{gather*}
$$

hold for all $m \in M, a, b \in A$, where $m \mapsto \rho_{M}(m)=\sum m_{(0)} \otimes m_{(1)}$ is the right H-comodule structure of M and $m \otimes a \mapsto m a$ is the right action of A on M. We denote by \mathscr{M}_{A}^{H} the category of right (H, A)-Hopf modules where the morphisms are right A-linear maps which are H-comodule maps.

Similarly, a k-vector space N is called a left (H, A)-Hopf module if N is a right H-comodule (denote by $n \mapsto \rho_{N}(n)=\sum n_{(0)} \otimes n_{(1)}$ the right coaction) and a left A-module in the tensor category \mathscr{M}^{H}, i.e., A acts on N to the left (denote the action by $a \otimes n \mapsto a n$) such that $1_{A} n=n$ and the relations

$$
\begin{gather*}
(a b) n=\sum \varphi\left(a_{(1)}, b_{(1)}, n_{(1)}\right) a_{(0)}\left(b_{(0)} n_{(0)}\right), \tag{2.7}\\
\rho_{N}(a n)=\sum a_{(0)} n_{(0)} \otimes a_{(1)} n_{(1)} \tag{2.8}
\end{gather*}
$$

hold, for all $n \in N$ and $a, b \in A$. We denote by ${ }_{A} \mathscr{M}^{H}$ the category of left (H, A)-Hopf modules where the morphisms are left A-linear maps which are H-comodule maps.

It follows that $A \in_{A} \mathscr{M}^{H}$ and $A \in \mathscr{M}_{A}^{H}$. In the same way, if A is a left H-comodule algebra, we can define the categories ${ }_{A}^{H} \mathscr{M}$ and ${ }^{H} \mathscr{M}_{A}$. It is easy to see that A^{op} is a right $H^{\mathrm{op} \text {, cop }-c o m o d u l e ~ a l g e b r a ~ a n d ~ t h e ~ f o l l o w i n g ~}$ categories are isomorphic:

$$
{ }_{A}^{H} \mathscr{M} \cong \mathscr{M}_{A} \mathrm{H}^{\text {op, cop }} \quad \text { and } \quad{ }^{H} \mathscr{\mathscr { M }}_{A} \cong \cong_{A^{\text {op }}} \mathscr{M}^{H^{\text {op,cop }}} .
$$

Now we aim to describe the above categories. In fact, as in the Hopf case, if H is a finite-dimensional quasi-Hopf algebra and A is a left H-module algebra, then the category of (H^{*}, A)-Hopf modules is isomorphic to the category of modules over the smash product $A \# H$. To prove this we need a generalization of Hopf algebra formulae of the type $\Sigma S\left(h_{1}\right) h_{2} \otimes h_{3}=1 \otimes h$ to the quasi-coassociative setting and two lemmas. Let H be a quasi-Hopf algebra. Following [8, 9] if we define

$$
\begin{align*}
& q_{R}=\sum X^{1} \otimes S^{-1}\left(\alpha X^{3}\right) X^{2}, \quad p_{R}=\sum x^{1} \otimes x^{2} \beta S\left(x^{3}\right), \tag{2.9}\\
& q_{L}=\sum S\left(x^{1}\right) \alpha x^{2} \otimes x^{3}, \quad p_{L}=\sum X^{2} S^{-1}\left(X^{1} \beta\right) \otimes X^{3}, \tag{2.10}
\end{align*}
$$

then for all $h \in H$ the relations

$$
\begin{gather*}
\sum\left(S\left(h_{1}\right) \otimes 1\right) q_{L} \Delta\left(h_{2}\right)=(1 \otimes h) q_{L}, \tag{2.11}\\
\sum \Delta\left(q_{L}^{2}\right) p_{L}\left(S^{-1}\left(q_{L}^{1}\right) \otimes 1\right)=1 \otimes 1, \tag{2.12}\\
\sum \Delta\left(q_{R}^{1}\right) p_{R}\left(1 \otimes S\left(q_{R}^{2}\right)\right)=1 \otimes 1, \tag{2.13}
\end{gather*}
$$

$$
\begin{align*}
& \left(1 \otimes q_{L}\right)(\operatorname{Id} \otimes \Delta)\left(q_{L}\right) \Phi \\
& \quad=\sum\left(S\left(x^{2}\right) \otimes S\left(x^{1}\right) \otimes 1\right)(f \otimes 1)(\Delta \otimes \operatorname{Id})\left(q_{L} \Delta\left(x^{3}\right)\right) \tag{2.14}
\end{align*}
$$

hold, where $q_{L}=\sum q_{L}^{1} \otimes q_{L}^{2}, q_{R}=\sum q_{R}^{1} \otimes q_{R}^{2}$, and f is the element defined by (1.11).

Lemma 2.5. Let H be a quasi-Hopf algebra, A an H-module algebra, and M a k-vector space. Then:
(i) M is a left A \# H-module if and only if M is a left H-module (with action denoted by $h \otimes m \mapsto h m$), A acts weakly on M to the left (i.e., there exists a k-linear map $A \otimes M \rightarrow M$, denoted by $a \otimes m \mapsto a . m$, such that $1 . m=m)$ and the compatibility relations

$$
\begin{align*}
& \text { a. }(b . m)=\sum\left[\left(x^{1} \cdot a\right)\left(x^{2} \cdot b\right)\right] .\left(x^{3} m\right) \quad \text { for all } a, b \in A \text { and } m \in M, \tag{2.15}\\
& h(a . m)=\sum\left(h_{1} \cdot a\right) \cdot\left(h_{2} m\right) \quad \text { for all } h \in H, a \in A, m \in M . \tag{2.16}
\end{align*}
$$

hold.
(ii) M is a right A \# H-module if and only if M is a left H-module (denote the action by $h \otimes m \mapsto h \triangleright m$), A acts weakly on M to the right (denote the weak action by $m \otimes a \mapsto m a$) and the compatibility relations

$$
\begin{gather*}
(m a) b=\sum S^{-1}\left(x^{3}\right) \triangleright\left\{m\left[\left(x^{1} \cdot a\right)\left(x^{2} \cdot b\right)\right]\right\} \\
\quad \text { for all } a, b \in A, m \in M \tag{2.17}\\
\left(S^{-1}(h) \triangleright m\right) a=\sum S^{-1}\left(h_{2}\right) \triangleright\left[m\left(h_{1} \cdot a\right)\right] \\
\text { for all } h \in H, a \in A, m \in M \tag{2.18}
\end{gather*}
$$

hold.
Proof. The statement (i) is shown in [3, Proposition 2.16]. The proof of (ii) is similar, although slightly more complicated, so we include it. We only define the correspondences and leave the verification of some details to the reader.

Let M be a right A \# H-module with $A \# H$-module structure given by

$$
m \otimes(a \# h) \mapsto m(a \# h) .
$$

Since $j: H \rightarrow A \# H, j(h)=1 \# h$, is an algebra map, M becomes a right H-module by $m \otimes h \mapsto m j(h)$, thus a left H-module by $h \otimes m \mapsto h$ $\triangleright m=m j(S(h)$). In general, the application $i: A \rightarrow A \# H, i(a)=a \# 1$, is not an algebra morphism (i.e., it is not multiplicative). But it is clear that A acts weakly on M to the right by $m \otimes a \mapsto m a=m i(a)$. Then we can check that (2.17) and (2.18) hold.

Conversely, if M is a left H-module such that A acts weakly on M to the right and (2.17) and (2.18) hold, then with the structure

$$
M \otimes(A \# H) \rightarrow M, \quad m \otimes(a \# h) \mapsto S^{-1}(h) \triangleright(m a)
$$

M becomes a right $A \# H$-module.
In order to construct the desired category isomorphism, the above lemma suggests another description for the category of left or right Hopf modules. Let H be a finite-dimensional quasi-Hopf algebra and A a left H-module algebra. If we denote by ${ }_{A}\left(H^{\prime} \mathscr{M}\right)$ the category of left H-modules which are also left A-modules in the tensor category ${ }_{H} \mathscr{M}$ and where the morphisms are left H-linear maps which are also left A-linear then it is easy to see that ${ }_{A} \mathscr{M}^{H^{*}} \cong_{A}\left({ }_{H} \mathscr{M}\right)$. Similarly, we can define the category $\left(_{H} \mathscr{M}\right)_{A}$ and $\mathscr{M}_{A}^{H^{*}} \cong\left({ }_{H} \mathscr{M}\right)_{A}$.

