Conclusions: BLEEDRS – an adapted simplification of HASBLED score predicts major bleeding events after PCI.

TCT-555

Release of Bioactive Lipids During Percutaneous Coronary, and Peripheral Arterial Interventions in Humans: Lipidomic analysis of Distal Embolic Protection Devices

Amir Ravandi1, Gregory Leibundgut2, Patrick He3, Anand Prasad4, Brian Kolski5, Bahram Khadivi6, Mitul Patel7, Ehtisham Mahmud8, Yury Miller9, Edward Dennis1, Joseph Witztum1, Sotirios Tsimikas7

1Institute of Cardiovascular Sciences, Winnipeg, Manitoba. 2The Heart Center, Freiburg, Germany. 3University of California San Diego, La Jolla, CA, 4University of Texas Health Science Center at San Antonio, San Antonio, TX, 5University of California, San Diego, San Diego, CA

Background: Oxidation of lipoproteins generates multiple bioactive oxidized lipids that affect atherothrombosis and endothelial dysfunction, but direct evidence of their role during therapeutic procedures is lacking. Liberated oxidized lipids may result in no-reflow phenomenon, myocardial infarction and stroke. To assess whether oxidized vasoactive lipids are released downstream from atherosclerotic plaques following percutaneous coronary and peripheral interventions we undertook a lipidomic analysis of material recovered from distal embolic protection devices from different vascular beds.

Methods: The presence of specific oxidized lipids was assessed in embolized material captured by distal embolic protection devices during saphenous vein graft, coronary, renal, and superficial femoral artery interventions. Following lipid extraction, specific oxidized phospholipids (OxPL) and cholesterol esters (OxCE) were quantified in 12 filters using liquid chromatography, tandem mass spectrometry.

Results: Phosphatidylcholine (PC) containing OxPL, including 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), C9 aldehyde PC, E2 and F2 isoprostane PC, and hydroperoxyl PC were identified in the extracted lipid portion. The major oxidized PC by mass was the C9 aldehyde PC, representing 38% of all oxidized PL. Several species of OxCE, such as aldehyde, hydroperoxide, oxide and epoxy cholesterol ester derivatives from cholesterollinoleate and cholesterol arachidonate, were also present. The pattern of OxPL and OxCE within filters correlated well with molecules found in various forms of oxidized LDL and did not differ significantly in different vascular beds. The presence of OxPL was also confirmed using ELISA and immunohistochemistry.

Conclusions: This is the first documentation of the presence and direct release of oxidized lipids from atherosclerotic plaques during percutaneous interventions from multiple vascular beds in humans. The release of such oxidized lipids into the microcirculation may mediate some of the adverse clinical outcomes that result during these intravascular interventions.

TCT-556

The Incidence and outcome of devices “stuck” in the coronary artery during percutaneous coronary intervention - A Toyohashi Experience

Masashi Kimura1, Yasushi Asakura1, Yoshihisa Kinoshita2, Taro Kurita3, Kenya Nasu4, Takahiko Sazaki5, Tomohiko Teramoto6, Mitsuyasu Terashima7, Etsuo Tsuchikane8

1Toyohashi Heart Center, Toyohashi, Japan, 2Toyohashi Heart Center, Toyohashi, Aichi, 3Toyohashi Heart Center, Toyohashi, Aichi, Japan

Background: An intra-coronary device becoming “stuck” is a very uncommon complication that may lead to tragic consequences such as occlusion of the artery and systemic embolism.

Methods: Of 14,198 lesions in 13,188 patients who underwent PCI between 1999 and 2011, 40 “device stuck” (0.28%) incidents occurred during PCI procedures. The incidence, outcomes and management of these “device stuck” occurrences were evaluated.

Results: The overall procedural success rate was 97.8% (13,884/14,198). The stuck devices included stents (n=20; 50%), wires (n=14; 35%), balloons (n=4; 10%), intra-vascular ultrasound (n=1; 2.5%), and rotablator burrs (n=1; 2.5%), respectively. Management of the complication and acute/long-term outcomes are shown in the Table. Of 54 instances of “device stuck,” 15 (37.5%) were retrieved successfully, and 7 (18%) resulted in rupture and were left in the coronary artery. Thirty-seven patients recovered in the cath-lab and the rest (N=3) were referred to emergency CABG. At 1-year follow-up, all patients were alive, although the segment of the coronary artery where the “device stuck” occurred was occluded in 2 cases on agiographic findings.

Conclusions: Although the rate of this complication during PCI was very low, all cases were solved with optimal treatment and all patients survived at 1-year follow-up. A safe procedure with careful device manipulation should be required for PCI, with appropriate management leading to better outcomes.

<table>
<thead>
<tr>
<th>CRUSADE bleeding risk score</th>
<th>Non-bleeders</th>
<th>Bleeders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low risk</td>
<td>399 (88.9%)</td>
<td>50 (21.1%)</td>
</tr>
<tr>
<td>Low risk</td>
<td>230 (75.9%)</td>
<td>73 (24.1%)</td>
</tr>
<tr>
<td>Moderate risk</td>
<td>95 (69.3%)</td>
<td>42 (30.7%)</td>
</tr>
<tr>
<td>High risk</td>
<td>39 (65.0%)</td>
<td>21 (35.0%)</td>
</tr>
<tr>
<td>Very high risk</td>
<td>5 (31.3%)</td>
<td>11 (68.8%)</td>
</tr>
</tbody>
</table>

In-hospital major bleeding in CRUSADE bleeding risk score categories