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Abstract Xyloglucan endotransglucosylase/hydrolase (XTH)
has been recognized as a cell wall-modifying enzyme, participat-
ing in the diverse physiological roles. From water-stressed hot
pepper plants, we isolated three different cDNA clones
(pCaXTH1, pCaXTH2, and pCaXTH3) that encode XTH
homologs. RT-PCR analysis showed that three CaXTH mRNAs
were concomitantly induced by a broad spectrum of abiotic stres-
ses, including drought, high salinity and cold temperature, and in
response to stress hormone ethylene, suggesting their role in the
early events in the abiotic-related defense response. Transgenic
Arabidopsis plants that constitutively expressed the CaXTH3
gene under the control of the CaMV 35S promoter exhibited
abnormal leaf morphology; the transgenic leaves showed variable
degrees of twisting and bending along the edges, resulting in a se-
verely wrinkled leaf shape. Microscopic analysis showed that
35S-CaXTH3 leaves had increased numbers of small-sized cells,
resulting in disordered, highly populated mesophyll cells in each
dorsoventral layer, and appeared to contain a limited amount of
starch. In addition, the 35S-CaXTH3 transgenic plants dis-
played markedly improved tolerance to severe water deficit,
and to lesser extent to high salinity in comparison with the
wild-type plants. These results indicate that CaXTH3 is func-
tional in heterologous Arabidopsis cells, thereby effectively alter-
ing cell growth and also the response to abiotic stresses.
Although the physiological function of CaXTHs is not yet clear,
there are several possibilities for their involvement in a subset of
physiological responses to counteract dehydration and high salin-
ity stresses in transgenic Arabidopsis plants.
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by Elsevier B.V. All rights reserved.
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1. Introduction

During their entire life cycle, higher plants routinely encoun-

ter various environmental stresses. Drought, high salinity, hea-

vy metals, and extreme temperatures are common abiotic

stresses, which impair the growth and development of soil

plants. [1,2]. The molecular and cellular processes underlying

the acclimation of higher plants to abiotic stresses have at-

tracted much interest, as environmental stress conditions result

in the seriously loss of crop production in many parts of the

world [3,4]. Using molecular and genetic approaches, a large

and increasing number of genes induced by abiotic stresses have

been identified recently [3,5–9]. In addition, signal transduction

pathways and cellular events that occur under such unfavorable

growth conditions have been widely documented [10–12]. Nev-

ertheless, our understanding about the cellular functions of

stress-inducible genes with regard to either stress tolerance or

sensitivity in crop plants is still rudimentary. Thus, it is crucial

to study the functions of stress-related genes to understand the

molecular mechanisms of stress tolerance in crop plants.

Hot pepper (Capsicum annuum L.) is a solanaceous species

that is closely related to tobacco. It is one of the most econom-

ically important crops and cultivated widely in East Asia for its

hot-tasting fruits. We are interested in elucidating the adaptive

response of hot pepper plant in response to abiotic stresses,

such as water deficit. Previously, we have isolated and charac-

terized a broad spectrum of cDNAs from hot pepper plants

whose expression is enhanced rapidly in response to dehydra-

tion [13–15]. Among the identified cDNAs, pCa-DI1, pCa-DI2

and pCaDI3 encode partial proteins that are homologous to

xyloglucan endotransglucosylase/hydrolase (XTH) enzymes

[14]. In the present study, we have isolated three different

full-length Ca-DI cDNA clones, renamed CaXTHs for C. ann-

uum XTH homologs, and analyzed the detailed expression pat-

tern of their mRNAs in response to various abiotic stresses

and plant hormone. We also present results indicating that

over-expression of CaXTH3 markedly improves tolerance to

drought and also confers increased tolerance to high salinity

in transgenic Arabidopsis plants.
2. Materials and methods

2.1. Plant materials and application of various stresses
Dry hot pepper seeds (C. annuum cv. Pukang) were soaked once with

70% ethanol and then rinsed extensively with sterilized water. Seedlings
were grown in a mixture of soil and vermiculite or on MS medium
blished by Elsevier B.V. All rights reserved.
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containing 1% sucrose, B5 vitamin (12 mg/l), and 0.8% agar (pH 5.8) in
a 25 �C-growth chamber with a 16-h-light/8-h-dark photoperiod. Hot
pepper plants were subjected to various abiotic stresses, such as
drought, high salinity and clod as described [14]. For ethylene treat-
ment, intact plants were enclosed for various periods in 3-liter jars con-
taining air or air plus 50 ll/l of ethylene as described previously [16].