Lemma 2.6. Let H be a quasi-Hopf algebra and $\delta, f^{-1} \in H \otimes H$ the elements defined in the Preliminaries. If we set $\delta=\Sigma \delta^{1} \otimes \delta^{2}$ and $f^{-1}=\Sigma g^{1}$ $\otimes g^{2}$ then the following relations hold:
(i) $\Sigma \delta^{2} \alpha S^{-1}\left(\delta^{1}\right)=S^{-1}(\beta), \Sigma g^{2} \alpha S^{-1}\left(g^{1}\right)=\varepsilon(\alpha) S^{-1}(\beta)$,
(ii) $\Sigma S\left(\delta^{1}\right) \alpha \delta^{2}=S(\beta), \Sigma S\left(g^{1}\right) \alpha g^{2}=\varepsilon(\alpha) S(\beta)$.

Proof. From the definitions of δ and f^{-1} and using (1.2) we obtain:

$$
\begin{gathered}
\sum \delta^{1} \otimes \delta^{2}=\sum X_{1}^{1} x^{1} \beta S\left(X^{3}\right) \otimes X_{2}^{1} x^{2} \beta S\left(X^{2} x^{3}\right) \\
=\sum x^{1} \beta S\left(x_{2}^{3} X^{3}\right) \otimes x^{2} X^{1} \beta S\left(x_{1}^{3} X^{2}\right) \\
\sum g^{1} \otimes g^{2}=\sum S\left(x^{1}\right)_{1} \alpha_{1} x_{1}^{2} \delta^{1} S\left(x_{2}^{3}\right) \otimes S\left(x^{1}\right)_{2} \alpha_{2} x_{2}^{2} \delta^{2} S\left(x_{1}^{3}\right) .
\end{gathered}
$$

Using the above relations we can obtain the desired identities.
Now we can prove the following:
Proposition 2.7. Let H be a finite-dimensional quasi-Hopf algebra and A a left H-module algebra. Then:
(i) The categories ${ }_{A} \mathscr{M}^{H^{*}}$ and ${ }_{A \# H} \mathscr{M}$ are isomorphic.
(ii) The categories $\mathscr{M}_{A}^{H^{*}}$ and $\mathscr{X}_{A \# H}$ are isomorphic.

Proof. First, by Remark 2.2, A becomes a right H^{*}-comodule algebra.
(i) follows by ${ }_{A} \mathscr{M}^{H^{*}} \cong_{A}\left({ }_{H} \mathscr{M}\right)$ and Lemma 2.5(i).
(ii) To show (ii) we begin with some generalities. If F is a gauge transformation for H, there is a canonical monoidal isomorphism between the tensor categories ${ }_{H} \mathscr{M}$ and ${ }_{H_{F}} \mathscr{M}$. This functor is the identity on objects and morphisms with the monoidal structure c given by the multiplication by F^{-1}, that is, for any two left H-modules $V, W, c_{V, W}: V \otimes W \rightarrow V \otimes W$, $c_{V, W}(v \otimes w)=\Sigma G^{1} \cdot v \otimes G^{2} \cdot w$, where $v \in V, w \in W$, and $F^{-1}=\Sigma G^{1}$ $\otimes G^{2}$. Under this isomorphism the algebra object (i.e., module algebra) A corresponds to an H_{F}-module algebra $A_{F^{-1}}$. Note that the multiplication of $A_{F^{-1}}$ is given by

$$
a \circ b=\sum\left(G^{1} \cdot a\right)\left(G^{2} \cdot b\right),
$$

and the algebra $A \# H$ is isomorphic to $A_{F^{-1}} \# H_{F}$ (cf. Proposition 2.3; see also [3, Proposition 2.17]).

Now, let the gauge transformation be the element f defined in (1.11). The formulae (1.13) and (1.15) express the fact that the antipode S gives an isomorphism of quasi-bialgebras $S: H^{\mathrm{op}, \mathrm{cop}} \rightarrow H_{f}$. This implies:
(1) A_{f} is a right $H^{\text {cop }}$-module algebra via S
(2) S induces a monoidal isomorphism between the tensor categories $\mathscr{M}_{H^{\text {cop }}}$ and $H_{H_{f}} \mathscr{M}$.

These observations and (i) yield that the following categories are isomorphic with one another:

$$
\begin{aligned}
\mathscr{M}_{A}^{H^{*}} & \cong\left(H_{H} \mathscr{M}\right)_{A} \cong\left(H_{f} \mathscr{M}\right)_{A_{f^{-1}}} \cong\left(\mathscr{M}_{H^{\mathrm{cop}}}\right)_{A_{f^{-1}}} \cong_{A_{f^{-1}}^{\mathrm{op}}}\left(H_{H^{\mathrm{op}}} \mathscr{M}\right) \\
& \cong \mathscr{M}_{\left(A_{f^{\mathrm{op}}-1} \# H^{\mathrm{op}}\right)^{\mathrm{op}}} .
\end{aligned}
$$

Therefore one has only to show that the algebras $\left(A_{f^{-1}}^{\mathrm{op}} \# H^{\mathrm{op}}\right)^{\mathrm{op}}$ and A \# H are isomorphic. Note that $A_{f^{-1}}^{\mathrm{op}}$ is a left H^{op}-module algebra with $h \triangleright a=S(h) \cdot a$ and the multiplication in $\left(A_{f^{-1}}^{\mathrm{op}} \# H^{\mathrm{op}}\right)^{\mathrm{op}}$ is

$$
\begin{equation*}
(a \# h)\left(b \# h^{\prime}\right)=\sum\left(g^{1} S\left(h_{1}^{\prime} X^{2}\right) \cdot a\right)\left(g^{2} S\left(X^{1}\right) \cdot b\right) \# h h_{2}^{\prime} X^{3}, \tag{2.19}
\end{equation*}
$$

for all $a, b \in A, h, h^{\prime} \in H$, where $f^{-1}=\sum g^{1} \otimes g^{2}$. Now, if q_{L} is the element defined by (2.10) then the map $\mu: A \# H \rightarrow\left(A_{f^{-1}}^{\mathrm{op}} \# H^{\mathrm{op}}\right)^{\mathrm{op}}$ given by

$$
\begin{equation*}
\mu(a \# h)=\sum f^{2} S^{-1}\left(q_{L}^{1} h_{1} g^{1}\right) \cdot a \# S^{-1}\left(f^{1} S^{-1}\left(q_{L}^{2} h_{2} g^{2}\right)\right), \tag{2.20}
\end{equation*}
$$

for all $a \in A, h \in H$, is an algebra isomorphism. We first check that μ is an algebra map. We shall denote by $q_{L}=\Sigma q_{L}^{1} \otimes q_{L}^{2}=\Sigma Q_{L}^{1} \otimes Q_{L}^{2}, f=$ $\sum f^{1} \otimes f^{2}=\Sigma F^{1} \otimes F^{2}=\Sigma \mathbf{f}^{1} \otimes \mathbf{f}^{2}=\Sigma \mathbf{F}^{1} \otimes \mathbf{F}^{2}=\sum \mathscr{F}^{1} \otimes \mathscr{F}^{2}$, and $f^{-1}=$ $\Sigma g^{1} \otimes g^{2}=\Sigma G^{1} \otimes G^{2}=\Sigma \mathbf{g}^{1} \otimes \mathbf{g}^{2}=\Sigma \mathbf{G}^{1} \otimes \mathbf{G}^{2}=\Sigma \mathscr{G}^{1} \otimes \mathscr{G}^{2}$. Then, for all $a, b \in A, h, h^{\prime} \in H$ we have:

$$
\begin{aligned}
& \mu\left((a \# h)\left(b \# h^{\prime}\right)\right) \\
&= \sum \mu\left(\left(x^{1} \cdot a\right)\left(x^{2} h_{1} \cdot b\right) \# x^{3} h_{2} h^{\prime}\right) \\
&= \sum f^{2} S^{-1}\left(q_{L}^{1} x_{1}^{3}\left(h_{2}\right)_{1} h_{1}^{\prime} g^{1}\right)\left[\left(x^{1} \cdot a\right)\left(x^{2} h_{1} \cdot b\right)\right] \\
& \# S^{-1}\left(f^{1} S^{-1}\left(q_{L}^{2} x_{2}^{3}\left(h_{2}\right)_{2} h_{2}^{\prime} g^{2}\right)\right) \\
&= \sum\left[f_{1}^{2} S^{-1}\left(S\left(x^{1}\right) F^{2}\left(q_{L}^{1}\right)_{2}\left(x_{1}^{3}\right)_{2}\left(\left(h_{2}\right)_{1} h_{1}^{\prime}\right)_{2} g_{2}^{1} G^{2}\right) \cdot a\right] \\
& \times\left[f_{2}^{2} S^{-1}\left(S\left(h_{1}\right) S\left(x^{2}\right) F^{1}\left(q_{L}^{1}\right)_{1}\left(x_{1}^{3}\right)_{1}\left(\left(h_{2}\right)_{1} h_{1}^{\prime}\right)_{1} g_{1}^{1} G^{1}\right) \cdot b\right] \\
& \# S^{-1}\left(f^{1} S^{-1}\left(q_{L}^{2} x_{2}^{3}\left(h_{2}\right)_{2} h_{2}^{\prime} g^{2}\right)\right)
\end{aligned}
$$

