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Abstract 

This article presents a way of implementing abstract interpretations that can be very efficient. 
The improvement lies in the use of a symbolic representation of boolean functions called typed 
decision graphs (TDGs), a refinement of binary decision diagrams. A general procedure for using 
this representation in abstract interpretation is given; we examine in particular the possibility of 
encoding higher-order functions into TDGs. Moreover, this representation is used to design a 
widening operator based on the size of the objects represented, so that abstract interpretations 
will not fail due to insufficient memory. This approach is illustrated on strictness analysis of 
higher-order functions, showing a great increase in efficiency. @ 1998 Elsevier Science B.V. 
All rights reserved. 
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1. Introduction 

One of the basic problems of program analysis is that, even theoretically speaking, 

there are properties of programs which cannot always be computed, such as termina- 

tion. A way to circumvent this difficulty is to allow for partial or approximate answers. 

Abstract interpretation is the theoretical framework to design automatic program anal- 

ysis based on sound approximations. Although this theory deals very well with many 

problems of program analysis, it may become unusable in practice when the analysis is 

too precise, because of the amount of memory, or time required. The goal of this arti- 

cle is to show that it is sometimes possible, using compact representations of boolean 

fimctions, not only to increase significantly the efficiency of the analysis, but also to 

balance the trade off between precision and efficiency during the analysis. 

In Section 2, we will describe the symbolic representation of boolean functions. In 

Section 3, we will show how to use it in abstract interpretation. We will expose in 

detail the coding of higher-order functions through TDGs, and the use of those graphs 
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in conjunction with data approximation. The last section is dedicated to a complete 

example of abstract interpretation using TDGs: strictness analysis. 

Because the most general framework of abstract interpretation is mathematical, most 

elements of this paper have been described mathematically. Consequently, some of 

the principles may come through unclear. The reader who is not familiar with some 

concepts or does not want to read mathematical formulas should read the informal 

descriptions, which will give an idea of what is going on. On the other hand, if the 

reader is already familiar with one notion, he is invited to skip the informal presentation 

corresponding to this notion. 

2. Typed decision graphs 

Typed decision graphs [3], or TDGs, are powerful symbolic representations of 

boolean functions. They are a refinement of the well-known binary decision dia- 

grams [5], or BDD, which are already widely used in many fields, such as circuits 

synthesis and verification [4, 16,231, or protocols verification [20,22] but mostly un- 

used in abstract interpretation (but see [15,8]). The purpose of this paper is to show 

that this representation of boolean functions can in some cases have major applications 

in abstract interpretation. 

2.1. Informal presentation of binary decision diagrams 

A BDD, as introduced by Bryant in [5], is a compact representation of the Shannon 

tree of a boolean expression. 

Shannon trees. Shannon trees are used to represent boolean expressions. They de- 

scribe a way to evaluate the expression. First evaluate the value of one of the boolean 

variables of the expression. If this variable is true, then we can represent a boolean ex- 

pression containing less variables, and if it is false, we represent another boolean exp- 

ression containing less variables. If, in the end, the boolean expression does not contain 

any more variable, then its value is either true or false. 

As a result, each node of a Shannon tree is associated to a variable, the left subtree 

represents the boolean expression when this variable is false and the right subtree 

when it is true. 

In order to have a unique representation of a given boolean expression, the variables 

of the expression are to be taken in a predetermined order. 

For example, let us consider the following expression: (x A y) V (y A ~z) V (z A -y). 

We can represent this expression f using a table: 

X00001111 

y00110011 lzl z01010101 

f01100111 
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If x < y <z, the Shannon tree representing f will be 

/=\ 

A A 
A A A /i 

0 1 I 0 0 1 1 1 

Reduction rules. Once a boolean expression is represented by a Shannon tree, it is 

easy to see how to gain space. First, there is no need to duplicate subtrees. The action 

of merging redundant subtrees is called sharing. Instead of having a binary tree, we will 

have a directed acyclic graph. In order to recognize left subtrees from right subtrees 

we will draw the formers with dashed line. In our example, f will be represented 

by 

The second reduction rule is the elimination of useless nodes, namely nodes where 

the different possible values of the variable lead to the same result. After this step, we 

have the BDD representing f: 
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2.2. Formalization work on binary decision diagrams 

Abstract interpretation is a theoretical and formalized approach of program analysis. 

So, to use BDDs in abstract interpretation we need to formalize them very precisely. 

We shall first define the objects encoded by BDDs, which are boolean functions and 

the names of the variables used to calculate them. 

Let Var be a totally ordered set of variables. The order on Var will be noted <“. 

Var, dAf { V C Var 1 1 VI = n}, where 1 VI is the size of the set V 

To simplify our notations, we always order the indexes of set of variables according 

to the order on Var. So when we write {xl,. . . ,x,} E Var, it means Vi, 1 d i dn, xi E 
Var and xt <’ ... c’x,,: 

$& Ef Var, x ({O,l}” + (0, 1)) 

PJkf U9?a 
n 

The pair ({xl, . . . , x,,}, f) E 9%, also noted f(xt , . . . ,xn) in this paper, is the semantics 

of a boolean expression with n (free) variables xt < ” . . . <” x,, whose value is given 

by the function f. The variable x alone stands for ({x},ld). The symbols 1, A and V 

have the usual meaning of the boolean operators “not”, “and” and “or”. We define 

Y(f(xt, . . . ,x,)) dgf {x,, . . . ,x,}. 