2.2. RNA isolation and RNA gel blot analysis
Total RNAs of hot pepper and transgenic Arabidopsis plants were ob-

tained as described by Mang et al. [17] and Lee et al. [18], respectively.
The total RNAs were precipitated overnight at 4 �C by the addition of
0.3 vol. 10 M LiCl and then precipitated in ethanol. The RNA gel blots
were hybridized to various 32P-labeled cDNA probes for CaXTH1,
CaRCI and CaPINII under normal stringent hybridization and wash-
ing conditions. The blot was washed and visualized by autoradiography
at�80 �C using Kodak XAR-5 film and an intensifying screen. Hybrid-
ization signals were quantified with a PhosphorImager (Fuji).

2.3. Reverse transcriptase-polymerase chain reaction
Reverse transcriptase-polymerase chain reaction (RT-PCR) was per-

formed in a total volume of 25 ll containing 1 ll of the first strand cDNA
reaction products, 1 lM gene-specific primers (Table 1), 10 mM Tris (pH
8.0), 50 mM KCl, 1.5 mM MgCl2, 0.01% gelatin, 200 lM deoxynucleo-
tides and 2.5 units of Taq polymerase (Promega, Madison, WI, USA).
Twenty-five thermal cycles were carried out, each consisting of 45 s at
95 �C, 1 min at 60 �C, and 90 s at 72 �C in an automatic thermal cycler
(Perkin–Elmer/Cetus, Norwalk, CT, USA). PCR products were sepa-
rated on a 1% agarose gel and then visualized under UV light.

2.4. Generation of the 35S-CaXTH3 construct and transformation of

Arabidopsis
The full-length pCaXTH3 cDNA was inserted into the correspond-

ing sites of the binary vector pBI121. The fusion gene construct was
transferred to Agrobacterium tumefaciens strain AGL1 by electropora-
tion, as described previously [19]. Arabidopsis transformation was
accomplished by the floral dip method [20]. The seeds collected from
the plants were selected on a 0.5· MS plate containing 25 mg/l kana-
mycin to obtain independent transgenic lines. The presence of the
transgene was confirmed by PCR and genomic Southern blot analysis.
Homozygous T4 lines were obtained by further self-crossing according
to Joo et al. [19] and used in this study.

2.5. Histochemical analysis
Mature leaves of four-week-old wild-type and transgenic Arabidop-

sis plants were harvested at 10:00 AM of the 16-h-light/8-h-dark pho-
toperiod for histochemical analysis and iodine staining experiment.
Light microscopy and transmission electron microscopy (TEM) on
transgenic Arabidopsis leaves were performed as described [21].

2.6. Measurement of root length of wild-type and transgenic Arabidopsis

seedlings
Wild-type and transgenic Arabidopsis seeds were surface-sterilized

and plated on 0.8% agar plates (select agar; Life Technology, Rock-
ville, MD, USA) containing 0.5· MS salts, 0.5 mM MES, pH 5.7,
Table 1
Primer sequences used in the RT-PCR analysis

Gene
name

Accession
Number

Primer sequence

CaXTH1 DQ439860 50-ATCCCATTTCATCTTCAAATTAAAGC-30

50-GGGGAAATGATTTATTGTTATTTCG-30

CaXTH2 DQ439861 50-CTATGCCCGGCAGCTTGGGCTGAA-30

50-GACAACATTAGTAAACTCAATCC-30

CaXTH3 DQ439862 50-GTGGGCTGAGAATTTTTACCAAGAT-30

50-GGCAAGAAAACCATTCATTGTTATTTTCTA-3

Actin AY572427 50-ACTCTTAATCAATCCCTCCACC-30

5 0-CTGTATGACTGACACCATCACC-30
0

1% sucrose, and 1· vitamin B5. To test root growth, vertically oriented
agar plates containing 4-day-old seedlings were incubated at 22 �C in a
16-h-light/8-h-dark cycle for 6 days in the absence or presence of NaCl
(50–100 mM). During incubation, the advancing root tips were re-
corded using a marker pen on the outside of the plates, and the image
of the marked plate was scanned using ScionImage software (Scion
Corp., Frederic, MD, USA).