by (1.17) and (1.13)

$$
\begin{aligned}
= & \sum\left[f_{1}^{2} S^{-1}\left(q_{L}^{1}\left(Q_{L}^{2}\right)_{1} X^{2}\left(\left(h_{2}\right)_{1}\right)_{2}\left(h_{1}^{\prime}\right)_{2} g_{2}^{1} G^{2}\right) \cdot a\right] \\
& \times\left[f_{2}^{2} S^{-1}\left(S\left(h_{1}\right) Q_{L}^{1} X^{1}\left(\left(h_{2}\right)_{1}\right)_{1}\left(h_{1}^{\prime}\right)_{1} g_{1}^{1} G^{1}\right) \cdot b\right] \\
& \# S^{-1}\left(f^{1} S^{-1}\left(q_{L}^{2}\left(Q_{L}^{2}\right)_{2} X^{3}\left(h_{2}\right)_{2} h_{2}^{\prime} g^{2}\right)\right)
\end{aligned}
$$

by (2.14)

$$
\begin{aligned}
= & \sum\left[f_{1}^{2} S^{-1}\left(q_{L}^{1}\left(Q_{L}^{2}\left(h_{2}\right)_{2}\right)_{1} X^{2}\left(h_{1}^{\prime}\right)_{2} g_{2}^{1} G^{2}\right) \cdot a\right] \\
& \times\left[f_{2}^{2} S^{-1}\left(S\left(h_{1}\right) Q_{L}^{1}\left(h_{2}\right)_{1} X^{1}\left(h_{1}^{\prime}\right)_{1} g_{1}^{1} G^{1}\right) \cdot b\right] \\
& \# S^{-1}\left(f^{1} S^{-1}\left(q_{L}^{2}\left(Q_{L}^{2}\left(h_{2}\right)_{2}\right)_{2} X^{3} h_{2}^{\prime} g^{2}\right)\right)
\end{aligned}
$$

by (1.1)

$$
\begin{aligned}
= & \sum\left[f_{1}^{2} S^{-1}\left(q_{L}^{1} h_{1}\left(Q_{L}^{2}\right)_{1}\left(h_{2}^{\prime}\right)_{1} X^{2} g_{2}^{1} G^{2}\right) \cdot a\right] \\
& \times\left[f_{2}^{2} S^{-1}\left(Q_{L}^{1} h_{1}^{\prime} X^{1} g_{1}^{1} G^{1}\right) \cdot b\right] \\
& \# S^{-1}\left(f^{1} S^{-1}\left(q_{L}^{2} h_{2}\left(Q_{L}^{2}\right)_{2}\left(h_{2}^{\prime}\right)_{2} X^{3} g^{2}\right)\right)
\end{aligned}
$$

by (1.1) and (2.11)

$$
\begin{aligned}
= & \sum\left[f_{1}^{2} X^{2} S^{-1}\left(q_{L}^{1} h_{1}\left(Q_{L}^{2}\right)_{1}\left(h_{2}^{\prime}\right)_{1} g_{1}^{2} G^{1}\right) \cdot a\right] \\
& \times\left[f_{2}^{2} X^{3} S^{-1}\left(Q_{L}^{1} h_{1}^{\prime} g^{1}\right) \cdot b\right] \\
& \# S^{-1}\left(f^{1} X^{1} S^{-1}\left(q_{L}^{2} h_{2}\left(Q_{L}^{2}\right)_{2}\left(h_{2}^{\prime}\right)_{2} g_{2}^{2} G^{2}\right)\right)
\end{aligned}
$$

by (1.15).

On the other hand,

$$
\begin{aligned}
& \mu(a \# h) \mu\left(b \# h^{\prime}\right) \\
& \quad=\sum\left[f^{2} S^{-1}\left(q_{L}^{1} h_{1} g^{1}\right) \cdot a \# S^{-1}\left(f^{1} S^{-1}\left(q_{L}^{2} h_{2} g^{2}\right)\right)\right] \\
& \quad \times\left[F^{2} S^{-1}\left(Q_{L}^{1} h_{1}^{\prime} G^{1}\right) \cdot b \# S^{-1}\left(F^{1} S^{-1}\left(Q_{L}^{2} h_{2}^{\prime} G^{2}\right)\right)\right] \\
& =\sum\left[\mathbf{g}^{1} S\left(S^{-1}\left(\mathbf{F}^{2} F_{2}^{1} S^{-1}\left(\mathscr{F}^{1}\left(Q_{L}^{2}\right)_{1}\left(h_{2}^{\prime}\right)_{1} G_{1}^{2} \mathscr{G}^{1}\right) \mathbf{G}^{2}\right) X^{2}\right)\right. \\
& \left.\quad \times f^{2} S^{-1}\left(q_{L}^{1} h_{1} g^{1}\right) \cdot a\right] \\
& \quad \times\left[\mathbf{g}^{2} S\left(X^{1}\right) F^{2} S^{-1}\left(Q_{L}^{1} h_{1}^{\prime} G^{1}\right) \cdot b\right] \# S^{-1}\left(f^{1} S^{-1}\left(q_{L}^{2} h_{2} g^{2}\right)\right) \\
& \quad \times S^{-1}\left(\mathbf{F}^{1} F_{1}^{1} S^{-1}\left(\mathscr{F}^{2}\left(Q_{L}^{2}\right)_{2}\left(h_{2}^{\prime}\right)_{2} G_{2}^{2} \mathscr{G}^{2}\right) \mathbf{G}^{1}\right) X^{3}
\end{aligned}
$$

by (2.19) and (1.13)

$$
\begin{aligned}
= & \sum\left[\mathbf{g}^{1} S\left(X^{2}\right) \mathbf{F}^{2} F_{2}^{1} S^{-1}\left(q_{L}^{1} h_{1} g^{1} \mathscr{F}^{1}\left(Q_{L}^{2}\right)_{1}\left(h_{2}^{\prime}\right)_{1} G_{1}^{2} \mathscr{G}^{1}\right) \cdot a\right] \\
& \times\left[\mathbf{g}^{2} S\left(X^{1}\right) F^{2} S^{-1}\left(Q_{L}^{1} h_{1}^{\prime} G^{1}\right) \cdot b\right] \\
& \# S^{-1}\left(S\left(X^{3}\right) \mathbf{F}^{1} F_{1}^{1} S^{-1}\left(q_{L}^{2} h_{2} g^{2} \mathscr{F}^{2}\left(Q_{L}^{2}\right)_{2}\left(h_{2}^{\prime}\right)_{2} G_{2}^{2} \mathscr{G}^{2}\right)\right) \\
= & \sum\left[f_{1}^{2} X^{2} S^{-1}\left(q_{L}^{1} h_{1}\left(Q_{L}^{2}\right)_{1}\left(h_{2}^{\prime}\right)_{1} G_{1}^{2} \mathscr{G}^{1}\right) \cdot a\right] \\
& \times\left[f_{2}^{2} X^{3} S^{-1}\left(Q_{L}^{1} h_{1}^{\prime} G^{1}\right) \cdot b\right] \\
& \# S^{-1}\left(f^{1} X^{1} S^{-1}\left(q_{L}^{2} h_{2}\left(Q_{L}^{2}\right)_{2}\left(h_{2}^{\prime}\right)_{2} G_{2}^{2} \mathscr{G}^{2}\right)\right)
\end{aligned}
$$

by (1.13)

$$
=\mu\left((a \# h)\left(b \# h^{\prime}\right)\right) .
$$

It follows that $\mu(1 \# 1)=1 \# 1$, thus one has only to show that μ is bijective. For this we define $\mu^{-1}:\left(A_{f^{-1}}^{\mathrm{op}} \# H^{\mathrm{op}}\right)^{\mathrm{op}} \rightarrow A \# H$ by

