
Science of
Computer

ELSEVIER Science of Computer Programming 31 (1998) 91-l 12
Programming

Abstract interpretation using typed decision graphs

Laurent Mauborgne”
LIENS, &Cole Normale SupPrieure, 45 rue d’Ulm, 75230 Paris cedex 05, France

Abstract

This article presents a way of implementing abstract interpretations that can be very efficient.
The improvement lies in the use of a symbolic representation of boolean functions called typed
decision graphs (TDGs), a refinement of binary decision diagrams. A general procedure for using
this representation in abstract interpretation is given; we examine in particular the possibility of
encoding higher-order functions into TDGs. Moreover, this representation is used to design a
widening operator based on the size of the objects represented, so that abstract interpretations
will not fail due to insufficient memory. This approach is illustrated on strictness analysis of
higher-order functions, showing a great increase in efficiency. @ 1998 Elsevier Science B.V.
All rights reserved.

Keywords: Abstract interpretation; BDD; Widening; Higher order; Strictness

1. Introduction

One of the basic problems of program analysis is that, even theoretically speaking,

there are properties of programs which cannot always be computed, such as termina-

tion. A way to circumvent this difficulty is to allow for partial or approximate answers.

Abstract interpretation is the theoretical framework to design automatic program anal-

ysis based on sound approximations. Although this theory deals very well with many

problems of program analysis, it may become unusable in practice when the analysis is

too precise, because of the amount of memory, or time required. The goal of this arti-

cle is to show that it is sometimes possible, using compact representations of boolean

fimctions, not only to increase significantly the efficiency of the analysis, but also to

balance the trade off between precision and efficiency during the analysis.

In Section 2, we will describe the symbolic representation of boolean functions. In

Section 3, we will show how to use it in abstract interpretation. We will expose in

detail the coding of higher-order functions through TDGs, and the use of those graphs

* E-mail: laurent.mauborgne@ens.fr.

0167~6423/98/$19.00 @ 1998 Elsevier Science B.V. All rights reserved.

PZZSO167-6423(96)00042-l

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82739747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

92 L. MauborgnelScience of Computer Programming 31 (1998) 91-112

in conjunction with data approximation. The last section is dedicated to a complete

example of abstract interpretation using TDGs: strictness analysis.

Because the most general framework of abstract interpretation is mathematical, most

elements of this paper have been described mathematically. Consequently, some of

the principles may come through unclear. The reader who is not familiar with some

concepts or does not want to read mathematical formulas should read the informal

descriptions, which will give an idea of what is going on. On the other hand, if the

reader is already familiar with one notion, he is invited to skip the informal presentation

corresponding to this notion.

2. Typed decision graphs

Typed decision graphs [3], or TDGs, are powerful symbolic representations of

boolean functions. They are a refinement of the well-known binary decision dia-

grams [5], or BDD, which are already widely used in many fields, such as circuits

synthesis and verification [4, 16,231, or protocols verification [20,22] but mostly un-

used in abstract interpretation (but see [15,8]). The purpose of this paper is to show

that this representation of boolean functions can in some cases have major applications

in abstract interpretation.

2.1. Informal presentation of binary decision diagrams

A BDD, as introduced by Bryant in [5], is a compact representation of the Shannon

tree of a boolean expression.

Shannon trees. Shannon trees are used to represent boolean expressions. They de-

scribe a way to evaluate the expression. First evaluate the value of one of the boolean

variables of the expression. If this variable is true, then we can represent a boolean ex-

pression containing less variables, and if it is false, we represent another boolean exp-

ression containing less variables. If, in the end, the boolean expression does not contain

any more variable, then its value is either true or false.

As a result, each node of a Shannon tree is associated to a variable, the left subtree

represents the boolean expression when this variable is false and the right subtree

when it is true.

In order to have a unique representation of a given boolean expression, the variables

of the expression are to be taken in a predetermined order.

For example, let us consider the following expression: (x A y) V (y A ~z) V (z A -y).

We can represent this expression f using a table:

X00001111

y00110011 lzl z01010101

f01100111

L. Mauborgne IScience of Computer Programming 31 (1998) 91-112 93

If x < y <z, the Shannon tree representing f will be

/=\

A A
A A A /i

0 1 I 0 0 1 1 1

Reduction rules. Once a boolean expression is represented by a Shannon tree, it is

easy to see how to gain space. First, there is no need to duplicate subtrees. The action

of merging redundant subtrees is called sharing. Instead of having a binary tree, we will

have a directed acyclic graph. In order to recognize left subtrees from right subtrees

we will draw the formers with dashed line. In our example, f will be represented

by

The second reduction rule is the elimination of useless nodes, namely nodes where

the different possible values of the variable lead to the same result. After this step, we

have the BDD representing f:

94 L. MauborgnelScience of Computer Programming 31 (1998) 91-112

2.2. Formalization work on binary decision diagrams

Abstract interpretation is a theoretical and formalized approach of program analysis.