2.7. Germination assay
For germination assay, wild-type and transgenic seeds collected at

the same time were used. Germination ratio was monitored in the ab-
sence or presence of various concentrations of NaCl (50–100 mM) or
ABA (0.1–1 lM).

2.8. De-colorization and staining for starch with an iodine solution
Mature leaves from wild-type and transgenic plants were decolorized

and stained for starch with an iodine solution as described by Zeeman
et al. [22].
3. Results

3.1. Isolation and identification of the full-length CaXTH

cDNAs

With the aid of subtractive hybridization and differential dis-

play PCR analyses, we previously isolated a broad spectrum of

partial cDNA clones from hot pepper seedlings, which were

rapidly induced by water deficit [13–15]. Among the identified

clones, three different cDNA clones, pCa-DI1, pCaDI2, and

pCaDI3, encoded partial polypeptides homologous to XTHs

in various plant species [14]. Southern blot analysis on hot pep-

per genomic DNA showed that there exist at least 5–6 bands

that hybridize differentially with the pCa-DI1 probe [14],

which is consistent with previous results that XTH is encoded

by a closely related gene family in tomato [23,24], Arabidopsis

[25] and rice [26,27]. Similar patterns of hybridization was also

observed with pCa-DI2 and pCa-DI3 probes, respectively [14].

Thus, it is most likely that homologous Ca-DI1, Ca-DI2 and

Ca-DI3 genes are not cloning artifact, but they are indeed a

gene family encoding the hot pepper XTH enzymes. Thus,

these clones were renamed CaXTH, for C. annuum XTH

homologs, and used to isolate full-length pCaXTH cDNA

clones. The partial cDNA fragments, pCa-DI1, pCaDI2, and

CaDI3, were radioactively labeled, mixed together, and then

used as probes to screen the lambda uni-Zap II cDNA library

constructed from water-stressed leaves of hot pepper plants.

Numerous putative CaXTH cDNA clones were isolated. Sub-

sequent restriction enzyme mapping and DNA sequencing

analysis revealed that these clones represented three distinct

CaXTH sequences. Fig. 1A shows the restriction map analysis

of pCaXTH1, pCaXTH2 and pCaXTH3, which contain the

longest insert among each homology class. All three clones

were completely sequenced. The pCaXTH1 clone (GenBank

Accession No. DQ439860) is 1142 bp long and encodes

287 amino-acids, pCaXTH2 (GenBank Accession No.

DQ439861) is 1106;bp long and encodes 288 amino-acids,

and pCaXTH3 (GenBank Accession No. DQ439862) is

1088 bp in length and encodes 287 amino-acids (Fig. 1A and

B). The deduced amino-acid sequence identity between

CaXTH1 and CaXTH2 is 94%, between CaXTH1 and

CaXTH3 is 96%, and between CaXTH2 and CaXTH3 is

94%. These results indicate that the hot pepper CaXTH gene

family is highly conserved, with CaXTH1 and CaXTH3 being

the more homologous members of this gene family (Fig. 1B).



Fig. 1. Sequence analysis of hot pepper CaXTH homologs. (A) Restriction enzyme map analysis of the hot pepper CaXTH cDNA clones. Solid bar
depicts the coding region. Solid lines represent 5 0- and 3 0-untranslated regions. The positions of gene-specific primers used for RT-PCR are indicated.
The sequences of pCaXTH1, pCaXTH2, and pCaXTH3 have been deposited in the GenBank database under Accession Nos. DQ439860, DQ439861
and DQ439862, respectively. (B) Comparison of the derived amino-acid sequence of hot pepper CaXTH homologs with those of the tomato (tXET-
B1 and tXET-B2) [23,24], potato (xth1) (Genbank Accession No. CAJ77496), Arabidopsis (At-XTH15 and At-XTH22) [25], rice (OsXET_C) [26,27]
and tobacco (NtXET_C) [28]. Amino-acid residues that are conserved in at least seven of the ten sequences are shaded, whereas amino-acids that are
identical in all ten proteins are shown in black. Dashes show gaps in the amino-acid sequences that were introduced to optimize alignment. (C)
Phylogenetic relationship of XTHs from various plant species.
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In addition, CaXTH genes exhibit a considerable degree of se-

quence identity when compared with XTH genes from tomato

(tXET-B1 and tXET-B2, 90–92%) [23,24], Arabidopsis (At-

XTH15 and At-XTH22, 60–61%) [25], potato (xth1, 92–93%)

(Genbank Accession No. CAJ77496), tobacco (NtXET_C,

46–47%) [28] and monocot rice (OsXET_C, 61–62%) [26,27]

plants (Fig. 1B and C).