BDDs are based on Shannon trees, whose uniqueness is insured by Shannon’s ex- 

pansion theorem [21]. Written in our formalism, this theorem is: 

Theorem 1 (Shannon’s expansion). Let f(xl, . . . , xn)EBn. vi, 16idn, 3!(fz;,f,)E 

(Bn-t x gn_t) such that 

j-h,. . .? xn>=(‘Xi~f~;)V(XiAL,) 

A Shannon tree is a binary tree labeled with variables, 0 or 1. A binary tree T can 

be defined as a partial function from (0, 1) *, the set of all finite words on (0, l}, to 

the set of labels, with the prefix closure property i.e. the domain is not empty, and if a 

word uu is in its domain, then u is in its domain too.’ The Shannon tree representing 

fh,..., x,,) is defined as follows: 

Wf(x1, . . ., x,))(u)~~~ if Iu] < n then nlul+l 

if u=alaz-.. a, then f(al,a2,...,an) 

where Iu] is the length of U. 

’ uu is the concatenation of u and v. 
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As explained in the informal presentation, BDDs are compact representations of 

Shannon trees, obtained by enforcing the two simple reduction rules: sharing and elim- 

ination. 

Sharing. This operation transforms the tree into a directed acyclic graph (DAG) by 

sharing isomorphic subtrees. A binary decision DAG (BDD) can be defined recursively 

as being either a node N of Var x bdd x bdd or a leaf in (0, 1). 

As the transformation is described by the share function, it is obviously still unique. 

share(B) d&f if St = root(k) then k else N(St(c),St\O,St\l) 

where E is the empty word, root(k) is the tree with domain {E} and value k, and 

T\u is the subtree of T with domain dom(T\u) %f {uluu E dam(T)} and such that 

r\U( u) dzf T( UV). 

The sharing results from the fact that if two subtrees are isomorphic the mathematical 

objects representing these subtrees are equal. The results of share on them are obviously 

identical. 

Elimination of superjuous nodes. Once again, the transformation can be written as 

transformation rules; the representation is still unique: 

supp(N(x, 4, d2)) = if dl = dz then supp(dl ) else N(x, supp(dl ), supp(d2)) 

After applying this rule, a BDD does no longer represent one function of 8, but 

all the functions whose results are the same regardless of the assignment of additional 

variables absent in the BDD. For example, if Vx, y,z, f(x, y,z) = g(y) then f(x, y,z) 

and g(y) are represented by the same BDD. This drawback does not really matter for 

this work, because what we really manipulate are functions from (0, l}w to (0, I}. 

2.3. TDGs 

To reduce the size of the graph even further, we go back to Shannon trees and try 

to produce new isomorphic subtrees. Then we will apply the same reduction rules. 

Typed Shannon trees. The idea of typed Shannon trees [l] came from the remark 

that 

This means that as far as Shannon trees are concerned, f and lf are identical except 

for the leaves: 0 becoming 1 and 1 becoming 0. So instead of having two different 

trees, we only need one tree and a sign. Typed Shannon trees are merely trees with 

signs. To be more precise, the labeling set becomes { -, +} x ( Var U{O, l}), and if T 
such that T(E) = (s, I) represents f then 1 f can be represented by T if you change 

T(E) in t--s, I). 

Now, the problem is that when using simple Shannon trees and just adding signs, 

canonicity is lost: 0 can be represented by (+, 0) or (-, 1) for example. Let us simply 
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Fig. 1. Typed Shannon tree. 
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Fig. 2. The TDG for f(x,y,z)=(xAy)V(yA~z)V(zA?y), and f(r,x,z)=(~Ax)V(xA-rz)V(zA~x). 

make a choice, once for all. Here is one that provides good results for the size of the 

graph [17]: 

Tst(f (xi ,...,%))(Q . ..a.)kfifif(ai ,..., Q,l,..., 1)=1 

then (+,St(f(xl,...,x,))(a~ . ..a.)) 

else (-,St(lf(xi,. . .,X,))(Ul . . .LZi)) 

The resulting tree is represented in Fig. 1. The signs have been put on the edges 

instead of the labels, and only minus have been represented to get a more compact 

representation. 

Resulting graph. Now, if we simply apply the same reduction rules as for a BDD, 

still assuring the uniqueness of the representation, we get typed decision graphs. To 

know the value of the function for a given assignment, follow the same method as for 

BDD, counting the number of - in the path. If this number is odd then the result is 

0, if it is even, 1. 

The size of the TDGs looks quite reasonable, and it is in most case. But there are 

still cases where it is exponential in the number of its variables [6]. If we restrict the 

representation to boolean functions without explicit variables2, then it is sometimes 

2 It is possible to represent boolean functions with explicit variables using boolean functions without 

explicit variables, so it could still be useful. 
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possible to reduce the size of the TDG representing the function by changing the 

order of the variables (see Fig. 2 for an example). But there are cases where the 

representation is still exponential, whatever the order of the variables. 

2.4. Operators on TDCs 

Not only does this representation saves space, but it saves time too, assuming the 

operators on boolean functions are correctly translated. 

An operator is a function from 9ZP to 9. The key property that allows for a fast 

computation of operators is orthogonality [6]. 