$$
\begin{equation*}
\mu^{-1}(a \# h)=\sum\left(1 \# S\left(G^{1} S(h)\right)\right)\left(g^{1} S\left(q_{R}^{2}\right) G^{2} \cdot a \# g^{2} S\left(q_{R}^{1}\right)\right), \tag{2.21}
\end{equation*}
$$

for all $a \in A, h \in H$, where $q_{R}=\Sigma q_{R}^{1} \otimes q_{R}^{2}$ is the element defined by (2.9). Finally we check that μ and μ^{-1} are inverses. Now

$$
\begin{aligned}
& \mu \mu^{-1}(a \# h) \\
& =\sum \mu\left(1 \# S\left(G^{1} S(h)\right)\right) \mu\left(g^{1} S\left(q_{R}^{2}\right) G^{2} \cdot a \# g^{2} S\left(q_{R}^{1}\right)\right) \\
& =\sum \varepsilon(\alpha)\left(1 \# h S^{-1}\left(G^{1}\right)\right) \\
& \quad \times\left[f^{2} S^{-1}\left(q_{L}^{1} g_{1}^{2} \mathscr{G}^{1} S\left(\left(q_{R}^{1}\right)_{2}\right)\right) g^{1} S\left(q_{R}^{2}\right) G^{2} \cdot a\right. \\
& \left.\quad \# S^{-1}\left(f^{1} S^{-1}\left(q_{L}^{2} g_{2}^{2} \mathscr{G}^{2} S\left(\left(q_{R}^{1}\right)_{1}\right)\right)\right)\right]
\end{aligned}
$$

by (2.20) and (1.13)

$$
\begin{aligned}
= & \sum f^{2} S^{-1}\left(q_{L}^{1} g_{1}^{2} \mathscr{G}^{1} S\left(\left(q_{R}^{1}\right)_{2}\right)\right) g^{1} S\left(q_{R}^{2}\right) G^{2} \cdot a \\
& \# h S^{-1}\left(f^{1} S^{-1}\left(q_{L}^{2} g_{2}^{2} \mathscr{G}^{2} S\left(\left(q_{R}^{1}\right)_{1}\right)\right) G^{1}\right)
\end{aligned}
$$

by (2.19) and since $\sum \varepsilon\left(g^{1}\right) g^{2}=\varepsilon(\beta) 1, \varepsilon(\alpha) \varepsilon(\beta)=1$

$$
\begin{aligned}
= & \sum f^{2}\left(q_{R}^{1}\right)_{2} x^{2} S^{-1}\left(S\left(X^{1}\right) q_{L}^{1} X^{2} g_{2}^{1} \mathscr{G}^{2}\right) g_{1}^{1} \mathscr{G}^{1} S\left(q_{R}^{2} x^{3}\right) G^{2} \cdot a \\
& \# h S^{-1}\left(f^{1}\left(q_{R}^{1}\right)_{1} x^{1} S^{-1}\left(q_{L}^{2} X^{3} g^{2}\right) G^{1}\right)
\end{aligned}
$$

by (1.13)

$$
\begin{aligned}
= & \sum f^{2}\left(q_{R}^{1}\right)_{2} x^{2} S^{-1}\left(\alpha g_{2}^{1} \mathscr{G}^{2}\right) g_{1}^{1} \mathscr{G}^{1} S\left(q_{R}^{2} x^{3}\right) G^{2} \cdot a \\
& \# h S^{-1}\left(f^{1}\left(q_{R}^{1}\right)_{1} x^{1} S^{-1}\left(g^{2}\right) G^{1}\right)
\end{aligned}
$$

by (2.10)

$$
=\sum f^{2}\left(q_{R}^{1}\right)_{2} x^{2} \beta S\left(x^{3}\right) S\left(q_{R}^{2}\right) G^{2} \cdot a \# h S^{-1}\left(f^{1}\left(q_{R}^{1}\right)_{1} x^{1} G^{1}\right)
$$

by (1.5) and Lemma 2.6(ii)

$$
=\sum f^{2}\left(q_{R}^{1}\right)_{2} p_{R}^{2} S\left(q_{R}^{2}\right) G^{2} \cdot a \# h S^{-1}\left(f^{1}\left(q_{R}^{1}\right)_{1} p_{R}^{1} G^{1}\right)
$$

by (2.9)

$$
=a \# h
$$

by (2.13), and similarly,

$$
\begin{aligned}
& \mu^{-1} \mu(a \# h) \\
& \quad=\sum \mu^{-1}\left(f^{2} S^{-1}\left(q_{L}^{1} h_{1} g^{1}\right) \cdot a \# S^{-1}\left(f^{1} S^{-1}\left(q_{L}^{2} h_{2} g^{2}\right)\right)\right) \\
& \quad=\sum\left(1 \# q_{L}^{2} h_{2} g^{2}\right)\left(G^{1} S\left(q_{R}^{2}\right) S^{-1}\left(q_{L}^{1} h_{1} g^{1}\right) \cdot a \# G^{2} S\left(q_{R}^{1}\right)\right)
\end{aligned}
$$

by (2.21)

$$
\begin{aligned}
= & \sum\left(q_{L}^{2}\right)_{1}\left(h_{2}\right)_{1} g_{1}^{2} G^{1} S\left(q_{R}^{2}\right) S^{-1}\left(q_{L}^{1} h_{1} g^{1}\right) \cdot a \\
& \#\left(q_{L}^{2}\right)_{2}\left(h_{2}\right)_{2} g_{2}^{2} G^{2} S\left(q_{R}^{1}\right) \\
= & \sum\left(q_{L}^{2}\right)_{1}\left(h_{2}\right)_{1} X^{2} g_{2}^{1} G^{2} S\left(q_{R}^{2} x^{2}\right) x^{3} S^{-1}\left(q_{L}^{1} h_{1} X^{1} g_{1}^{1} G^{1}\right) \cdot a \\
& \#\left(q_{L}^{2}\right)_{2}\left(h_{2}\right)_{2} X^{3} g^{2} S\left(q_{R}^{1} x^{1}\right)
\end{aligned}
$$

by (1.13)

$$
\begin{aligned}
= & \sum\left(q_{L}^{2}\right)_{1} X^{2}\left(h_{1}\right)_{2} g_{2}^{1} G^{2} \alpha S^{-1}\left(q_{L}^{1} X^{1}\left(h_{1}\right)_{1} g_{1}^{1} G^{1}\right) \cdot a \\
& \#\left(q_{L}^{2}\right)_{2} X^{3} h_{2} g^{2}
\end{aligned}
$$

by (1.1) and (2.9)

$$
=\sum\left(q_{L}^{2}\right)_{1} X^{2}\left(h_{1}\right)_{2} S^{-1}\left(q_{L}^{1} X^{1}\left(h_{1}\right)_{1} \beta\right) \cdot a \#\left(q_{L}^{2}\right)_{2} X^{3} h_{2}
$$

by Lemma 2.6(i) and (1.5)

$$
=\sum\left(q_{L}^{2}\right)_{1} p_{L}^{1} S^{-1}\left(q_{L}^{1}\right) \cdot a \#\left(q_{L}^{2}\right)_{2} p_{L}^{2} h
$$

by (1.5) and (2.10)

$$
=a \# h
$$

by (2.12).
If we compute explicitly the above isomorphisms we obtain the following correspondence:

- If M is a right $A \# H$-module then M becomes a right $\left(H^{*}, A\right)$ Hopf module with the structures:

$$
\begin{gathered}
m \mapsto \sum_{i=1}^{n} m\left(1 \# S\left(e_{i}\right)\right) \otimes e^{i} \\
\left(\left\{e_{i}\right\}_{i=\overline{1, n}} \text { and }\left\{e^{i}\right\}_{i=\overline{1, n}} \text { are dual bases in } H \text { and } H^{*}\right), \\
m a=\sum m\left(g^{1} S\left(q_{R}^{2}\right) \cdot a \# g^{2} S\left(q_{R}^{1}\right)\right) .
\end{gathered}
$$

- Conversely, if M is a right $\left(H^{*}, A\right)$-Hopf module then if we regard M as an object in $\left({ }_{H} \mathscr{M}\right)_{A}$ then M becomes a right $A \# H$-module with

$$
m \leftarrow(a \# h)=S^{-1}(h)\left[\left(S^{-1}\left(q_{L}^{2} g^{2}\right) m\right)\left(S^{-1}\left(q_{L}^{1} g^{1}\right) \cdot a\right)\right] .
$$