3.2. The CaXTH genes are induced concomitantly in response to

drought, high salinity, cold temperature and ethylene in hot

pepper plants

From the results described above, it appears that three

homologous pCaXTH cDNAs are expressed in water-stressed

leaves of hot pepper plants. This raises the possibility that the

CaXTH gene family is expressed coordinately in response to

abiotic stresses. To investigate this possibility, their mRNA

accumulation profiles were monitored under various abiotic

stress conditions. As a first step, two-week-old light-grown

hot pepper plants harvested from agar plates were dehydrated

on Whatman 3MM filter paper at room temperature and

approximately 60% humidity under dim light. The degree of

water stress was determined by the decrease in the fresh weight

of the plants. Total RNAs were then prepared from the treated

tissues after increasing exposure times, and the changes in stea-
Fig. 2. Induction kinetics of CaXTHs in response to conditions of environm
primer. Three different gene-specific primers for CaXTH1, CaXTH2 and Ca
specificity was tested for PCR analysis. (B–E) Light-grown two- or four-week
weight) (B), NaCl (200 mM) (C), cold temperature (4 �C) (D), or plant hor
indicated time points and total RNAs were isolated. Total RNAs (20 lg) wer
blotted to a Hybond-N nylon membrane. To ensure equal loading of the RN
confirm complete transfer of RNA to the membrane filter, both gel and m
hybridized with 32P-labeled pCaXTH1, pCaRCI or pCaPINII under norm
individual induction pattern of the CaXTH genes, three different gene-specific
dy-state level of mRNAs were monitored by RNA gel blot

analysis using 32P-labeled pCaXTH1 as a probe under normal

stringent conditions, or by RT-PCR using gene-specific prim-

ers (Fig. 2A and Table 1). The results of RT-PCR show that

the low, basal levels of the transcripts (�1.2 kb) corresponding

to CaXTH1, CaXTH2 and CaXTH3, respectively, begin to ele-

vate concomitantly in response to a 5% water loss (Fig. 2B).

Although this increase was seen in both leaf and root tissues,

the induction kinetics of the transcripts were distinct in differ-

ent plants parts. The expression of CaXTH mRNAs attained a

maximal level at 10–15% water loss, and thereafter decreased

in leaf tissue, whereas a high level of the CaXTH transcripts

was still evident after more severe water loss (20–30%) in root

tissue (Fig. 2B). Next, the expression profiles of CaXTHs were

investigated under salt stress. Rapid induction of all three

CaXTH transcripts was clearly detected after a 10-min treat-

ment of the root tissue with 200 mM NaCl (Fig. 2C). This

marked increase in mRNA level was continuously maintained

for at least 1 h, and subsequently declined. The Ca-RCI gene,

an Arabidopsis RCI2A homolog, was included in the RNA

expression experiments to act as a positive control for salt

stress [14]. Its mRNA began to accumulate in root tissue at

1 h, attained a maximal level at 3 h, and thereafter declined,

strongly suggesting that induction of CaXTHs was not an
ental stress in hot pepper plants. (A) Specificity of each gene-specific
XTH3 were constructed as shown in Fig. 1A and Table 1, and their
-old hot pepper plants were subjected to drought (0–30% loss of fresh
mone ethylene (50 ll/l) (E). The treated tissues were harvested at the
e separated by electrophoresis on a 1%-formaldehyde–agarose gel and
A, the gel was stained with ethidium bromide after electrophoresis. To
embrane were viewed under UV light after transfer. The filter was
al stringent hybridization and washing conditions. To monitor the
primers for CaXTH1, CaXTH2 and CaXTH3 were used for RT-PCR.
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experimental artifact but specific to NaCl treatment (Fig. 2C).

