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Why We Think Plasticity Underlying Viewpoint
Pavlovian Fear Conditioning
Occurs in the Basolateral Amygdala

in the ABL is temporarily disrupted only during learning.
Each of these conditions has been satisfied.
Destruction of the ABL before Training
Prevents Learning
Lesions of the amygdala produce a pronounced and
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Activation of the brain’s fear system transforms an ani- 1996). Lesions restricted to the ABL even a month after
mal into an effective defender against environmental training eliminate conditional fear responses, which is
threat (e.g., Bolles, 1970; Bolles and Fanselow, 1980; consistent with the idea that the ABL plays a role in
Fanselow, 1994; LeDoux, 1996). The fear system has been the long-term storage of information relevant to fear
most systematically explored using Pavlovian fear con- conditioning (Lee et al., 1996; Maren et al., 1996b). Since
ditioning, a procedure in which emotionally neutral stim- lesions made both a week before training and a month
uli that occur in connection with harmful or otherwise after training have similarly devastating effects, the re-
aversive events acquire the capacity to elicit defensive sults cannot be explained by reference to consolidation
responses. In laboratory studies, the aversive event, typ- processes that occur immediately after training (Maren
ically footshock, is called the unconditional stimulus (US) et al., 1996b).
and the neutral stimulus the conditional stimulus (CS). When assessing the effects of brain damage on condi-

Many investigators, including the authors of this pa- tional fear or any other learning and memory task, it is
per, have argued that neural plasticity occurring within important to ask whether the lesion interferes with the
the basolateral complex of the amygdala (ABL) encodes associative or nonassocicative aspects of the task. The
the emotional component of the memories formed during former are attributable to the learned relation between
fear conditioning (LeDoux, 1996; Maren and Fanselow, the CS and the US, whereas the latter are simply due
1996; Davis, 1997). It has also been suggested that the to the sensitizing or arousing effects of the US. The use
ABL modulates the consolidation of memories formed of proper control procedures allows these factors to be
in other brain regions (Cahill and McGaugh, 1998). There separated (e.g., Rescorla, 1967). For example, lesions
is nothing inherently exclusive about these two posi- of the lateral amygdala (part of the ABL) reduce freezing
tions. The ABL may acquire and store information about and blood pressure responses elicited by the CS to the
the aversive experiences that activate it, and one effect same level as that seen in a nonassociative control group
of this may be the enhancement of memory consolida- trained with unpaired CS–US presentations (LeDoux et al.,
tion in other brain areas that represent and store dif-

1990). This suggests that such lesions do not interfere
ferent (nonemotional) aspects of the experience. How-

with the ability to perceive the CS and US or to express
ever, one version of the modulatory view argues that

fear responses, but instead interfere with the ability to
the amygdala only modulates memories stored in other

form an association between the CS and the US.brain regions and has no direct role in acquiring or stor-
Vazdarjanova and McGaugh (1998) recently reporteding memories (Cahill and McGaugh, 1998; Vazdarjanova

that ABL lesions virtually eliminated freezing but onlyand McGaugh, 1998). In the following discussion, we
partially disrupted the rats’ preference for one compart-argue that the available evidence suggests the amyg-
ment of a 3-arm maze where shock did not occur. Whiledala learns and stores information about fear-arousing
Vazdarjanova and McGaugh interpret the residual avoid-events but also modulates storage of other types of
ance of the shocked arm in ABL-lesioned animals asinformation in different brain regions.
evidence of undisrupted fear conditioning, there is an
important caveat to the interpretation of this data. SinceEvidence for Encoding
their experimental design does not produce condition-In order for the ABL to be identified as a site of memory
ing-specific avoidance of the shocked arm in the sham-encoding and storage, several conditions would have to
operated control animals, one cannot assess associa-be satisfied. First, destruction of the ABL before training
tively based fear responses in the ABL-lesioned rats.should prevent learning, whereas lesions made after