Remark 2.8. (i) It follows that if we start with a finite-dimensional dual quasi-Hopf algebra H and a right H-comodule algebra A, then the categories ${ }_{A} \mathscr{M}^{H}$ and \mathscr{M}_{A}^{H} are isomorphic to the categories ${ }_{A \# H^{*}} \mathscr{M}$ and $\mathscr{M}_{A \# H^{*}}$ respectively. Moreover, if we let $\tau \in(H \otimes H)^{*}$ be a gauge transformation, then by the above proposition and Proposition 2.3 we obtain that the categories ${ }_{A} \mathscr{M}^{H}$ and ${ }_{A_{\tau^{-1}}} \mathscr{M}^{H_{\tau}}$ are isomorphic, respectively \mathscr{M}_{A}^{H} and $\mathscr{M}_{A^{-1}}^{H_{\tau}}$ are isomorphic.
(ii) Let A be a finite-dimensional right comodule algebra over a dual quasi-Hopf algebra H. Then A^{*}, the linear dual space of A, becomes a coalgebra in the tensor category of left H-comodules ${ }^{H} \mathscr{A}$ with left
H-comodule structure $a^{*} \mapsto \sum a^{*}\left(a_{i_{(0)}}\right) a_{i_{(1)}} \otimes a^{i}$, comultiplication $\Delta\left(a^{*}\right)=$ $\sum a^{*}\left(a_{i} a_{j}\right) a^{i} \otimes a^{j}$, and counit $\varepsilon\left(a^{*}\right)=a^{*}\left(1_{A}\right)$, for all $a^{*} \in A^{*}$, where $\left\{a_{i}\right\}$ is a basis in A with dual basis $\left\{a^{i}\right\}$ in A^{*}. Under the circumstances, it was proved in [4] that the categories ${ }_{A} \mathscr{M}^{H}$ and \mathscr{X}_{A}^{H} are isomorphic to the categories of comodules over the smash coproduct $A^{*} \rtimes H$, namely $\mathscr{M}^{A^{*} \rtimes H}$ and ${ }^{A^{*} \rtimes H} \mathscr{L}$ respectively.

The proof of the following results is slightly different from the one in the case where H is a Hopf algebra [5, Theorem 1].

Proposition 2.9. Let A be a right H-comodule algebra such that there exists a right comodule map $\lambda: H \rightarrow A$ with $\lambda(1)=1$. Then every right (H, A)-Hopf module is injective as an H-comodule.

Proof. Let $M \in \mathscr{M}_{A}^{H}$. As in the Hopf case, $M \otimes H$ is a right H-comodule with structure map given by $\operatorname{Id} \otimes \Delta \Delta$. We show that there is an H-comodule map $\bar{\lambda}: M \otimes H \rightarrow M$ with $\bar{\lambda} \rho_{M}=$ Id. Thus M is injective since it is isomorphic to a direct summand of $M \otimes H$, an injective H-comodule. So, for all $m \in M, h \in H$ define

$$
\bar{\lambda}(m \otimes h)=\sum \varphi\left(m_{(1)}, S\left(m_{(3)}\right), h_{2}\right) \beta\left(m_{(2)}\right) \alpha\left(m_{(5)}\right) m_{(0)} \lambda\left(S\left(m_{(4)}\right) h_{1}\right) .
$$

By (1.24) and (1.25) it follows that $\bar{\lambda} \rho_{M}=$ Id. Next, we shall prove that $\bar{\lambda}$ is an H-comodule map. Indeed, for all $m \in M$ and $h \in H$, we have

$$
\begin{aligned}
& \sum \bar{\lambda}(m \otimes h)_{(0)} \otimes \bar{\lambda}(m \otimes h)_{(1)} \\
& \quad=\sum \varphi\left(m_{(1)}, S\left(m_{(3)}\right), h_{2}\right) \beta\left(m_{(2)}\right) \alpha\left(m_{(5)}\right)\left(m_{(0)} \lambda\left(S\left(m_{(4)}\right) h_{1}\right)\right)_{(0)} \\
& \quad \otimes\left(m_{(0)} \lambda\left(S\left(m_{(4)}\right) h_{1}\right)\right)_{(1)} \\
& \quad=\sum \varphi\left(m_{(2)}, S\left(m_{(4)}\right), h_{3}\right) \beta\left(m_{(3)}\right) \alpha\left(m_{(7)}\right) m_{(0)} \lambda\left(S\left(m_{(6)}\right) h_{1}\right) \\
& \quad \otimes m_{(1)}\left(S\left(m_{(5)}\right) h_{2}\right)
\end{aligned}
$$

(since λ is a comodule map)

$$
\begin{aligned}
= & \sum \varphi\left(m_{(1)}, S\left(m_{(5)}\right), h_{2}\right) \alpha\left(m_{(7)}\right) m_{(0)} \lambda\left(S\left(m_{(6)}\right) h_{1}\right) \\
& \otimes\left(m_{(2)} \beta\left(m_{(3)}\right) S\left(m_{(4)}\right)\right) h_{3}
\end{aligned}
$$

by (1.20)

$$
=\sum \varphi\left(m_{(1)}, S\left(m_{(3)}\right), h_{2}\right) \beta\left(m_{(2)}\right) \alpha\left(m_{(5)}\right) m_{(0)} \lambda\left(S\left(m_{(4)}\right) h_{1}\right) \otimes h_{3}
$$

by (1.24)

$$
=\sum \lambda\left(m \otimes h_{1}\right) \otimes h_{2} .
$$

The proof of the next result is the same as in [5].
Corollary 2.10. Let H be a dual quasi-Hopf algebra and A a right H-comodule algebra. The following statements are equivalent:
(i) A is an injective H-comodule.
(ii) There is a right H-comodule map $\lambda: H \rightarrow A$ with $\lambda(1)=1$.
(iii) Every object in \mathscr{M}_{A}^{H} is an injective H-comodule.

Let H be a dual quasi-Hopf algebra and A a right H-comodule algebra. Define the H-invariant subspace of A to be the set

$$
A_{0}=\left\{a \in A \mid \rho_{A}(a)=a \otimes 1\right\} .
$$

It is clear that A_{0} is an associative subalgebra of A in the tensor category \mathscr{M}^{H}.

Let V be a right A_{0}-module. One easily checks that $V \otimes_{A_{0}} A$ is a right (H, A)-Hopf module with the right H-comodule structure and the right A-action given for all $v \in V, a, b \in A$ by

$$
\rho: v \otimes_{A_{0}} a \mapsto \sum\left(v \otimes_{A_{0}} a_{(0)}\right) \otimes a_{(1)}, \quad\left(v \otimes_{A_{0}} a\right) b=v \otimes_{A_{0}} a b .
$$

Similarly, for $M \in \mathscr{M}_{A}^{H}$ define the H-invariant subspace of M to be the set

$$
M_{0}=\left\{m \in M \mid \rho_{M}(m)=m \otimes 1\right\} .
$$

For any $m \in M_{0}$ and $a \in A_{0}$ we have $m a \in M_{0}$ and thus M_{0} is a right A_{0}-module. Define

$$
u: M_{0} \otimes_{A_{0}} A \rightarrow M, \quad u\left(m \otimes_{A_{0}} a\right)=m a \text { for all } m \in M_{0}, a \in A .
$$

It is easy to see that u is an H-comodule map and an A-linear map, hence a morphism in \mathscr{M}_{A}^{H}. Now we can prove the main result of this section which generalizes [5, Theorem 3]:

Theorem 2.11. Let H be a dual quasi-Hopf algebra and A a right H-comodule algebra. If there is a right H-comodule map $\lambda: H \rightarrow A$ which is an algebra map (i.e., is multiplicative and $\lambda(1)=1)$ then for every $M \in \mathscr{M}_{A}^{H}$ the map u defined above is an isomorphism of (H, A)-Hopf modules.