Likewise, cold temperature (4 �C) also coordinately enhanced

CaXTH gene expressions in the light-grown, 7-day-old seed-

lings during 4–24 h treatment (Fig. 2D). As a next experiment,

intact hot pepper seedlings were enclosed in 3-liter jars con-

taining 50 ll/l of ethylene. As indicated in Fig. 2E, ethylene

effectively upregulated three CaXTHs in leaf tissue. The Ca-PI-

NII gene, a proteinase inhibitor II homolog, was also rapidly

induced upon ethylene treatment. Thus, these results demon-

strate that the CaXTH gene family is concomitantly activated

in response to a broad spectrum of abiotic stresses in hot pep-

per plants, indicating their roles in the early events in the abi-

otic-related defense response.

3.3. Phenotypic analysis of CaXTH3 over-expressing transgenic

Arabidopsis plants

To address the cellular function of the CaXTH gene family,

we attempted to establish transgenic hot pepper plants that

constitutively expressed the CaXTH genes. Unfortunately, this

approach turned out to be unsuccessful due to the technical

difficulties. Transformation and regeneration yield was extre-

mely low so that we could not obtain the enough independent

transgenic lines. Therefore, we constructed transgenic Arabid-

opsis plants that over-expressed CaXTH3 under the control of

the CaMV 35S constitutive promoter. Numerous independent

T4 transgenic lines that exhibited enhanced levels of the

CaXTH3 transcript under normal growth conditions were cho-

sen for further analysis (Fig. 3A). Fig. 3B shows the morpho-

logical comparison of 35S-CaXTH3 and wild-type plants.

During our search for phenotypic differences, we observed that
Fig. 3. Molecular characterization and phenotype of CaXTH3 over-
expressing transgenic Arabidopsis plants. (A) RT-PCR analysis of the
four-week-old wild-type and independent 35S-CaXTH3 transgenic
lines. (B) Morphological comparisons of the four-week-old wild-type
and CaXTH3 over-expressing lines under normal growth conditions.
the majority of independent 35S-CaXTH3 plants displayed

abnormal leaf morphology; the transgenic leaves showed var-

iable degrees of twisting and bending along the edges, resulting

in a severely wrinkled leaf shape (Fig. 3B). As shown in

Fig. 3B, the aberrant morphology generally appeared in early

development of leaves.

The detailed cellular phenotype was further investigated by

comparing transverse leaf sections of wild-type and 35S-

CaXTH3 Arabidopsis plants. The control leaves had a typical

leaf structure of dicotyledonous plants with distinct adaxial

and abaxial epidermal layers (Fig. 4A). In the 35S-CaXTH3

(transgenic line #14) leaves, a dorsoventral organization was

also maintained. However, the transgenic leaves had increased

numbers of small-sized cells, resulting in disordered, highly

populated cells in each layer, as compared with wild-type

leaves (Fig. 4A). This phenotype was also observed in trans-

genic lines #5 and #24 (data not shown). The leaf cells were

further investigated by TEM. As shown in Fig. 4B-2, the gen-

eral structure of cell wall in the 35S-CaXTH3 mesophyll cells

appeared to be comparable to that in control cells. A unique

phenotype specific for CaXTH3 over-expressing cells was a

marked decrease in starch formation. Fig. 4B-4 revealed that

starch granule was almost undetectable in the chloroplasts of

35S-CaXTH3 leaf cells, whereas control cells exhibited well-or-

ganized starch granules in stroma region of chloroplast. To

confirm this phenotype, leaves from control and transgenic

plants were decolorized, and stained for starch with an iodine

solution. The results in Fig. 4C show that the starch present in

the leaves of wild-type plants stained dark greenish brown. On

the other hand, there was background degree of iodine staining

in the mature leaves from two independent 35S-CaXTH lines

(#14 and #24) (Fig. 4C), indicating that CaXTH3 over-

expressing plants accumulate a limited amount of starch in

their leaves.

3.4. Over-expression of CaXTH3 improves drought and salt

tolerance in Arabidopsis

The aforementioned results concerning the RNA expression

profile led us to hypothesize that the hot pepper CaXTHs

might function in the defense mechanism against abiotic stres-

ses. Therefore, the effects of CaXTH3 over-expression on the

response of Arabidopsis to water- and salt-stresses were exam-

ined. First, the root growth assay was performed with the

transgenic and wild-type seedlings that had been incubated

with 50–100 mM NaCl. As illustrated in Fig. 5A, significant

differences were observed between the 35S-CaXTH3 and

wild-type plants after being exposed to NaCl treatment.