So, to use BDDs in abstract interpretation we need to formalize them very precisely.

We shall first define the objects encoded by BDDs, which are boolean functions and

the names of the variables used to calculate them.

Let Var be a totally ordered set of variables. The order on Var will be noted <“.

Var, dAf { V C Var 1 1 VI = n}, where 1 VI is the size of the set V

To simplify our notations, we always order the indexes of set of variables according

to the order on Var. So when we write {xl,. . . ,x,} E Var, it means Vi, 1 d i dn, xi E
Var and xt <’ ... c’x,,:

$& Ef Var, x ({O,l}” + (0, 1))

PJkf U9?a
n

The pair ({xl, . . . , x,,}, f) E 9%, also noted f(xt , . . . ,xn) in this paper, is the semantics

of a boolean expression with n (free) variables xt < ” . . . <” x,, whose value is given

by the function f. The variable x alone stands for ({x},ld). The symbols 1, A and V

have the usual meaning of the boolean operators “not”, “and” and “or”. We define

Y(f(xt, . . . ,x,)) dgf {x,, . . . ,x,}.

BDDs are based on Shannon trees, whose uniqueness is insured by Shannon’s ex-

pansion theorem [21]. Written in our formalism, this theorem is:

Theorem 1 (Shannon’s expansion). Let f(xl, . . . , xn)EBn. vi, 16idn, 3!(fz;,f,)E

(Bn-t x gn_t) such that

j-h,. . .? xn>=(‘Xi~f~;)V(XiAL,)

A Shannon tree is a binary tree labeled with variables, 0 or 1. A binary tree T can

be defined as a partial function from (0, 1) *, the set of all finite words on (0, l}, to

the set of labels, with the prefix closure property i.e. the domain is not empty, and if a

word uu is in its domain, then u is in its domain too.’ The Shannon tree representing

fh,..., x,,) is defined as follows:

Wf(x1, . . ., x,))(u)~~~ if Iu] < n then nlul+l

if u=alaz-.. a, then f(al,a2,...,an)

where Iu] is the length of U.

’ uu is the concatenation of u and v.

L. Mauborgnel Science of Computer Programming 31 (1998) 91-112 95

As explained in the informal presentation, BDDs are compact representations of

Shannon trees, obtained by enforcing the two simple reduction rules: sharing and elim-

ination.

Sharing. This operation transforms the tree into a directed acyclic graph (DAG) by

sharing isomorphic subtrees. A binary decision DAG (BDD) can be defined recursively

as being either a node N of Var x bdd x bdd or a leaf in (0, 1).

As the transformation is described by the share function, it is obviously still unique.

share(B) d&f if St = root(k) then k else N(St(c),St\O,St\l)

where E is the empty word, root(k) is the tree with domain {E} and value k, and

T\u is the subtree of T with domain dom(T\u) %f {uluu E dam(T)} and such that

r\U(u) dzf T(UV).

The sharing results from the fact that if two subtrees are isomorphic the mathematical

objects representing these subtrees are equal. The results of share on them are obviously

identical.

Elimination of superjuous nodes. Once again, the transformation can be written as

transformation rules; the representation is still unique:

supp(N(x, 4, d2)) = if dl = dz then supp(dl) else N(x, supp(dl), supp(d2))

After applying this rule, a BDD does no longer represent one function of 8, but

all the functions whose results are the same regardless of the assignment of additional

variables absent in the BDD. For example, if Vx, y,z, f(x, y,z) = g(y) then f(x, y,z)

and g(y) are represented by the same BDD. This drawback does not really matter for

this work, because what we really manipulate are functions from (0, l}w to (0, I}.

2.3. TDGs

To reduce the size of the graph even further, we go back to Shannon trees and try

to produce new isomorphic subtrees. Then we will apply the same reduction rules.

Typed Shannon trees. The idea of typed Shannon trees [l] came from the remark

that

This means that as far as Shannon trees are concerned, f and lf are identical except

for the leaves: 0 becoming 1 and 1 becoming 0. So instead of having two different

trees, we only need one tree and a sign. Typed Shannon trees are merely trees with

signs. To be more precise, the labeling set becomes { -, +} x (Var U{O, l}), and if T
such that T(E) = (s, I) represents f then 1 f can be represented by T if you change

T(E) in t--s, I).

Now, the problem is that when using simple Shannon trees and just adding signs,

canonicity is lost: 0 can be represented by (+, 0) or (-, 1) for example. Let us simply

96 L. MauborgnelScience of Computer Programming 31 (1998) 91-I I2

/A
;/‘\ /‘\

A i/i -i\ i\
1 1 1 1 1 1 1 1

Fig. 1. Typed Shannon tree.