Proof. Let $P: M \rightarrow M$ be defined for any $m \in M$ by

$$
P(m)=\sum m_{(0)} \beta\left(m_{(1)}\right) \lambda\left(S\left(m_{(2)}\right)\right) .
$$

We claim $P(M) \subset M_{0}:$

$$
\begin{aligned}
\rho_{M}(P(m)) & =\sum \beta\left(m_{(1)}\right)\left(m_{(0)} \lambda\left(S\left(m_{(2)}\right)\right)\right)_{(0)} \otimes\left(m_{(0)} \lambda\left(S\left(m_{(2)}\right)\right)\right)_{(1)} \\
& =\sum \beta\left(m_{(2)}\right) m_{(0)} \lambda\left(S\left(m_{(4)}\right)\right) \otimes m_{(1)} S\left(m_{(3)}\right) \\
& =\sum m_{(0)} \lambda\left(S\left(m_{(4)}\right)\right) \otimes m_{(1)} \beta\left(m_{(2)}\right) S\left(m_{(3)}\right) \\
& =\sum m_{(0)} \beta\left(m_{(1)}\right) \lambda\left(S\left(m_{(2)}\right)\right) \otimes 1
\end{aligned}
$$

by (1.24)

$$
=P(m) \otimes 1
$$

Thus $P: M \rightarrow M_{0}$ and therefore the map

$$
v: M \rightarrow M_{0} \otimes_{A_{0}} A \quad v(m)=\sum P\left(m_{(0)}\right) \otimes \alpha\left(m_{(1)}\right) \lambda\left(m_{(2)}\right)
$$

is well defined. We will show $u v=\mathrm{Id}, v u=\mathrm{Id}$

$$
\begin{aligned}
u v(m)= & \sum P\left(m_{(0)}\right) \alpha\left(m_{(1)}\right) \lambda\left(m_{(2)}\right) \\
= & \sum \alpha\left(m_{(3)}\right) \beta\left(m_{(1)}\right)\left(m_{(0)} \lambda\left(S\left(m_{(2)}\right)\right)\right) \lambda\left(m_{(4)}\right) \\
= & \sum \varphi\left(m_{(1)}, S\left(m_{(3)}\right), m_{(7)}\right) \alpha\left(m_{(5)}\right) \beta\left(m_{(2)}\right) \\
& \times m_{(0)}\left(\lambda\left(S\left(m_{(4)}\right)\right) \lambda\left(m_{(6)}\right)\right)
\end{aligned}
$$

by (2.5)

$$
\begin{aligned}
& =\sum \varphi\left(m_{(1)}, S\left(m_{(3)}\right), m_{(7)}\right) \beta\left(m_{(2)}\right) m_{(0)} \lambda\left(S\left(m_{(4)}\right) \alpha\left(m_{(5)}\right) m_{(6)}\right) \\
& =\sum \varphi\left(m_{(1)}, S\left(m_{(3)}\right), m_{(5)}\right) \beta\left(m_{(2)}\right) \alpha\left(m_{(4)}\right) m_{(0)}
\end{aligned}
$$

by (1.24)

$$
=m
$$

by (1.25).
For $m \in M_{0}$ and $a \in A$ we have:

$$
\begin{aligned}
v u\left(m \otimes_{A_{0}} a\right) & =\sum P\left(m a_{(0)}\right) \otimes_{A_{0}} \alpha\left(a_{(1)}\right) \lambda\left(a_{(2)}\right) \\
& =\sum m\left(a_{(0)} \beta\left(a_{(1)}\right) \lambda\left(S\left(a_{(2)}\right)\right)\right) \otimes_{A_{0}} \alpha\left(a_{(3)}\right) \lambda\left(a_{(4)}\right)
\end{aligned}
$$

(by (2.5), because $m \in M_{0}$)

$$
=\sum m \otimes_{A_{0}}\left(a_{(0)} \beta\left(a_{(1)}\right) \lambda\left(S\left(a_{(2)}\right)\right)\right) \alpha\left(a_{(3)}\right) \lambda\left(a_{(4)}\right)
$$

(because $\left.\sum a_{(0)} \beta\left(a_{(1)}\right) \lambda\left(S\left(a_{(2)}\right)\right) \in A_{0}\right)$

$$
\begin{aligned}
= & m \otimes_{A_{0}} \sum \beta\left(a_{(2)}\right) \alpha\left(a_{(5)}\right) \varphi\left(a_{(1)}, S\left(a_{(3)}\right), a_{(7)}\right) \\
& \times a_{(0)}\left(\lambda\left(S\left(a_{(4)}\right)\right) \lambda\left(a_{(6)}\right)\right)
\end{aligned}
$$

by (2.1)

$$
\begin{aligned}
= & m \otimes_{A_{0}} \sum \beta\left(a_{(2)}\right) \varphi\left(a_{(1)}, S\left(a_{(3)}\right), a_{(7)}\right) \\
& \times a_{(0)} \lambda\left(S\left(a_{(4)}\right) \alpha\left(a_{(5)}\right) a_{(6)}\right) \\
= & m \otimes_{A_{0}} \sum \beta\left(a_{(2)}\right) \alpha\left(a_{(4)}\right) \varphi\left(a_{(1)}, S\left(a_{(3)}\right), a_{(5)}\right) a_{(0)}
\end{aligned}
$$

by (1.24)

$$
=m \otimes_{A_{0}} a
$$

by (1.25).

3. THE DUAL CASE: $[C, H$]-HOPF MODULES

In this section we shall dualize the notion of (H, A)-Hopf modules defined in Section 2 for a dual quasi-Hopf algebra H and a right H-comodule algebra A. We shall only describe the dual versions of Proposition 2.3, Proposition 2.7, Proposition 2.9, and Corollary 2.10. Since the proof of Theorem 2.11 is not so easily dualized we include a sketch of the proof for Theorem 3.5.

Now, let H be a quasi-bialagebra over a field k and C a k-linear space. We say that C is a right H-module coalgebra if C is a coalgebra in the tensor category \mathscr{M}_{H} (note that in \mathscr{M}_{H} the associativity constraint \underline{a} is given via Φ^{-1}), that is, if C has a comultiplication Δ and a usual counit ε satisfying the following conditions:

$$
\begin{gather*}
(\Delta \otimes \mathrm{Id})(\Delta(c)) \Phi^{-1}=(\operatorname{Id} \otimes \Delta)(\Delta(c)), \tag{3.1}\\
\Delta(c h)=\sum c_{1} h_{1} \otimes c_{2} h_{2}, \tag{3.2}\\
\varepsilon(c h)=\varepsilon(c) \varepsilon(h) \tag{3.3}
\end{gather*}
$$

for all $c \in C, h \in H$, where we still denote $\Delta(c)=\sum c_{1} \otimes c_{2}$ and where $\omega_{C}: c \otimes h \mapsto c h$ is the right H-module structure of C.

Note that if H is finite-dimensional, then C is a coalgebra in \mathscr{M}_{H} if and only if C is a left H^{*}-comodule coalgebra, i.e., C is a coalgebra in the tensor category $H^{*} \mathscr{M}$. Now, let H be a finite-dimensional dual quasi-Hopf
algebra. If we define on H a new comultiplication given by
$\bar{\Delta}(h)=\sum \varphi\left(h_{1}, S\left(h_{3}\right), h_{7} S\left(h_{9}\right)\right) \alpha\left(h_{5}\right) \varphi^{-1}\left(S\left(h_{4}\right), h_{6}, S\left(h_{10}\right)\right) h_{2} \otimes h_{8}$, for all $h \in H$, and we denote this new structure on H by \bar{H}, then \bar{H} becomes a left H-comodule coalgebra with counit $\bar{\varepsilon}(h)=\beta(h)$ and with the left adjoint coaction, that is, $\rho_{\bar{H}}(h)=\sum h_{1} S\left(h_{3}\right) \otimes h_{2}$ for all $h \in H$ (see [4]). So, \bar{H} is a right H^{*}-module coalgebra, where the H^{*}-module structure is $h \triangleleft p=\sum p\left(h_{1} S\left(h_{3}\right)\right) h_{2}$ for all $h \in H, p \in H^{*}$.

Dual, if we start with a finite-dimensional quasi-Hopf algebra H then \tilde{H}^{*} is a right H-module coalgebra, where $\tilde{H}^{*}=H^{*}$ as linear spaces, but the comultiplication is given by

$$
\tilde{\Delta}(p)=\sum S\left(x^{1} X^{2}\right) \alpha x^{2} X_{1}^{3} \rightharpoonup p_{1} \leftharpoonup X^{1} \otimes S\left(x^{3} X_{2}^{3}\right) \rightharpoonup p_{2},
$$

where for all $p \in H^{*}$ and $h, l \in H$ we define $h \rightharpoonup p \in H^{*}$ by $(h \rightharpoonup p)(l)$ $=p(l h)$ and where $\Delta(p)=\sum p_{1} \otimes p_{2}$ is the natural comultiplication on H^{*}.