Whereas the elongation of control roots was reduced about

40% in the presence of 100 mM NaCl, growth of the transgenic

roots was less impaired (28–29% reduction) by this high salin-

ity, indicating increased tolerance to salt stress (Fig. 5A).

Under our experimental conditions, germination ratio of the

wild-type plants was reduced 15% by 50 mM NaCl and 25%

by 100 mM NaCl (Fig. 5B). On the other hand, the germina-

tion efficiency of the 35S-CaXTH3 plants was less affected

(10–14% reduction) by 100 mM NaCl. Thus, both the germina-

tion (Fig. 5B) and post-germination (Fig. 5A) growth of 35S-

CaXTH3 transgenic plants are more tolerant to high salinity

than wild-type plants. Furthermore, the CaXTH3 over-

expressing plants exhibited increased resistance to exogenously

applied ABA (0.1–1 lM) in germination compared with the

wild-type Arabidopsis plants (Fig. 5C).



Fig. 4. Cellular phenotypes of wild-type and 35S-CaXTH3 leaves. (A) Light micrographs of leaf transverse sections of four-week-old wild-type and
35S-CaXTH3 plant (line #14). Scale bars = 100 lm. (B) Transmission electron micrographs of the mesophyll cells from four-week-old wild-type
(panels 1 and 3, scale bars = 1 lm) and 35S-CaXTH3 plants (line #14) (panels 2 and 4, scale bars = 5 lm). (C) Leaves of wild-type and 35S-CaXTH3
plants (lines #14 and #24) stained for starch with iodine. Plants at the end of a 16 h photoperiod were decolorized in hot 80% (v/v) ethanol, and
stained with an iodine solution.
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As a next experiment, we compared the capacity of the wild-

type and 35S-CaXTH3 plants to respond to dehydration.

Dehydration sensitivity was scored as the capacity of plants

to resume growth after water stress, when returned to normal

conditions. Four-week-old Arabidopsis plants were grown in

pots. When the soil was allowed to dry by withholding water

for 15 days, wild-type plants displayed wilting (Fig. 6). After

re-watering for 5 days, the majority of control plant was un-

able to recover and eventually died. Under these experimental

conditions, however, most of the CaXTH3 over-expressing

lines appeared to be healthy before and after re-watering; they

successively survived and continued to grow, as opposed to

wild-type plants, under severe water stress (Fig. 6). These re-
sults, in conjunction with the data in Fig. 5, indicate that the

35S-CaXTH3 transgenic plants were highly tolerant to severe

water deficit, and to lesser extent to high salinity (50–

100 mM). Overall, we interpreted these results to suggest that

CaXTH3 might be involved in the control of plant responses

to counteract the unfavorable growth conditions.
4. Discussion

The molecular and cellular processes underlying the acclima-

tion of hot pepper to abiotic stresses have attracted much

interest, as it is an economically important crop and its re-



Fig. 5. Increased tolerance of 35S-CaXTH3 transgenic lines to salt stress. (A) Four-day-old light-grown wild-type and transgenic seedlings (lines #14
and #24) were subjected to 100 mM NaCl, and the growth patterns of roots were monitored after 6 days. The values are means ± S.D. (n = 30). (B)
Germination ratio of the wild-type and 35S-CaXTH3 transgenic lines (lines #14 and #24) in the absence or presence of NaCl (50–100 mM). The
values are means ± S.D. (n = 30). (C) Germination ratio of wild-type and 35S-CaXTH3 transgenic lines (lines #14 and #24) in the absence or
presence of ABA (0.1–1 lM). The values are means ± S.D. (n = 30).
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sponse to adverse environmental factors is not well understood

compared to other crop plants. From water-stressed hot pep-

per plants, we isolated three homologous CaXTH genes that

encode xyloglucan endotransglucosylase/hydrolase homologs

identified from various plant species (Fig. 1). RT-PCR studies

with gene-specific primers showed that, in hot pepper seed-

lings, three different CaXTH mRNAs were concomitantly

inducible in response to diverse environmental stresses, includ-

ing dehydration, high salinity, and cold temperature (Fig. 2). It

was worth noting that CaXTHs were also rapidly activated

(within 1 h) by stress hormone ethylene. Thus, it would be rea-

sonable to consider that, in hot pepper, the CaXTH isoen-

zymes may be functional in early event in the abiotic-related

defense response to deal with the effective plant adaptation

process.