Definition 2. Let Op be an n-operator. Op is said to be orthogonal iff 

Qft,..., fn E 97, Vx E Var, 

Op(f1,. . . ,fn)=~xAop(fi~,...,f,,)v~~oP(fi,,...~f~,) 
Qk ,,..., k,,EBo, Op(kl,...,k,,)Ego 

For example, 7, A and V are orthogonal operators. 

An orthogonal operator on TDGs can be calculated by the following algorithm: 

OprDG(kl,. . . , k,) = Op(kl,. . . , k,) 

OPTDG(fl" . . ., fn ) = 

let x= inf U V(h), 
l<i<n 

let ri = OpTDG(f,,, . . .,f&) and T2 = OproG(f~x,. . .,fn,) 

if Tl =Tz then T, 

if the sign of T2 is + then (+,N(x,Tl,Tz)) 

if the sign of Tz is - then (-,N(x,~T~,~T2)) 

The proof of this algorithm is by induction on 1 U, Q iGn = V(f;:)l. 

If we keep in memory the intermediate results, then the total cost in time of the 

operator is 0( Ifi 1 x . . . x Ifnl), where lfil is the number of nodes of the TDG repre- 

senting fi. So most of the time (see Section 2.3), calculation with orthogonal operators 

over TDG are quite fast. 

3. Abstract interpretation 

3.1. Informal presentation of abstract interpretation 

Abstract interpretation is a very general and formalized framework allowing to deal 

with approximations. The rule of signs (positive multiplied by positive is positive, 

etc.) can be seen as an abstract interpretation: the concrete domain (real numbers) is 
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abstracted by approximate values in an abstract domain ({positive numbers, negative 

numbers, zero}), and the concrete operation (multiplication) is approximated by an 

abstract operation (the rule of signs). 

The aspects of abstract interpretation that we will use are: 

The possibility to lift automatically an abstract interpretation. That is to say, given 

domains and their approximations, the possibility to approximate functions over those 

domains. 

Widening operators. When the semantics of a program can be expressed as the limit 

of the iteration of a given function (often given by the syntax of the program), the 

abstract semantic can also be expressed as the limit of the iteration of an abstract 

function. But in some cases, more approximation is needed. Then abstract interpreta- 

tion provides the possibility of using a widening operator, which is an operator that 

alters the iteration, generally speeding it, but at the cost of wider approximation. 

3.2. Recall of important aspects 

Taking the most general framework [ 111, all the possible behaviors of programs 

are described in a standard semantics. From the point of view of abstract interpre- 

tation however, only a certain class of these behaviors is interesting. This class is 

the collecting semantics. Then the abstract semantics is usually an approximation of 

the collecting semantics3 that keeps for example only invariance properties. All those 

properties are taken from sets called semantic domains, and one of the most impor- 

tant tasks of an abstract interpretation is to describe the relations between the abstract 

semantic domain 9” and the concrete semantic domain 9”. 

The concrete semantics of a program is often given by the limit of the iteration of a 

concrete semantic function, F’, starting from a basis I”, and using an inductive join 

LIh to go to limit ordinals: 

FQO q_CJr J_b 

Fb”+’ dz Fh(+) 

Fh” SF n;j<,F’fl when 1 > 0 is a limit ordinal 

To ensure convergence, Bb is often associated to a complete lattice structure, the limit 

of the iteration being then the least fixpoint of Fb (lfp(Fq)). The same ideas apply to 

determine the abstract semantics of a program. 

The relation between the concrete and abstract semantic can be described by a sound- 
ness relation cr. (~,a) E CJ meaning that a is a sound approximation of the property c. 

Moreover, one will want the approximation both sound and “good”. To define this no- 

tion, abstract interpretation uses an approximation order on properties, <. The sound- 

ness relation CSJ is then supposed to respect the approximation order, namely if ab’a’ 

3 The abstract semantics can be an approximation of whatever semantics, even another abstract semantics, 

so for the purpose of relations between semantics, the approximated one will always be called concrete 
semantics. 
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and (c, a) E 0 then (c, a’) E 0. In this case, we say that a is a better approximation 

than a’. In the most ideal case, there will exist one best approximation for each prop- 

erty of 8’. It will be given by an abstract function c(. 

Sometimes, there is none or many best approximation. Even when there is only one, 

the computation of the abstract property (possibly obtained by an abstract iteration4 ) 

may be too long or even infinite. A solution for all these problems is the use of a 

widening operator. A widening operator is a partial function v” from a(.!?“) to 9’” 

such that 

($A exists) * (Vc E 9’: (32 EA: (c,a) E a) * ((c, +A) E a)) 

Then we can use the following abstract iteration with widening: 

def pto = 1” 

F”ti+l d&f v~(F~t~,F~(F~f~)} 

F”Ti kf o”(U{F”rpj/9 < A}) when A > 0 is a limit ordinal 

If moreover there is an abstract function c(, and 8” satisfy: 

Consequently if the concrete iteration sequence and abstract iteration with widening 

are convergent then their limits FbE and F’t’ are such that a(F”)<“F”T”. 

In fact, that limit might be a post-fixpoint, in which case the result can be refined 

using a narrowing operator [lo]. For more results and details on abstract interpretation, 

see [ll]. 

3.3. Using TDGs 

Basically, TDGs can be used to encode the data handled by the abstract inter- 

pretation. Let us call /3 the encoding between 8” and 39, Fb the operator induced 

by the abstract operator. Considering the properties of TDGs described in Section 2 
- i.e. their compactness and the efficiency of their operators - the replacement of 

the abstract iteration by the iteration of Fb on 93 will in general fill considerably 

less space, and hopefully take less time than the iteration on classical representations. 