2
-/

/ \
Y Y
\
\

/
-1 /

‘2’ I/ -I

:

Fig. 2. The TDG for f(x,y,z)=(xAy)V(yA~z)V(zA?y), and f(r,x,z)=(~Ax)V(xA-rz)V(zA~x).

make a choice, once for all. Here is one that provides good results for the size of the

graph [17]:

Tst(f (xi ,...,%))(Q . ..a.)kfifif(ai ,..., Q,l,..., 1)=1

then (+,St(f(xl,...,x,))(a~ . ..a.))

else (-,St(lf(xi,. . .,X,))(Ul . . .LZi))

The resulting tree is represented in Fig. 1. The signs have been put on the edges

instead of the labels, and only minus have been represented to get a more compact

representation.

Resulting graph. Now, if we simply apply the same reduction rules as for a BDD,

still assuring the uniqueness of the representation, we get typed decision graphs. To

know the value of the function for a given assignment, follow the same method as for

BDD, counting the number of - in the path. If this number is odd then the result is

0, if it is even, 1.

The size of the TDGs looks quite reasonable, and it is in most case. But there are

still cases where it is exponential in the number of its variables [6]. If we restrict the

representation to boolean functions without explicit variables2, then it is sometimes

2 It is possible to represent boolean functions with explicit variables using boolean functions without

explicit variables, so it could still be useful.

L. MauborgneIScience of Computer Programming 31 (1998) 91-112 97

possible to reduce the size of the TDG representing the function by changing the

order of the variables (see Fig. 2 for an example). But there are cases where the

representation is still exponential, whatever the order of the variables.

2.4. Operators on TDCs

Not only does this representation saves space, but it saves time too, assuming the

operators on boolean functions are correctly translated.

An operator is a function from 9ZP to 9. The key property that allows for a fast

computation of operators is orthogonality [6].

Definition 2. Let Op be an n-operator. Op is said to be orthogonal iff

Qft,..., fn E 97, Vx E Var,

Op(f1,. . . ,fn)=~xAop(fi~,...,f,,)v~~oP(fi,,...~f~,)
Qk ,,..., k,,EBo, Op(kl,...,k,,)Ego

For example, 7, A and V are orthogonal operators.

An orthogonal operator on TDGs can be calculated by the following algorithm:

OprDG(kl,. . . , k,) = Op(kl,. . . , k,)

OPTDG(fl" . . ., fn) =

let x= inf U V(h),
l<i<n

let ri = OpTDG(f,,, . . .,f&) and T2 = OproG(f~x,. . .,fn,)

if Tl =Tz then T,

if the sign of T2 is + then (+,N(x,Tl,Tz))

if the sign of Tz is - then (-,N(x,~T~,~T2))

The proof of this algorithm is by induction on 1 U, Q iGn = V(f;:)l.

If we keep in memory the intermediate results, then the total cost in time of the

operator is 0(Ifi 1 x . . . x Ifnl), where lfil is the number of nodes of the TDG repre-

senting fi. So most of the time (see Section 2.3), calculation with orthogonal operators

over TDG are quite fast.

3. Abstract interpretation

3.1. Informal presentation of abstract interpretation

Abstract interpretation is a very general and formalized framework allowing to deal

with approximations. The rule of signs (positive multiplied by positive is positive,

etc.) can be seen as an abstract interpretation: the concrete domain (real numbers) is

98 L. MauborgneIScience of Computer Programming 31 (1998) 91-112

abstracted by approximate values in an abstract domain ({positive numbers, negative

numbers, zero}), and the concrete operation (multiplication) is approximated by an

abstract operation (the rule of signs).

The aspects of abstract interpretation that we will use are:

The possibility to lift automatically an abstract interpretation. That is to say, given

domains and their approximations, the possibility to approximate functions over those

domains.

Widening operators. When the semantics of a program can be expressed as the limit

of the iteration of a given function (often given by the syntax of the program), the

abstract semantic can also be expressed as the limit of the iteration of an abstract

function. But in some cases, more approximation is needed. Then abstract interpreta-

tion provides the possibility of using a widening operator, which is an operator that

alters the iteration, generally speeding it, but at the cost of wider approximation.

3.2. Recall of important aspects

Taking the most general framework [111, all the possible behaviors of programs

are described in a standard semantics. From the point of view of abstract interpre-

tation however, only a certain class of these behaviors is interesting. This class is

the collecting semantics. Then the abstract semantics is usually an approximation of

the collecting semantics3 that keeps for example only invariance properties. All those

properties are taken from sets called semantic domains, and one of the most impor-

tant tasks of an abstract interpretation is to describe the relations between the abstract

semantic domain 9” and the concrete semantic domain 9”.