While many of the lesion studies in the literature thattraining should prevent retention of fear memory. Sec-
have implicated the ABL in fear conditioning have usedond, neural activity in the ABL should be modified by
freezing behavior as the measure, other indices of fearexperience and specifically should change during the
have been used as well. These include potentiated star-learning process as the memory is established. This
tle, heart rate, hypertension, analgesia, ultrasonic vocal-altered activity should manifest itself during testing of
ization, and defecation (Kapp et al., 1979; LeDoux et al.,fear. Third, learning should not occur if neural activity
1988; Davis, 1992; Helmstetter, 1992; Fanselow, 1994;
Goldstein et al., 1996). Damage restricted to the ABL‡ To whom correspondence should be addressed (e-mail: fanselow@

ucla.edu). has been shown to prevent conditioning for several of
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these responses, including hypertension and potenti- Huang and Kandel, 1998). However, the involvement of
presynaptic neurons does not mean that the essentialated startle as well as freezing. For many of these mea-

sures, unconditional responses (responses elicited by plasticity occurred in the thalamus or cortex rather than
in the ABL. Presynaptic plasticity involves synapses thatthe US) are unaffected by lesions of the ABL or other

amygdala areas, demonstrating that the effects of amyg- are located in the terminal region. Further, to the extent
that the physiological changes that occur in the ABLdala damage on conditional and unconditional responses

can be dissociated. This indicates that the ABL is not during conditioning are associative in nature (Quirk et
al., 1995; Rogan et al., 1997), and to the extent thatrequired for the expression of responses in these modal-

ities per se but instead for the engagement of these associative plasticity involves interactions between pre-
and postsynaptic neurons (Hebb, 1949; Brown et al.,modalities by conditional fear stimuli. This conclusion is

also supported by the studies described above showing 1988), then postsynaptic cells in the amygdala must be
involved in the learning, even if there is a presynapticthat, following ABL lesions, nonassociative freezing and

blood pressure responses elicited by the CS are intact component to the plasticity. Indeed, although Huang
and Kandel’s (1998) data suggested that LTP in ABL(LeDoux et al., 1990).

Nevertheless, for Pavlovian conditional fear responses slices was expressed presynaptically, they demon-
strated that induction of this plasticity depended onelicited by a conditional fear stimulus, it is true that the

ABL is required to mediate between the sensory world postsynaptic activation.
In some studies, neural activity was found to increaseand motor effectors. As a result, lesion studies alone

cannot provide complete justification for the view that during early training but then “reset” as training contin-
ued (Quirk et al., 1997). The firing rate thus goes upthe ABL is involved in learning, since the same lesion

that prevents the acquisition of the association will also initially and then goes back down. While this might be
viewed as evidence for a time-limited role of the ABLprevent the behavioral expression of that learning. How-

ever, when the lesion results are combined with other (Cahill and McGaugh, 1998), three additional points need
to be considered. First, while the average of all cellsconvergent lines of evidence, the case is substantially

strengthened. shows a tendency for the ABL to reset, cells that do
and that do not reset contribute to this average. Thus,Neural Activity Changes in ABL during Learning

as the Memory Is Established some cells in the ABL continue to express the learned
change throughout acquisition. Second, many of theFear conditioning induces changes in the electrophysio-

logical responses of cells in the ABL. Thus, the response cells that reset during late training exhibited evidence
of having been modified when learning was tested afterof cells in the ABL to a tone CS, or to electrical stimula-

tion of pathways that transmit CSs to the ABL, is en- training was complete. That is, the cells responded at
the higher, conditional rate when the shock was termi-hanced following Pavlovian fear conditioning (e.g., Quirk

et al., 1995, 1997; McKernan and Shinnick-Gallagher, nated and performance tested to the CS alone. Similarly,
in studies of functional activation in the human brain1997; Rogan et al., 1997). Further, plasticity, in the form

of long-term potentiation (LTP), occurs in the CS pathways during fear conditioning, amygdala activity increases in
early training, resets as training continues, and then isto the ABL (Clugnet and LeDoux, 1990; Maren and

Fanselow, 1995; Huang and Kandel, 1998; M. G. Weiss- expressed at the higher conditional level when testing
in the absence of the US starts (Buchel et al., 1998;kopf and J. E. LeDoux, 1998, Soc. Neurosci., abstract).