But, while it is theoretically always possible to find an encoding, not all encodings 

have these properties. As a trivial example, a coding that associates a variable (and 

whatever function from (0, 1) to (0, I}) to each element of 9’” will just fill more 

space. 

4 That is to say the limit of the F”“. 
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Although we have no general rule to find a good encoding, we provide some generic 

tools that can help the design or the use of such an encoding. The first tool will 

transform encodings of first-order functions into encodings of higher-order functions. 

This tool makes the design of the encoding easier, because the encoding of first- 

order functions only is needed. Moreover, it applies to the encoding of the abstract 

function itself into TDGs. The second tool is a widening operator taking advantage 

of the structure of the TDGs. It can be used in any abstract interpretation to produce 

approximations based on the complexity only. 

3.3.1. Lifting an abstract interpretation 

Informal presentation. Given the abstractions over two domains, it is possible to 

abstract the set of functions over those two domains by using the set of functions over 

the associated abstract domains. If those two domains are already encoded into BDDs, 

it is then possible to code the functions over those domains using BDDs. This cannot 

be straightforward, as functions over BDDs are not boolean functions. The point in 

transforming these functions into BDDs is to replace the variables representing BDDs 

by (more) boolean variables. 

Bounding the number of possible BDDs the variable can represent is a necessary 

condition to achieve that transformation. So we choose to bound the number of vari- 

ables of the BDDs that the variable represents. For example, we will work under a 

limit of one boolean variable for the BDD variable f. For a better understanding, let us 

come back to Shannon trees - the same can be done with BDDs -. We can represent 

the function that takes f and gives a boolean expression almost like a Shannon tree. 

The difference is that, there being four different boolean expression with at most one 

boolean variable, one should have four subtrees coming from f. The tree will have 

the following structure: 

This variable over BDDs can be replaced by two boolean variables, x1 and x2, chosen 

to be taken before any variable in the subtrees: 
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So we have replaced f by the following variable boolean expression with at most 

one boolean variable y: 1yAxl VyAx2. This construction will be extended and justified 

in the next paragraph. 

Technical aspect. Let 9; and 9; be two abstract semantics encoded into TDGs by 

pi and p2. Moreover, we will suppose that $(<~) & Y):(<i) and Y’z(=$) & Pi(4;) 

are Galois connections. 5 As suggested in [9], such ?ialois connections can 2 lifted to 

functions: 

is also a Galois connection, assuming < is the pointwise ordering,6 and A F% B is 

the set of monotonic functions from A to B. 

The lifted semantic domain contains functions from 9: to Pi. It means that if 

we want to extend directly the encoding to the lifted domain, we will need func- 

tions over boolean functions, which are not directly representable by TDGs. This 

is because we cannot make a binary choice after testing a functional variable, as 

such a variable can take more than two different values. A solution is to trans- 

form the tests of functional variables into a sequence of binary tests in required 

number. 

But a variable representing a TDG could take an infinite number of value, as B is 

infinite. Accordingly, we will first restrain the set encoded into TDGs to BT dgf U,, BI, 

where BT dAf ({O,l}” n -+ (0, 1)) + C$, Varz being the set of variables used in BJ and 

VarT dJZf U, VarX. 

Let 2f.b E BT; then 3, f E Varl, so that testing a value of f can be replaced 

by testing the value of a finite set of binary variables. Three steps will occur when 

transforming this expression into a boolean expression: first create this set of binary 

variables (using v( f )), second link an assignment to this set of variable to an assign- 

ment to f (using buiZd(u(f ))), at last replace f in Af.G by the variable function just 

built. To understand those stages better, we will go through them on a simple example, 

Lf .2x. fx ’ In this example, f E Var!. 

For the construction of the set of boolean variables, we use Shannon’s expansion 

theorem in the following form: a variable f of Sari,, is equivalent to a pair of 

variables (eZse,(f ), then,( f )) E Var: x Var:, where else,(f) represents the value of f 

when its first variable is false, and then,(f) when it is true. As we want to ensure that 

those variables are distinct, we require the following properties for then,, and else,,: 

Vf,g E VarL+l, then,(f) # else,(g) and both then, and else,, are injections. We can 

‘That is, Vc E @, Va E 9’ : (c<by(a)) w (a(c)<‘a). 

6 f=Gg - Vzc E 91, f(x)=Gzg(x). 
’ To distinguish between functional variables and elements of Var, elements of Var are noted x, y,Xi, ., 

and functional variables f, g.. 
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now define the set of variables associated with a variable f of Vurf, v(f) E @( Vur): 

v(f) dzf {b(f)} if f E Varl 

u(f) dzf v(else,(f)) U u(then,(f)) if f E Vc~r,t+~ 

where b is a bijection from Varl to Var. It is easy to prove by induction that v(f) is 

just a set of 2” distinct boolean variables, {xl , . . . ,x2”}. Let us go back to the simple 

example, u(f) = { x1,x2}, with x2 # xl. Actually, two boolean variables are exactly 

what is needed to represent the four different possible values of f. 