The concrete semantics of a program is often given by the limit of the iteration of a

concrete semantic function, F’, starting from a basis I”, and using an inductive join

LIh to go to limit ordinals:

FQO q_CJr J_b

Fb”+’ dz Fh(+)

Fh” SF n;j<,F’fl when 1 > 0 is a limit ordinal

To ensure convergence, Bb is often associated to a complete lattice structure, the limit

of the iteration being then the least fixpoint of Fb (lfp(Fq)). The same ideas apply to

determine the abstract semantics of a program.

The relation between the concrete and abstract semantic can be described by a sound-
ness relation cr. (~,a) E CJ meaning that a is a sound approximation of the property c.

Moreover, one will want the approximation both sound and “good”. To define this no-

tion, abstract interpretation uses an approximation order on properties, <. The sound-

ness relation CSJ is then supposed to respect the approximation order, namely if ab’a’

3 The abstract semantics can be an approximation of whatever semantics, even another abstract semantics,

so for the purpose of relations between semantics, the approximated one will always be called concrete
semantics.

L. MauborgneIScience of Computer Programming 31 (1998) 91-112 99

and (c, a) E 0 then (c, a’) E 0. In this case, we say that a is a better approximation

than a’. In the most ideal case, there will exist one best approximation for each prop-

erty of 8’. It will be given by an abstract function c(.

Sometimes, there is none or many best approximation. Even when there is only one,

the computation of the abstract property (possibly obtained by an abstract iteration4)

may be too long or even infinite. A solution for all these problems is the use of a

widening operator. A widening operator is a partial function v” from a(.!?“) to 9’”

such that

($A exists) * (Vc E 9’: (32 EA: (c,a) E a) * ((c, +A) E a))

Then we can use the following abstract iteration with widening:

def pto = 1”

F”ti+l d&f v~(F~t~,F~(F~f~)}

F”Ti kf o”(U{F”rpj/9 < A}) when A > 0 is a limit ordinal

If moreover there is an abstract function c(, and 8” satisfy:

Consequently if the concrete iteration sequence and abstract iteration with widening

are convergent then their limits FbE and F’t’ are such that a(F”)<“F”T”.

In fact, that limit might be a post-fixpoint, in which case the result can be refined

using a narrowing operator [lo]. For more results and details on abstract interpretation,

see [ll].

3.3. Using TDGs

Basically, TDGs can be used to encode the data handled by the abstract inter-

pretation. Let us call /3 the encoding between 8” and 39, Fb the operator induced

by the abstract operator. Considering the properties of TDGs described in Section 2
- i.e. their compactness and the efficiency of their operators - the replacement of

the abstract iteration by the iteration of Fb on 93 will in general fill considerably

less space, and hopefully take less time than the iteration on classical representations.

But, while it is theoretically always possible to find an encoding, not all encodings

have these properties. As a trivial example, a coding that associates a variable (and

whatever function from (0, 1) to (0, I}) to each element of 9’” will just fill more

space.

4 That is to say the limit of the F”“.

100 L. Mauborgne I Science of’ Computer Programming 31 (1998) 91-1 I2

Although we have no general rule to find a good encoding, we provide some generic

tools that can help the design or the use of such an encoding. The first tool will

transform encodings of first-order functions into encodings of higher-order functions.

This tool makes the design of the encoding easier, because the encoding of first-

order functions only is needed. Moreover, it applies to the encoding of the abstract

function itself into TDGs. The second tool is a widening operator taking advantage

of the structure of the TDGs. It can be used in any abstract interpretation to produce

approximations based on the complexity only.

3.3.1. Lifting an abstract interpretation

Informal presentation. Given the abstractions over two domains, it is possible to

abstract the set of functions over those two domains by using the set of functions over

the associated abstract domains. If those two domains are already encoded into BDDs,

it is then possible to code the functions over those domains using BDDs. This cannot

be straightforward, as functions over BDDs are not boolean functions. The point in

transforming these functions into BDDs is to replace the variables representing BDDs

by (more) boolean variables.

Bounding the number of possible BDDs the variable can represent is a necessary

condition to achieve that transformation. So we choose to bound the number of vari-

ables of the BDDs that the variable represents. For example, we will work under a

limit of one boolean variable for the BDD variable f. For a better understanding, let us

come back to Shannon trees - the same can be done with BDDs -. We can represent

the function that takes f and gives a boolean expression almost like a Shannon tree.

The difference is that, there being four different boolean expression with at most one

boolean variable, one should have four subtrees coming from f. The tree will have

the following structure:

This variable over BDDs can be replaced by two boolean variables, x1 and x2, chosen

to be taken before any variable in the subtrees:

L. Mauborgnel Science of’ Computer Programming 31 (1998) 91-112 101

So we have replaced f by the following variable boolean expression with at most

one boolean variable y: 1yAxl VyAx2. This construction will be extended and justified

in the next paragraph.