Let H be a quasi-bialgebra and C a right H-module coalgebra. Similarly to Proposition 2.3 we can prove that a twist preserves the class of right H-module coalgebras. First, observe that C^{*}, the linear dual space of C, is a left H-module with $h \otimes c^{*} \mapsto h \rightharpoonup c^{*}$, where $\left(h \rightharpoonup c^{*}\right)(c)=c^{*}(c h)$, for all $h \in H, c \in C, c^{*} \in C^{*}$. Moreover, if for all $c^{*}, d^{*} \in C^{*}$ we put $c^{*} d^{*}=\left(c^{*} \otimes d^{*}\right) \circ \Delta$, then C^{*} becomes a left H-module algebra, so we can define the smash product $C^{*} \# H$.

Proposition 3.1. Let $F \in H \otimes H$ be a gauge transformation on H. If we introduce on C a new comultiplication by $\Delta_{F^{-1}}(c)=\Delta(c) F^{-1}$, where F^{-1} is the inverse of F, and we denote by $C_{F^{-1}}$ the resulting structure, then $C_{F^{-1}}$ becomes a right H_{F}-module coalgebra. Moreover,

$$
\gamma: C^{*} \# H \rightarrow C_{F^{-1}}^{*} \# H_{F}, \quad \gamma\left(c^{*} \# h\right)=\sum F^{1} \rightharpoonup c^{*} \# F^{2} h
$$

is an algebra isomorphism with inverse $\gamma^{-1}\left(c^{*} \# h\right)=\Sigma G^{1} \rightharpoonup c^{*} \# G^{2} h$, where $F=\Sigma F^{1} \otimes F^{2}, F^{-1}=\Sigma G^{1} \otimes G^{2}$ (formal notations). Note that the multiplication in $C_{F^{-1}}^{*}$ is $c^{*} \cdot d^{*}=\Sigma\left(G^{1} \rightharpoonup c^{*}\right)\left(G^{2} \rightharpoonup d^{*}\right)$ for all c^{*}, $d^{*} \in C^{*}$.

Now, a k-vector space is called a right $[C, H]$-Hopf module if N is a right H-module (denote the structure map by $\omega_{N}: n \otimes h \mapsto n h$) and a right C-comodule in the tensor category \mathscr{M}_{H}, i.e., C coacts weakly on N to the right (denote the structure map by $\rho_{N}: n \mapsto \sum n_{[0]} \otimes n_{[1]} \in N \otimes C$) such that for all $n \in N$ and $h \in H, \sum \varepsilon\left(n_{[1]}\right) n_{[0]}=n$ and the following relations hold:

$$
\begin{gather*}
\sum n_{[0]_{[0]}} x^{1} \otimes n_{[0]_{[1]}} x^{2} \otimes n_{[1]} x^{3}=\sum n_{[0]} \otimes n_{[1]_{1}} \otimes n_{[1]_{2}}, \tag{3.4}\\
\rho_{N}(n h)=\sum n_{[0]} h_{1} \otimes n_{[1]} h_{2} . \tag{3.5}
\end{gather*}
$$

We denote by \mathscr{M}_{H}^{C} the category of right [C, H]-Hopf modules where the morphisms are right H-linear maps which are right C-comodule maps (just as in the Hopf case). Similarly, we can define the category ${ }^{C} \mathscr{M}_{H}$ of left [C, H]-Hopf modules (for $N \in^{C} \mathscr{M}_{H}$ we will denote the C-weak coaction by $n \mapsto \sum n_{[-1]} \otimes n_{[0]}$).

Now, throughout this section H will be a quasi-Hopf algebra and C a right H-module coalgebra. We can prove that if C is finite-dimensional (we will denote by $\left\{c_{i}\right\}$ and $\left\{c^{i}\right\}$ dual bases in C and C^{*}), then the above categories are isomorphic to the categories of modules over the smash product $C^{*} \# H$. In fact, we have the following:

Proposition 3.2. Let C be a finite-dimensional H-module coalgebra. Then
(i) The categories ${ }^{c} \mathscr{M}_{H}$ and $\mathscr{M}_{C^{*} \#_{H}}$ are isomorphic.
(ii) The categories \mathscr{M}_{H}^{C} and $C_{C^{*}{ }_{H}} \mathscr{M}$ are isomorphic.

Proof. (i) Let N be a right $C^{*} \# H$-module. By Lemma 2.5(ii), N is a left H-module and C^{*} acts weakly on N to the right such that (2.17) and (2.18) hold. Then N becomes a right H-module with $n h=S^{-1}(h) \triangleright n$ for all $n \in N, h \in H$, and if we define

$$
\rho_{N}(n)=\sum c_{i} \otimes n c^{i}
$$

then we can easily check that N is a left $[C, H]$-Hopf module.
Conversely, if $N \in^{C} \mathscr{M}_{H}$ then N is a left H-module with $h \triangleright n=n S(h)$ and C^{*} acts weakly on N to the right by $n c^{*}=\sum c^{*}\left(n_{[-1]}\right) n_{[0]}$ such that the conditions (2.17) and (2.18) hold; therefore N is a right $C^{*} \# H$-module. The correspondence described above defines two functors that provide category isomorphisms.
(ii) Let N be a right $[C, H$]-Hopf module. So, N is a right H-module and hence a left H-module with $h n=n S^{-1}(h)$. Moreover, if we define

$$
c^{*} n=\sum c^{*}\left(n_{[1]} S^{-1}\left(S\left(x^{1}\right) \alpha x^{2} g^{1}\right)\right) n_{[0]} S^{-1}\left(x^{3} g^{2}\right),
$$

for all $c^{*} \in C^{*}, n \in N$ (where $f^{-1}=\Sigma g^{1} \otimes g^{2}$ is the element defined by (1.12)), then by computations similar to those in Proposition 2.7(ii) we can check that the conditions (2.15) and (2.16) hold and N becomes a left $C^{*} \# H$-module.

Conversely, let N be a left $C^{*} \# H$-module. If we define

$$
\rho_{N}(n)=\sum\left(g^{1} S\left(X^{2}\right) \alpha X^{3} \rightharpoonup c^{i} \# g^{2} S\left(X^{1}\right)\right) n \otimes c_{i},
$$

for all $n \in N$, then N becomes a right [C, H]-Hopf module with the H-module structure $n h=(1 \# S(h)) n$. By computations similar to those in Proposition 2.7(ii) we can check that the correspondence described above defines two functors (which act as the identity on morphisms) being inverse to each other.

Note that if H is finite-dimensional then C becomes a coalgebra in the tensor category ${ }^{H^{*}} \mathscr{M}$ with the same comultiplication and counit and with the H^{*}-comodule structure $c \mapsto \sum e^{i} \otimes c e_{i}$, where $c \in C$ and $\left\{e_{i}\right\}$ is a basis in H with dual basis $\left\{e^{i}\right\}$ in H^{*}. Under these circumstances, it was proved in [4] that the categories ${ }^{C} \mathscr{M}_{H}$ and \mathscr{M}_{H}^{C} are isomorphic to the categories of comodules over the smash coproduct $C \rtimes H^{*}$, namely ${ }^{C \rtimes H^{*}} \mathscr{I}$ and $\mathscr{M}^{C \rtimes H^{*}}$ respectively.

Now, let N be a right $[C, H$]-Hopf module and suppose that there exists a right H-module map $\Psi: C \rightarrow H$ with $\varepsilon \Psi=\varepsilon$. If we define $\bar{\Psi}: N \rightarrow N$ $\otimes H$ by

$$
\bar{\Psi}(n)=\sum n_{[0]} X^{1} \beta S\left(\Psi\left(n_{[1]}\right)_{1} X^{2}\right) \alpha \otimes \Psi\left(n_{[1]}\right)_{2} X^{3},
$$

for any $n \in N$, then $\bar{\Psi}$ is an H-module map with $\omega_{N} \bar{\Psi}=$ Id where $N \otimes H$ has the right H-module structure given via the multiplication on H. Therefore, N is a projective H-module since it is isomorphic to a direct summand on $N \otimes H$, a free H-module. We summarize this in the following:

Proposition 3.3. Let C be a right H-module coalgebra. Then the following statements are equivalent.
(i) C is a projective H-module.
(ii) There is a right H-module map $\Psi: C \rightarrow H$ with $\varepsilon \Psi=\varepsilon$,
(iii) Every object in \mathscr{M}_{H}^{C} is a projective H-module.