Now we build the variable function associated to this set of boolean variables, so 

that we can apply this set to boolean values: 

build(x) ?=f x, 

build{xl ,. . .,x2”} dzf ly.7~ A buiZd{xl,. . .,x~~-I} V y A build{x2.-l+l,. , .,x2”}. 

Once again, this definition is justified by Shannon’s expansion theorem. In our example, 

build{x1,x2} = ly.-y AXI V y Ax2. 

It is now easy to translate the assignment of a variable f of Vari by FE ((0, 1)” + 

(0, 1)) into an assignment of u(f): just assign to each variable of v(f) the value of 

F applied to the correct boolean values, such that F equals build(v(f)) in which all 

variables of v(f) have been instantiated. So, for example, substituting the variable f 

of Vu/ by the function Ix.7~ is the same as substituting u(f) = (x1,x2) by (l,O). 

We can now code Br. Let 2.f .GEBt, then 3, f E Vat-~. Let {yt,. . . .y~} = s(Q)) 

where s is a permutation on Vur such that ~2” is less (for the order on Vur) than the 

smallest possible variable appearing in G. Then if the encoding is called /3t: 

/?‘(Af.G) cf Ayl , . . . , y2n.W/build{yl,. . . , YP}]. 

Example. ~t(~f.~x.fx) = AXI .Ax~.~x.~x A xl V x A x2. 

We now have an encoding of 9~,,, if we can code it into Bt. To achieve this, we 

will assume the following hypothesis on /3r: for all variable of 9; there exists an N 

such as each instantiation of the variable is coded in 99,, with n <N. Then /3; of such 

a variable is a variable in Vuri. So 

This coding is interesting for abstract functions too, because if G = lfp(F2) then 1f .G 

= lfp(Fi,2) where F1,2(A~.y) kf Rx&(y). So if Fi is coded into TDG, Fp_2 can 

be coded into TDG too. 

In the particular case where 9; = Pi, we have coded functions over 9;. As abstract 

functions are just functions over S:, we can thus code them into TDG, making the 
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iteration faster. 8 To encode higher-order functions on 97, we just have to iterate this 

construction, as now first-order functions are just TDGs. For example, the second-order 

function &(1f,?x.g(f(x))) can be encoded the following way: g E VW!, so u(g) = 

{zi,zz} and so Pf(M~f~x.s(f(x)))) = *( A Z,,Z2,X,,X2,X).7(~XA xi v X A X2) A zi v 

(lx A xi V x A x2) A z2. 

A widening operator on TDGs. The question of the size of a TDG is at the core of 

efficiency. Of course, taking smaller space is efficient in itself, but as seen in Section 2, 

the speed of operators upon a TDG depends directly on its size. To reduce the size we 

can use less powerful representations without explicit variables and try out different 

ordering for the variable. So far however, no really satisfactory solution has been 

brought out, and some cases will always remain exponential for any ordering. So the 

proposed solution - specific to abstract interpretation - is a widening operator based on 

the size of the TDG. This widening operator is very general and can be used whenever 

the size of the abstract domain is too big. In such a case, the encoding of a single 

element of the abstract domain can be too long for practical manipulation. It is possible 

by the use of this widening operator to chose an approximate solution that is compact 

enough for representation on a computer. This widening is quite different from classical 

widenings used in abstract interpretation as it does not use any semantic information to 

approximate the result, but only tries to approximate what fills the most space, leaving 

as much information as possible in the computation framework. 

Prerequisites and characteristics. This widening operator is closely related to the 

approximation ordering upon Pb, <b induced by $‘, which should be compatible with 

the structure of the TDGs. In fact what the widening operator exactly needs is a way 

to compute the least upper bound of two TDGs for <b, and, as this operation will be 

essential to the widening operator, the cheaper the way, the better. 

Then, the widening operator takes in a limit size I and a TDG f. The result v( I, f) 

is a TDG g such that /g( d I9 and f < bg. To make sure that it is always possible (for 

all positive I), we set (+, 1) or (-, 1) as the top of P’#. 

This operator can be used to produce a very classical widening operator as defined 

in the beginning of this section: vbA dzf v(Z(max(A)),max(A)) where max(A) is, if 

it exists, the maximum of A for the computational ordering lo (Lb), and 1 a function 

that yields the limit. 

If the abstract function is coded into TDG too, then this widening operator can be 

used to do static widening by approximating the abstract function. It can be very prof- 

itable because if the TDG used to represent the abstract function is too big, each step 

of the iteration will be too long, and sometimes the size of the TDG representing the 

iterates will be directly related to the size of the TDG representing the abstract function. 

Approximating the abstract function is sound, as justified by the following property: 

8 This is not the case if the entire abstract function is not needed. In the case of chaotic iteration, for 

example, we can find better encoding of abstract functions. 

9 191 is the number of nodes of g, i.e. its “size”. 

lo The ordering used to ensure termination of the iterations. 
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Property 1. Let fi and F2 be monotonic functions (for C). If Vffi(f)<F~(f) and 
F, or F2 are monotonic for < then 

Proof. f<g implies 

Fz(g) by hypothesis. 

on the iterates. 0 

fi(f)<F2(g) because F,(f)<fi(g) by monotonicity and Fl(g)$ 
FI(l)<F2(1) by hypothesis. The property follows by induction 

Algorithm. The problem is that for this widening operator we will have to find the best 

possible g such that 191~ 1, in a decent amount of time, It is not reasonable to search 

for the best solution I’ as it would theoretically require to explore all the possible 

derivations of a given TDG, which is exponential in the size of the TDG. 