Particularly significant is the fact that fear conditioning LaBar et al., 1998). The amygdala’s role is not temporary.
Third, functional connections develop between ABLand LTP induction produce very similar changes in neu-

ral activity and that these track the emergence of behav- cells during training, allowing the memory to be encoded
by the timing between spikes in addition to being en-ioral fear responses (Rogan et al., 1997).

Neural activity has also been shown to change during coded by increases in spiking (Quirk et al., 1995). Tem-
poral coding may constitute an important memoryfear conditioning in sensory structures afferent to the

amygdala, such as the auditory cortex and auditory thal- mechanism in the ABL, one that is overlooked by mea-
sures of firing rate.amus (e.g., Weinberger, 1995; Quirk et al., 1997; Armony

et al., 1998), raising the possibility that the essential Disruption of Neural Activity during Learning
Prevents Learningplasticity occurs in these areas. However, plastic changes

develop in fewer trials in the ABL than in the auditory The neural recordings add considerably to the encoding
view, suggesting that ABL is plastic during training.cortex (Quirk et al., 1997), and lesions of the amygdala

that include the ABL eliminate aspects of cortical plas- While such findings are correlational rather than causal,
additional findings show that neural activity in ABL dur-ticity (Quirk et al., 1997; Armony et al., 1998). Although

studies have not been performed comparing plasticity ing acquisition is required for fear conditioning. This
evidence comes from studies in which the ABL is phar-in the auditory thalamus with the amygdala, findings to

date from the cortical studies suggest that plasticity in macologically manipulated temporarily during training.
For example, Gewirtz and Davis (1997) found that acqui-sensory areas depends on the amygdala rather than the

other way around. sition of second-order fear conditioning was blocked by
pretraining infusion into the ABL of AP5, a drug thatSince LTP in the ABL interacts with paired-pulse facili-

tation in vivo, Maren and Fanselow (1995) suggested blocks NMDA receptors. Test performance to the first-
order stimulus, which was trained in the absence of thethat this form of LTP was expressed presynaptically.

More recent studies using in vitro brain slices are consis- drug, was actually enhanced. Further, Muller et al. (1997)
infused the GABA agonist muscimol into the ABL imme-tent with the idea that presynaptic terminals of thalamic

and cortical afferents in the amygdala participate in syn- diately prior to training. This drug increases inhibition
and thereby functionally inactivates the infused area.aptic plasticity (McKernan and Shinnick-Gallagher, 1997;
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When tested drug free, the rats showed no evidence of possible that the ABL, while essential, is also part of a
distributed network that encodes the fear memory. Forhaving been conditioned.

When drugs are infused into the amygdala before example, as noted, there is compelling evidence that
plastic changes occur in regions that are afferent to thetraining, the drug will affect processes that occur both

during and after training. This is important, since it is ABL, such as thalamic and cortical sensory systems
that process CSs (see Weinberger, 1995). Additionally,well established that posttraining infusion of drugs into

the ABL can affect the memory for tasks that depend cortical areas that are both afferent and efferent to the
ABL (e.g., perirhinal cortex, the hippocampal formation,on the hippocampus or striatum (e.g., Packard et al.,

1994). However, Maren et al. (1996a) found that while and sensory cortex) may participate with the ABL in the
long-term encoding of fear. It remains for future researchimmediate pretraining infusion of AP5 into the ABL

blocked acquisition of conditional fear, immediate post- to determine whether these distributed representations
exist and, if so, to unravel their nature.training infusion of the same drug had no effect. Simi-

larly, A. E. Wilensky et al. (1998, Soc. Neurosci., abstract)
injected muscimol into the ABL immediately before or
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