Technical aspect. Let 9; and 9; be two abstract semantics encoded into TDGs by

pi and p2. Moreover, we will suppose that $(<~) & Y):(<i) and Y’z(=$) & Pi(4;)

are Galois connections. 5 As suggested in [9], such ?ialois connections can 2 lifted to

functions:

is also a Galois connection, assuming < is the pointwise ordering,6 and A F% B is

the set of monotonic functions from A to B.

The lifted semantic domain contains functions from 9: to Pi. It means that if

we want to extend directly the encoding to the lifted domain, we will need func-

tions over boolean functions, which are not directly representable by TDGs. This

is because we cannot make a binary choice after testing a functional variable, as

such a variable can take more than two different values. A solution is to trans-

form the tests of functional variables into a sequence of binary tests in required

number.

But a variable representing a TDG could take an infinite number of value, as B is

infinite. Accordingly, we will first restrain the set encoded into TDGs to BT dgf U,, BI,

where BT dAf ({O,l}” n -+ (0, 1)) + C$, Varz being the set of variables used in BJ and

VarT dJZf U, VarX.

Let 2f.b E BT; then 3, f E Varl, so that testing a value of f can be replaced

by testing the value of a finite set of binary variables. Three steps will occur when

transforming this expression into a boolean expression: first create this set of binary

variables (using v(f)), second link an assignment to this set of variable to an assign-

ment to f (using buiZd(u(f))), at last replace f in Af.G by the variable function just

built. To understand those stages better, we will go through them on a simple example,

Lf .2x. fx ’ In this example, f E Var!.

For the construction of the set of boolean variables, we use Shannon’s expansion

theorem in the following form: a variable f of Sari,, is equivalent to a pair of

variables (eZse,(f), then,(f)) E Var: x Var:, where else,(f) represents the value of f

when its first variable is false, and then,(f) when it is true. As we want to ensure that

those variables are distinct, we require the following properties for then,, and else,,:

Vf,g E VarL+l, then,(f) # else,(g) and both then, and else,, are injections. We can

‘That is, Vc E @, Va E 9’ : (c<by(a)) w (a(c)<‘a).

6 f=Gg - Vzc E 91, f(x)=Gzg(x).
’ To distinguish between functional variables and elements of Var, elements of Var are noted x, y,Xi, .,

and functional variables f, g..

102 L. MauborgnelScience of Computer Programming 31 (1998) 91-112

now define the set of variables associated with a variable f of Vurf, v(f) E @(Vur):

v(f) dzf {b(f)} if f E Varl

u(f) dzf v(else,(f)) U u(then,(f)) if f E Vc~r,t+~

where b is a bijection from Varl to Var. It is easy to prove by induction that v(f) is

just a set of 2” distinct boolean variables, {xl , . . . ,x2”}. Let us go back to the simple

example, u(f) = { x1,x2}, with x2 # xl. Actually, two boolean variables are exactly

what is needed to represent the four different possible values of f.

Now we build the variable function associated to this set of boolean variables, so

that we can apply this set to boolean values:

build(x) ?=f x,

build{xl ,. . .,x2”} dzf ly.7~ A buiZd{xl,. . .,x~~-I} V y A build{x2.-l+l,. , .,x2”}.

Once again, this definition is justified by Shannon’s expansion theorem. In our example,

build{x1,x2} = ly.-y AXI V y Ax2.

It is now easy to translate the assignment of a variable f of Vari by FE ((0, 1)” +

(0, 1)) into an assignment of u(f): just assign to each variable of v(f) the value of

F applied to the correct boolean values, such that F equals build(v(f)) in which all

variables of v(f) have been instantiated. So, for example, substituting the variable f

of Vu/ by the function Ix.7~ is the same as substituting u(f) = (x1,x2) by (l,O).

We can now code Br. Let 2.f .GEBt, then 3, f E Vat-~. Let {yt,. . . .y~} = s(Q))

where s is a permutation on Vur such that ~2” is less (for the order on Vur) than the

smallest possible variable appearing in G. Then if the encoding is called /3t:

/?‘(Af.G) cf Ayl , . . . , y2n.W/build{yl,. . . , YP}].

Example. ~t(~f.~x.fx) = AXI .Ax~.~x.~x A xl V x A x2.

We now have an encoding of 9~,,, if we can code it into Bt. To achieve this, we

will assume the following hypothesis on /3r: for all variable of 9; there exists an N

such as each instantiation of the variable is coded in 99,, with n <N. Then /3; of such

a variable is a variable in Vuri. So

This coding is interesting for abstract functions too, because if G = lfp(F2) then 1f .G

= lfp(Fi,2) where F1,2(A~.y) kf Rx&(y). So if Fi is coded into TDG, Fp_2 can

be coded into TDG too.