Hence, we will try to modify the TDG in order to apply one of the reduction steps 

described in Section 2. To obtain sharing, we just consider two nodes of the TDG 

and, to make them equal, replace them by the least upper bound of the two nodes. To 

obtain elimination of super-uous nodes, we replace a node N(x, T,, T2) by the least 

upper bound of TI and T2. Because of the properties required on =$‘, this operation 

gives a TDG greater (for <b) than the previous one. 

The algorithm proceeds by steps: each step, if the size of the TDG is above the 

limit, try each of the reductions above and take the best one; repeat. The best one is 

the one with the highest rate 

number of nodes above the limit gained 

cost of the reduction 

where the cost of the reduction is, for a sharing of TI and Tz, 

cost(T,-+T’) x mult(Ti)+cost(7’+T’) xmult(T2) 

and for an elimination of T = N(x, T,, T2), 

(cost( T, -+ T’) + cost( T2 + T’)) x mult( T) 

Each reduction implies taking the least upper bound T’ of two TDGs Tl and T2. 

The computation of the least upper bound is supposed to yield cost(Ti + T’) and 

cost( T, -+ T’). l2 Mult is the multiplicity of the node, namely the number of time the 

node would appear in the Shannon tree representation of the TDG, so that changing a 

node shared by many would cost more than changing one used by only one. 

Each forced reduction will not automatically reduce the size of the TDG because 

the least upper bound may contain more new nodes than gained through the reduction. 

However, if the size of the TDG is greater than 1, it will contain a node of the form 

N(x, (-, l),(+, 1)). This is because it is the only possible TDG with one variable, so 

‘I That is to say the min (for <b) of all the possible solutions. 
I2 This cost is supposed to express the loss of precision; for example it could be the length of the maximum 

chain between 27 and T’. 
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Fig. 3. f and the two best approximates with 3 nodes or less. 

the only possible node in which the greatest (for <“) variable of the TDG appears. 

So, if (f, 1) or (-, 1) represents the top of P”, the reduction of this node into the 

top will always be tried, ensuring that at least one of the modifications tried on the 

TDG within one step reduces the size of the graph. Thus if the limit is positive the 

size of the TDG will at each step either decrease or be less than or equal to the limit. 

Besides, after each step, the new TDG is greater than the previous one for <b, so the 

algorithm is correct. 

Example. Consider the function f = (v A x) V (x A -z) V (z A -a) defined in the 

examples of BDDs, with the pointwise ordering for +b based on O<b 1. See Fig. 3 for 

the possible solutions. 

Complexity. Considering that at each step, the size of the TDG is reduced by one at 

least, the number of steps is smaller than the difference between the limit and the size 

of the TDG. But this is still too much: this difference may be exponential. To reach 

faster a size closer to the limit, we use a less refined algorithm which assumes that 

(+, 1) or (-, 1) represents the top. For each node such that the size of the TDG without 

that node l3 lies between the limit and the limit plus half the difference between the 

limit and the size of the TDG, we try to replace it by the top and take the one that 

gives the best result. That way, each step of this algorithm at least halves the difference 

between the limit and the size of the TDG. 

The most precise algorithm requires each pair of node to be tested. The multiplicity 

of each node can be calculated in a time polynomial in the number of nodes by going 

through the TDG and tagging the nodes. As a result, if the computation of the least 

upper bound (plus the computation of the costs) is polynomial in the size of the TDGs, 

then the most precise algorithm is polynomial in the size of the TDG. 

Thus, we can combine the two algorithms in a way such that if the difference of the 

size of the TDG and the limit I is bigger than P(1) - where P is a polynomial - then 

use the rough algorithm else use the other one. Assuming that the limit is polynomial 

in the number of variables of the TDG, then the global algorithm is polynomial in the 

number of variables. 

I3 That is, after replacing this node by the top. 
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4. A complete example: strictness analysis 

In this section we describe a complete example of program analysis using abstract 

interpretation and TDGs. Let us define first the property to be computed. 

Definition 3. A function f is said to be strict in one of its arguments x if everytime 

the evaluation of that argument fails, the evaluation of f(x) fails. 

The evaluation fails if it ends with an error or does not terminate. 

The goal of a strictness analysis is to determine whether a function is strict in any 

of its arguments. This can be useful for example in the compilar optimization of a call- 

by-need programming language. The principle of such an implementation is to keep 

the arguments of functions in a closure until they are first needed in the evaluation of 

the function and then evaluate them. If a function is strict in an argument then that 

argument will be always needed, so the compiler can evaluate the argument anyway,14 

saving in the meantime the space for the closure. 

Strictness analysis is a good example of application of TDGs because it is a useful 

analysis - in a compiler, for example - but the most precise abstract interpretations 

known so far are too slow to be used at higher order. 

4.1. Standard strictness analysis 

What we call standard analysis is the abstract interpretation which will be coded into 

TDGs. The well-known analysis we use as a basis is one developed by Alan Mycroft 

in [ 181, that still seems to be one of the most precise, and that has the advantage of 

being already coded into boolean functions. 

The concrete domain. Mycroft’s analysis deals with first-order functions from base 

types to base types. The concrete semantic domain 9’ is the set of relations from $3 to 

9 [12] where $3 is a complete domain with infimum I and the values from the base 

types, such as integers. I” dzf ;Ix._L. The concrete semantic function is constructed by 

induction on the syntax of the expression defining the function: F’ = S[f (x>=e]l. 