XTHs, along with pectinase and expansin, have been recog-

nized as wall-modifying proteins, participating in the multiple

physiological roles [29–32]. A wealth of evidence has been doc-

umented that high XTH enzyme activity and its mRNA level

were closely correlated with the elongation zone of stems

and roots and in ripening fruits in various plant species

[23,26,27,33–38]. Analysis of tobacco plants transformed with

an antisense construction of NtXET-1 suggested that the

reduction in Nt-XET-1 expression might be coupled with

strengthening of cell walls [28]. Most recently, Wu et al. [39]

reported that XTH activity was decreased in the elongation re-

gion of soybean seedlings at low water potential. All of these
results are consistent with the notion that XTHs function in

regulating cell wall loosening and extensibility [30]. On the

other hand, it was proposed that XTHs have a role not only

in wall loosening but also in wall biogenesis and reinforcement

[29,40]. Recent study by Bourquin et al. [41] provided the evi-

dence that XTHs were actively involved in creating and rein-

forcing the connection between the primary and secondary

wall layers of vascular tissues in poplar stems. Moreover, Ara-

bidopsis At-XTH22 (TCH4) has been known to be induced by

environmental stimuli, including touch, heat shock and cold

stress [25,42]. Overall, it is likely that XTHs have roles in both

cell expansion and the mechanical stress response to undergo

wall reinforcement.

To explore possible cellular functions of abiotic stress-induc-

ible hot pepper CaXTHs, the 35S-CaXTH3 transgenic Arabid-

opsis plants were generated. Several lines of evidence indicate

that CaXTH3 is functionally relevant in the heterologous Ara-

bidopsis cells. Ectopic expression of CaXTH3 caused a clearly

distinct phenotype in comparison with the control plants, such

as altered leaf morphology (Figs. 3 and 4) and, more impor-

tantly, improved tolerance to drought and salt stresses (Figs.

5 and 6). A closer inspection revealed that the transgenic leaves

had highly populated small-sized cells and contained little

amount of starch content relative to control leaves (Fig. 4).

We consider the possibility that transgenic plants may need

more metabolic energy to actively produce increased numbers

of cells so that starch reservoir may not be accumulated in



Fig. 6. Increased tolerance of 35S-CaXTH3 transgenic lines to water stress. Wild-type and transgenic Arabidopsis plants (lines #3, #5, #14 and #24)
were grown in pots for four weeks under normal growth conditions. Thereafter, water was withheld for 15 days, followed by re-watering for 5 days.
Dehydration tolerance was assayed as the capability of plants to resume growth when returned to normal conditions following water stress.
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leaves. Taken together, it seems likely that the CaXTH3 is ac-

tively involved in the cellular processes, thereby effectively

altering a subset of cell growth control factors, as well as the

response to abiotic stresses in transgenic lines.

The critical question that remains to be unraveled is the phys-

iological link between the functional relevance of CaXTHs and

increased tolerance to drought and salt stresses in transgenic

Arabidopsis plants. We are tempted to assume that CaXTH3

may be involved in the cell wall remodeling to strengthen the

wall layers, and hence it participates in the protection of meso-

phyll cells against water deficit. In addition, constitutive pres-

ence of CaXTH3 enzyme may enhance cell wall biogenesis,

which in turn, results in the formation of numerous small-sized

cells in leaves (Fig. 4). At this moment, however, we do not

know whether or not the increased number and surface area

of leaf cells are associated with the tolerance to abiotic stresses

in 35S-CaXTH3 plants. In this regard, it is of immense impor-

tance to analyze detailed structure and chemical components

of cell wall in 35S-CaXTH3 transgenic plants. We are now

attempting to establish hot pepper plants that suppress the

CaXTH genes by virus-induced gene silencing (VIGS). VIGS

will be an alternative experimental method to overcome techni-

cal problem in constructing transgenic hot pepper plants. This

approach would help to further elucidate the mode of action

of CaXTHs in plants. In conclusion, the data presented in this

report suggest that hot pepper CaXTHs play roles in the process

in response to a broad spectrum of abiotic stresses. Further

experiments are now required to more precisely define the bio-
chemical and physiological functions of CaXTHs in response to

adverse environmental factors in hot pepper plants.
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