In the particular case where 9; = Pi, we have coded functions over 9;. As abstract

functions are just functions over S:, we can thus code them into TDG, making the

L. MauborgneIScience of Computer Programming 31 (1998) 91-112 103

iteration faster. 8 To encode higher-order functions on 97, we just have to iterate this

construction, as now first-order functions are just TDGs. For example, the second-order

function &(1f,?x.g(f(x))) can be encoded the following way: g E VW!, so u(g) =

{zi,zz} and so Pf(M~f~x.s(f(x)))) = *(A Z,,Z2,X,,X2,X).7(~XA xi v X A X2) A zi v

(lx A xi V x A x2) A z2.

A widening operator on TDGs. The question of the size of a TDG is at the core of

efficiency. Of course, taking smaller space is efficient in itself, but as seen in Section 2,

the speed of operators upon a TDG depends directly on its size. To reduce the size we

can use less powerful representations without explicit variables and try out different

ordering for the variable. So far however, no really satisfactory solution has been

brought out, and some cases will always remain exponential for any ordering. So the

proposed solution - specific to abstract interpretation - is a widening operator based on

the size of the TDG. This widening operator is very general and can be used whenever

the size of the abstract domain is too big. In such a case, the encoding of a single

element of the abstract domain can be too long for practical manipulation. It is possible

by the use of this widening operator to chose an approximate solution that is compact

enough for representation on a computer. This widening is quite different from classical

widenings used in abstract interpretation as it does not use any semantic information to

approximate the result, but only tries to approximate what fills the most space, leaving

as much information as possible in the computation framework.

Prerequisites and characteristics. This widening operator is closely related to the

approximation ordering upon Pb, <b induced by $‘, which should be compatible with

the structure of the TDGs. In fact what the widening operator exactly needs is a way

to compute the least upper bound of two TDGs for <b, and, as this operation will be

essential to the widening operator, the cheaper the way, the better.

Then, the widening operator takes in a limit size I and a TDG f. The result v(I, f)

is a TDG g such that /g(d I9 and f < bg. To make sure that it is always possible (for

all positive I), we set (+, 1) or (-, 1) as the top of P’#.

This operator can be used to produce a very classical widening operator as defined

in the beginning of this section: vbA dzf v(Z(max(A)),max(A)) where max(A) is, if

it exists, the maximum of A for the computational ordering lo (Lb), and 1 a function

that yields the limit.

If the abstract function is coded into TDG too, then this widening operator can be

used to do static widening by approximating the abstract function. It can be very prof-

itable because if the TDG used to represent the abstract function is too big, each step

of the iteration will be too long, and sometimes the size of the TDG representing the

iterates will be directly related to the size of the TDG representing the abstract function.

Approximating the abstract function is sound, as justified by the following property:

8 This is not the case if the entire abstract function is not needed. In the case of chaotic iteration, for

example, we can find better encoding of abstract functions.

9 191 is the number of nodes of g, i.e. its “size”.

lo The ordering used to ensure termination of the iterations.

104 L. MauborgneIScience of Computer Programming 31 (1998) 91-112

Property 1. Let fi and F2 be monotonic functions (for C). If Vffi(f)<F~(f) and
F, or F2 are monotonic for < then

Proof. f<g implies

Fz(g) by hypothesis.

on the iterates. 0

fi(f)<F2(g) because F,(f)<fi(g) by monotonicity and Fl(g)$
FI(l)<F2(1) by hypothesis. The property follows by induction

Algorithm. The problem is that for this widening operator we will have to find the best

possible g such that 191~ 1, in a decent amount of time, It is not reasonable to search

for the best solution I’ as it would theoretically require to explore all the possible

derivations of a given TDG, which is exponential in the size of the TDG.

Hence, we will try to modify the TDG in order to apply one of the reduction steps

described in Section 2. To obtain sharing, we just consider two nodes of the TDG

and, to make them equal, replace them by the least upper bound of the two nodes. To

obtain elimination of super-uous nodes, we replace a node N(x, T,, T2) by the least

upper bound of TI and T2. Because of the properties required on =$‘, this operation

gives a TDG greater (for <b) than the previous one.

The algorithm proceeds by steps: each step, if the size of the TDG is above the

limit, try each of the reductions above and take the best one; repeat. The best one is

the one with the highest rate

number of nodes above the limit gained

cost of the reduction

where the cost of the reduction is, for a sharing of TI and Tz,

cost(T,-+T’) x mult(Ti)+cost(7’+T’) xmult(T2)

and for an elimination of T = N(x, T,, T2),

(cost(T, -+ T’) + cost(T2 + T’)) x mult(T)

Each reduction implies taking the least upper bound T’ of two TDGs Tl and T2.

The computation of the least upper bound is supposed to yield cost(Ti + T’) and

cost(T, -+ T’). l2 Mult is the multiplicity of the node, namely the number of time the

node would appear in the Shannon tree representation of the TDG, so that changing a

node shared by many would cost more than changing one used by only one.