S[f (x1 =b(el ,...,en)ll(g)dAf {(x,b(v ,...,h))l A (x,Ui)ES[[f(x)=eill(g)} 
lgign 

S[f (x)=x1(g) tzf {(x,x)lx E 9} 

sBfcx>=f(e>ll(g)~f{(x,w)l(x,u)ES~f(x)=ell(g)A(u,w)Eg} 

where b are constants of the language, such as +, integers or the conditional. b is the 

corresponding constant in 9’. For example 2 = 2, and &(xI,xz,x~) = if x1 = I 

then I, if xt=true then x2 and if x1 =f alse then x3. 

I4 Assuming there is no side effect. 
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The abstract domain. The abstract domain introduced by Mycroft is the set of 

monotonic functions from (0, I} to (0, l}, with the ordering O<“l, l5 which can be 

interpreted as: 

- Ix.0 the function never terminates, 

- Lxx the function is strict in x and 

- Ax. 1 we do not know. 

Igdzf Ax.0. The abstract semantic function is also defined by induction on the syntax: 

S’[f (xl = b(e 1,. . . ,en)](g’) dzf b’(S”[f (x1 =et](g”), . . . ,S”[f (x1 =e,](g”)) 

S”[f (XI = x](g#) kf ilr .X 

S’[f (x1 = f (eI]l(g’) kf g’ 0 S”[f (x> =e](gR) 

b” represents b on 9”. For example, 2’ = 1 and ite”(f,,fz,f3) = f-1 A (fi V f3). 

The relations between the two semantics. The soundness relation between CP and S# 

is described by a Galois connection, 9’ & 9’” : 
1 

a(f)(O) dzf if {x [(1,x) E f} = {I} then 0 else 1 

~~(f)(l)~&~ if {yIx~9A(x,y)~f} = {I} then 0 else 1 

y(LX.o)d~f IX. I 

y(IX .x) Ef {(I, I)} u (($3 - {I}) x 9) 

y(LX.1)d~f9Xx 

To ensure that F” is a good approximation of F we shall make a few more assump- 

tions on the constants: 

if Vi, a(fi)<“gi then 

Then 

Property 2. a(lfp(F)) =$ rfp(F’). 

Proof. By induction on the syntax, we shall first prove that V’f E @ and Vg” E @, 

a(f)<‘g” implies that a(F(f))=$F”(g’), then as ~(1”) =I# the inequation on the 

fixpoints will follow by induction on the iterates. 

l5 The computational ordering is the same as the approximation ordering. 
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So let us suppose a(f)=$g’. 

cl(S[f (x)=b(el,...,e,)~f)) 

=a ((,,,,~,...,s.))~~~~l;,)t~,f(X)=LIK/))) 

<“bA(S”[f (x> =e~j(g”), . . .,S’[f (x1 =e,](gff)) 

?S”[f(x) =b(el,...,e,)j(g’) 

The first line is given by definition of S, the second by hypothesis of induction the 

third by the property of the abstract constants, and finally the fourth by definition of 

9: 

a(S[f W=x~(f)) = cI({(X,X) Ix E 9}) 

= kx 

= S”[yf <x>=x](gS) 

For the last step of the proof we need a few more results on the composition of 

relations. RI o R2 dAf {(x, w) 1 (x, v) E R2 A (0, w) E RI}. Suppose cc(R1) o a(Rz)(a) = 0. 

If cr(R2)(a) = 0 then {~IxEAA(x,~)ERz} = {1}16 and {~I(I,~)ERI} = {I}, 
so {y IXEA A (x,u)~R2 A (v,~)ERI} is {I}, so a(R, 0 R2)(x) = 0. If a(R2)(a) = 1 

then {vI(x,y) E RI) = 1-l-j so {ylx E A A (x,0) E R2 A (u,y) E RI} is {I}, so 

a(R1 o R~)(x) = 0. It means that VRi, tx(R1 0 R2)<“a(Rl) 0 GI(RZ) 

a@[f(x>=f(e>J(f)) = a({(x,w)j(x,u)ESUf(x)=ell(f)~(~,w)Ef)) 

= a(f 0 S[f (x>=e](f)) 

4 a(f) 0 m(SI[f (x>=eJ(f)) 

=$ g# 0 SQf (xl=e](g8) 

6” SQf (xl =f (e>](g”> 

The first line is the definition of S. Then use the definition of the composition of 

relations, then what was just proved above on composition and a. The last lines use the 

fact that a(f)=$g” by hypothesis, a(S[f (x>=e](f))@S”[f (x>=eJj(g’) by hypothesis 

of induction, and g” is monotonic as every function in 9”. 0 

It is interesting to notice that Mycroft’s analysis gives more than just the strict- 

ness result: it gives results useful in further analysis using this function. For example 

f (x) =f (x) will give Ax.0 so f is strict in x. With the only information that f is strict 

in x we cannot say that g defined by g(y)=f (0) is also strict. 

‘61fa=OthenA={_L}andifa=1 thenA=LP. 
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4.2. The encoding 

To code the abstract domain, we merely add variable names and Pb becomes 9?t. 