Finally, we dualize Theorem 2.11. Let C be a right H-module coalgebra. If H^{+}denotes the kernel of $\varepsilon: H \rightarrow k$ then it follows that $\Delta\left(C H^{+}\right) \subseteq$ $C H^{+} \otimes C+C \otimes C H^{+}$and $\varepsilon\left(C H^{+}\right)=0$, hence $\bar{C}=C / C H^{+}$has a unique coalgebra structure in \mathscr{M}_{H} such that the projection $p: C \rightarrow \bar{C}$ is a coalgebra map in \mathscr{M}_{H}. Let N be a right [C, H]-Hopf module. Then N is a right \bar{C}-comodule in \mathscr{M}_{H} via $(\operatorname{Id} \otimes p) \rho_{N}$ and $N H^{+}$is a \bar{C}-subcomodule of N (that is, $\left.(\operatorname{Id} \otimes p) \rho_{N}\left(N H^{+}\right) \subseteq N H^{+} \otimes \bar{C}\right)$. Thus $\bar{N}=N / N H^{+}$has a unique \bar{C}-comodule structure $\bar{\rho}: \bar{N} \rightarrow \bar{N} \otimes \bar{C}$ making the projection π : $N \rightarrow \bar{N}$ a \bar{C}-comodule map in \mathscr{U}_{H}. Note that we have

$$
\begin{equation*}
\pi(n h)=\varepsilon(h) \pi(n), \quad \text { for all } n \in N, h \in H \tag{3.6}
\end{equation*}
$$

Now, we need the following:
Definition 3.4. Let C be a right H-module coalgebra and $V \in \mathscr{M}_{H}^{C}$, $W \in^{C} \mathscr{M}_{H}$ with structure comodule maps ρ_{V}, ρ_{W} respectively. Then the cotensor product $V \square_{C} W$ is the equalizer of

$$
\underline{a}_{V, C, W}\left(\rho_{V} \otimes \mathrm{Id}\right), \quad \mathrm{Id} \otimes \rho_{W}: V \otimes W \rightarrow V \otimes C \otimes W
$$

that is, $\Sigma_{i} v_{i} \otimes w_{i} \in V \square_{C} W \subseteq V \otimes W$ if and only if

$$
\begin{equation*}
\sum_{i}\left(v_{i}\right)_{[0]} x^{1} \otimes\left(v_{i}\right)_{[1]} x^{2} \otimes w_{i} x^{3}=\sum_{i} v_{i} \otimes\left(w_{i}\right)_{[-1]} \otimes\left(w_{i}\right)_{[0]} \tag{3.7}
\end{equation*}
$$

It is not hard to see that $C \in^{\bar{C}} \mathscr{M}_{H}$ via $(p \otimes \mathrm{Id}) \Delta$. In these terms, if we define

$$
\theta: N \rightarrow \bar{N} \otimes C, \quad \theta(n)=\sum \pi\left(n_{[0]}\right) \otimes n_{[1]}
$$

then it is easy to see that $\theta(N) \subseteq \bar{N} \square_{\bar{C}} C$ and, moreover, that θ is a [C, H]-Hopf module map, where $\bar{N} \square_{\bar{C}} C$ is a right [C, H]-Hopf module via Id $\otimes \omega_{C}$ and $\operatorname{Id} \otimes \Delta$.

Now, we can generalize [5, Theorem 5]. The proof is similar, we just sketch it for the sake of the reader.

Theorem 3.5. Let C be a right H-module coalgebra. If there is a right H-module map $\Psi: C \rightarrow H$ which is a coalgebra map (as in the Hopf case) then for every right $[C, H]$-Hopf module N, the map θ defined above is an isomorphism of $[C, H]$-Hopf modules.

Proof. Define the map

$$
Q: N \rightarrow N, \quad Q(n)=\sum n_{[0]} \beta S\left(\Psi\left(n_{[1]}\right)\right),
$$

for all $n \in N$. Because Ψ is right H-linear, by (3.5) and (1.5), we have that $Q(n h)=\varepsilon(h) Q(n)$ for all $h \in H, n \in N$, hence Q vanishes on $N H^{+}$. Thus there is a map $\bar{Q}: \bar{N} \rightarrow N$ such that $\bar{Q} \pi=Q$.

In particular, if we define $Q_{0}: C \rightarrow C$ by $Q_{0}(c)=\sum c_{1} \beta S\left(\Psi\left(c_{2}\right)\right)$ then Q_{0} factors through \bar{C}, that is, there exists a map $\bar{Q}_{0}: \bar{C} \rightarrow C$ with $Q_{0}=\bar{Q}_{0} p$. Moreover, by (3.1), (1.6), and the hypothesis we have

$$
\begin{equation*}
\sum Q_{0}\left(c_{1}\right) \alpha \Psi\left(c_{2}\right)=c, \quad \text { for any } c \in C \tag{3.8}
\end{equation*}
$$

Now, let $\theta^{-1}: \bar{N} \square_{\bar{C}} C \rightarrow N, \theta^{-1}\left(\pi(n) \square_{\bar{C}} c\right)=\bar{Q}(\pi(n)) \alpha \Psi(c)$ for all $n \in N$ and $c \in C$. It follows that $\theta^{-1}\left(\pi(n) \square_{\bar{C}} c\right)=Q(n) \alpha \Psi(C)$ and by (3.4), (1.6), and the hypothesis we obtain that $\theta^{-1} \theta=\mathrm{Id}$.

Also, by (3.4) and (3.6), we have that

$$
\theta(Q(n) \alpha \Psi(c))=\sum \pi\left(n_{[0]}\right) \otimes Q_{0}\left(n_{[1]}\right) \alpha \Psi(c),
$$

for all $n \in N, c \in C$, thus, if we take $\pi(n) \square_{\bar{C}} c \in \bar{N} \square_{\bar{C}} C$, using (3.6), (3.7), and (3.8), we have that $\theta(Q(n) \alpha \Psi(c))=\pi(n) \otimes c$. Hence we have shown that $\theta \theta^{-1}$ is the identity on $\bar{N} \square_{\bar{C}} C$ and this finishes the proof.

ACKNOWLEDGMENTS

This paper was written while the first author was visiting the Limburgs Universitair Centrum, LUC (Belgium); he would like to thank LUC for its warm hospitality. The authors thank the referee for his helpful comments, which improved a first version of this paper. In particular, the suggestion for a new proof of Proposition 2.7 is due to the referee.

REFERENCES

1. D. Altschuler and A. Coste, Quasi-quantum groups, knots, three manifolds and topological field theory, Commun. Math. Phys. 150 (1992), 83-107.
2. D. Bulacu and F. Panaite, A generalization of the quasi-Hopf algebra $D^{\omega}(G)$, Comm. Algebra 26 (1998), 4125-4141.
3. D. Bulacu, F. Panaite, and F. Van Oystaeyen, Quasi-Hopf algebra actions and smash products, Commun. Algebra, to appear.
4. D. Bulacu and E. Nauwelaerts, Dual quasi-Hopf algebra coactions, smash coproducts, and relative Hopf modules, preprint, 1999.
5. Y. Doi, On the structure of relative Hopf modules, Commun. Algebra 11, No. 3 (1983), 243-255.
6. V. G. Drinfel'd, Quantum groups, In "Proc. International Congress on Math., Berkeley, 1986," p. 798.
7. V. G. Drinfel'd, Quasi-Hopf algebras and the Knizhnik-Zamolodchikov equations, In "Problems of Modern Quantum Field Theory" (A. Belavin et al., Eds.), Springer-Verlag, New York, 1990.
8. F. Hausser and F. Nill, Doubles of quasi-quantum groups, Commun. Math. Phys. 199 (1999), 547-589.
9. F. Hausser and F. Nill, Integral theory for quasi-Hopf algebras, preprint, math. QA/9904164.
10. C. Kassel, "Quantum Groups," Springer-Verlag, New York/Berlin, 1995.
11. R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75-94.
12. V. Lyubashenko, Modular transformation for tensor categories, J. Pure Appl. Algebra 98, No. 3 (1995), 279-327.
13. S. Majid, "Foundations of Quantum Group Theory," Cambridge Univ. Press, Cambridge, UK, 1995.
14. S. Montgomery, "Hopf Algebras and Their Actions on Rings," CBMS Regional Conference Series, Vol. 82, American Math. Society, Providence, RI, 1993.
15. M. E. Sweedler, "Hopf Algebras," Benjamin, New York, 1969.

[^0]: ${ }^{1}$ This research was performed in the framework of the cooperative project "Hopf Algebras and (co) Galois Theory" supported by the Flemish and Romanian Ministries of Research.