Each forced reduction will not automatically reduce the size of the TDG because

the least upper bound may contain more new nodes than gained through the reduction.

However, if the size of the TDG is greater than 1, it will contain a node of the form

N(x, (-, l),(+, 1)). This is because it is the only possible TDG with one variable, so

‘I That is to say the min (for <b) of all the possible solutions.
I2 This cost is supposed to express the loss of precision; for example it could be the length of the maximum

chain between 27 and T’.

L. MauborgnelScience of Computer Programming 31 (1998) 91-l I2 105

2

\

\
_’

\

Fig. 3. f and the two best approximates with 3 nodes or less.

the only possible node in which the greatest (for <“) variable of the TDG appears.

So, if (f, 1) or (-, 1) represents the top of P”, the reduction of this node into the

top will always be tried, ensuring that at least one of the modifications tried on the

TDG within one step reduces the size of the graph. Thus if the limit is positive the

size of the TDG will at each step either decrease or be less than or equal to the limit.

Besides, after each step, the new TDG is greater than the previous one for <b, so the

algorithm is correct.

Example. Consider the function f = (v A x) V (x A -z) V (z A -a) defined in the

examples of BDDs, with the pointwise ordering for +b based on O<b 1. See Fig. 3 for

the possible solutions.

Complexity. Considering that at each step, the size of the TDG is reduced by one at

least, the number of steps is smaller than the difference between the limit and the size

of the TDG. But this is still too much: this difference may be exponential. To reach

faster a size closer to the limit, we use a less refined algorithm which assumes that

(+, 1) or (-, 1) represents the top. For each node such that the size of the TDG without

that node l3 lies between the limit and the limit plus half the difference between the

limit and the size of the TDG, we try to replace it by the top and take the one that

gives the best result. That way, each step of this algorithm at least halves the difference

between the limit and the size of the TDG.

The most precise algorithm requires each pair of node to be tested. The multiplicity

of each node can be calculated in a time polynomial in the number of nodes by going

through the TDG and tagging the nodes. As a result, if the computation of the least

upper bound (plus the computation of the costs) is polynomial in the size of the TDGs,

then the most precise algorithm is polynomial in the size of the TDG.

Thus, we can combine the two algorithms in a way such that if the difference of the

size of the TDG and the limit I is bigger than P(1) - where P is a polynomial - then

use the rough algorithm else use the other one. Assuming that the limit is polynomial

in the number of variables of the TDG, then the global algorithm is polynomial in the

number of variables.

I3 That is, after replacing this node by the top.

106 L. MauborgnelScience of Computer Programming 31 (1998) 91-112

4. A complete example: strictness analysis

In this section we describe a complete example of program analysis using abstract

interpretation and TDGs. Let us define first the property to be computed.

Definition 3. A function f is said to be strict in one of its arguments x if everytime

the evaluation of that argument fails, the evaluation of f(x) fails.

The evaluation fails if it ends with an error or does not terminate.

The goal of a strictness analysis is to determine whether a function is strict in any

of its arguments. This can be useful for example in the compilar optimization of a call-

by-need programming language. The principle of such an implementation is to keep

the arguments of functions in a closure until they are first needed in the evaluation of

the function and then evaluate them. If a function is strict in an argument then that

argument will be always needed, so the compiler can evaluate the argument anyway,14

saving in the meantime the space for the closure.

Strictness analysis is a good example of application of TDGs because it is a useful

analysis - in a compiler, for example - but the most precise abstract interpretations

known so far are too slow to be used at higher order.

4.1. Standard strictness analysis

What we call standard analysis is the abstract interpretation which will be coded into

TDGs. The well-known analysis we use as a basis is one developed by Alan Mycroft

in [181, that still seems to be one of the most precise, and that has the advantage of

being already coded into boolean functions.

The concrete domain. Mycroft’s analysis deals with first-order functions from base

types to base types. The concrete semantic domain 9’ is the set of relations from $3 to

9 [12] where $3 is a complete domain with infimum I and the values from the base

types, such as integers. I” dzf ;Ix._L. The concrete semantic function is constructed by

induction on the syntax of the expression defining the function: F’ = S[f (x>=e]l.

S[f (x1 =b(el ,...,en)ll(g)dAf {(x,b(v ,...,h))l A (x,Ui)ES[[f(x)=eill(g)}
lgign

S[f (x)=x1(g) tzf {(x,x)lx E 9}

sBfcx>=f(e>ll(g)~f{(x,w)l(x,u)ES~f(x)=ell(g)A(u,w)Eg}

where b are constants of the language, such as +, integers or the conditional. b is the

corresponding constant in 9’. For example 2 = 2, and &(xI,xz,x~) = if x1 = I

then I, if xt=true then x2 and if x1 =f alse then x3.