Abstract functions could be coded using the method presented in the previous section, 

as they are functions from 59, to 3Jt. The problem when dealing with higher order 

functions is that, since the size of the type is increasing and each step of the iteration 

requires every possible value of the previous iterate, we will lose all the interest of the 

TDG for recursive functions. Accordingly, we prefer to code each recursive call by a 

new variable, keeping the arguments of the recursive call. That way, each step of the 

iteration will only need to make substitutions in the previous iterate, the number of 

which will be polynomial in the size of the program. 

So this abstract interpretation can easily be lifted to higher-order functions. As the 

encoding is very close to the abstract domain, we can have a better build function 

that associates the boolean function to the set of variables, keeping only monotonic 

functions: build{nl, . . ,xp} def ly. A buiZd{xl ,..., xpl} v y A buiZd{x2~-~+, ,..., xzm}. 

Given Pb for higher-order functions, here is the abstract function: 

Sb[h.ejp(gb) dzf Sb[e]p[x --f buiZd(u(x))](gb) 

p is an environment function. It maps program variables to TDGs. If the variable is 

associated to a previously analyzed function, it gives the TDG representing the result. If 

it is a free variable, it gives the TDG as constructed in the previous section representing 

a variable function, which is, if f is such a function, buiZd(u(f)). We use the type of 

the variable in order to know what u(f) is, that is to say the exact number of boolean 

variables needed. If the variable represents the function defined (recursive call), then 

p returns a single boolean variable, and each time it is applied it is replaced by a new 

variable that will represent the application. 

Example. s x y z = (x z> (y z). l7 

The type of x is a + p -+ y, and so it can take at least 24 different values. So we 

need four boolean variables v(x) = { XI,X~,X~,X~} to represent all the different possible 

states of x: 

p(x) = kz.jlb.x, v x3 A a v (x2 v x4 A a) A b. 

lfp(Sb[(x z> (y z)]p) is the TDG represented in Fig. 4. As, if (xI,x~,x~,x~) = 

(0, 0, 0, 0), the TDG is 0, s is strict in x. But if x1 = 1, the TDG is 1, so the 

interpretation tells us nothing about the strictness of s in y or z. 

I7 This function is one of the most famous higher-order functions as with S, k (k x y =x) and i (i 
x =x), one can code the entire I-calculus. 
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Fig. 4. s x y z = (X Z) (y z> . 

The ordering on .Yb is the implication, so the max of two TDG is very easy to 

compute; it is A which is orthogonal. So we can use the widening operator on that 

example. Moreover, the pointwise ordering on the abstract functions leads to the same 

ordering (implication) on the representations of the abstract function, so that the same 

widening can be applied to the abstract set and to the abstract functions. 

4.3. Practical results 

Strictness analysis have been implemented using TDGs, ” and tested on examples 

given by Sebastian Hunt to compare the efficiency of this implementation with the one 

he developed based on ‘frontiers’. All the results below are for the interpreted version 

(in camllight) and could be improved by compilation. Besides the implementation of 

Sebastian Hunt was only a prototype implementation, so the comparison might be 

unfair. However, this results should not be taken as comparable with state of the art 

strictness analysis, but as an indication of what can be gained using TDGs in program 

analysis. 

I8 The TDG package used for this implementation is the one developed by Brace, Rude11 and Bryant, as 

a subset of COSMOS. 
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The problems raised by these examples are typical and standard for strictness anal- 

ysis. The first three examples did not require the use of the widening operator, so 

the results have the same accuracy as with frontiers. The first one is a quite classic 

nqueen solver, using few higher-order functions. The results are quite good with both 

methods. The second one uses map and foldr. I9 The third one uses foldr at a higher 

order, applying it to append, so the result of the analysis is much bigger. 

The fourth example analyzes foldr written in continuation passing style, leading to a 

drastic increase in the type order. Two functions are analyzed with type (CI list -+ a 

list--+ (cI 1istAp) --+j?> +a list 1 ist--+cr list --+ (a list--p) -p. It is 

interesting because the result is so huge that it cannot be computed and intermediate re- 

sults could not be stored by the computer. So it seems to be an example where the TDG 

representation is exponential that shows the usefulness of the widening presented above. 

Of course, the result of the analyze is approximate due to the use of this operator. 

For the last example, a good alternative to a complete analysis was presented in [ 131, 

that gives results in a few seconds. However, this analysis only answers one question 

and so is not usable for separate compilation. Moreover, the same technique could be 

applied using TDGs to answer the same question. 

5. Conclusion 

This approach proved to be efficient in strictness analysis and could be advanta- 

geously used in many other abstract interpretations, whatever the context, as its idea is 

based on the semantic domain not on a fixpoint algorithm. For instance, it would work 

with backward and forward analysis, total or partial fixpoint computation, etc. But the 

last example shows that it may still be too slow to be usable in practice. This work is 

totally compatible with the theoretical framework of abstract interpretation, so it could 

be used in association with other works on this subject. The idea of lazy evaluation of 

abstract functions from Ferguson and Hughes was mentioned above, but the results of 

Baraki *O on interpretation of polymorphic functions in [2] would be very useful for this 

approach too, as it could lead to a compact analysis usable in separate analysis. The au- 

thor believes that the combination of these techniques could give analyzers based on ab- 

stract interpretation for higher order functions efficient enough to be usable in practice. 

I9 foldr is the classical function that applies recursively a binary function to a list. 

2o He designed a way of using results on polymorphic functions to find the properties of their instantiations. 
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