I4 Assuming there is no side effect.

L. MauborgneIScience of Computer Programming 31 (1998) 91-112 107

The abstract domain. The abstract domain introduced by Mycroft is the set of

monotonic functions from (0, I} to (0, l}, with the ordering O<“l, l5 which can be

interpreted as:

- Ix.0 the function never terminates,

- Lxx the function is strict in x and

- Ax. 1 we do not know.

Igdzf Ax.0. The abstract semantic function is also defined by induction on the syntax:

S’[f (xl = b(e 1,. . . ,en)](g’) dzf b’(S”[f (x1 =et](g”), . . . ,S”[f (x1 =e,](g”))

S”[f (XI = x](g#) kf ilr .X

S’[f (x1 = f (eI]l(g’) kf g’ 0 S”[f (x> =e](gR)

b” represents b on 9”. For example, 2’ = 1 and ite”(f,,fz,f3) = f-1 A (fi V f3).

The relations between the two semantics. The soundness relation between CP and S#

is described by a Galois connection, 9’ & 9’” :
1

a(f)(O) dzf if {x [(1,x) E f} = {I} then 0 else 1

~~(f)(l)~&~ if {yIx~9A(x,y)~f} = {I} then 0 else 1

y(LX.o)d~f IX. I

y(IX .x) Ef {(I, I)} u (($3 - {I}) x 9)

y(LX.1)d~f9Xx

To ensure that F” is a good approximation of F we shall make a few more assump-

tions on the constants:

if Vi, a(fi)<“gi then

Then

Property 2. a(lfp(F)) =$ rfp(F’).

Proof. By induction on the syntax, we shall first prove that V’f E @ and Vg” E @,

a(f)<‘g” implies that a(F(f))=$F”(g’), then as ~(1”) =I# the inequation on the

fixpoints will follow by induction on the iterates.

l5 The computational ordering is the same as the approximation ordering.

108 L. Mauborgne /Science of Computer Programming 31 (1998) 91-Ii2

So let us suppose a(f)=$g’.

cl(S[f (x)=b(el,...,e,)~f))

=a ((,,,,~,...,s.))~~~~l;,)t~,f(X)=LIK/)))

<“bA(S”[f (x> =e~j(g”), . . .,S’[f (x1 =e,](gff))

?S”[f(x) =b(el,...,e,)j(g’)

The first line is given by definition of S, the second by hypothesis of induction the

third by the property of the abstract constants, and finally the fourth by definition of

9:

a(S[f W=x~(f)) = cI({(X,X) Ix E 9})

= kx

= S”[yf <x>=x](gS)

For the last step of the proof we need a few more results on the composition of

relations. RI o R2 dAf {(x, w) 1 (x, v) E R2 A (0, w) E RI}. Suppose cc(R1) o a(Rz)(a) = 0.

If cr(R2)(a) = 0 then {~IxEAA(x,~)ERz} = {1}16 and {~I(I,~)ERI} = {I},
so {y IXEA A (x,u)~R2 A (v,~)ERI} is {I}, so a(R, 0 R2)(x) = 0. If a(R2)(a) = 1

then {vI(x,y) E RI) = 1-l-j so {ylx E A A (x,0) E R2 A (u,y) E RI} is {I}, so

a(R1 o R~)(x) = 0. It means that VRi, tx(R1 0 R2)<“a(Rl) 0 GI(RZ)

a@[f(x>=f(e>J(f)) = a({(x,w)j(x,u)ESUf(x)=ell(f)~(~,w)Ef))

= a(f 0 S[f (x>=e](f))

4 a(f) 0 m(SI[f (x>=eJ(f))

=$ g# 0 SQf (xl=e](g8)

6” SQf (xl =f (e>](g”>

The first line is the definition of S. Then use the definition of the composition of

relations, then what was just proved above on composition and a. The last lines use the

fact that a(f)=$g” by hypothesis, a(S[f (x>=e](f))@S”[f (x>=eJj(g’) by hypothesis

of induction, and g” is monotonic as every function in 9”. 0

It is interesting to notice that Mycroft’s analysis gives more than just the strict-

ness result: it gives results useful in further analysis using this function. For example

f (x) =f (x) will give Ax.0 so f is strict in x. With the only information that f is strict

in x we cannot say that g defined by g(y)=f (0) is also strict.

‘61fa=OthenA={_L}andifa=1 thenA=LP.

L. Mauborgnel Science of Computer Programming 31 (1998) 91-112 109

4.2. The encoding

To code the abstract domain, we merely add variable names and Pb becomes 9?t.

Abstract functions could be coded using the method presented in the previous section,

as they are functions from 59, to 3Jt. The problem when dealing with higher order

functions is that, since the size of the type is increasing and each step of the iteration

requires every possible value of the previous iterate, we will lose all the interest of the

TDG for recursive functions. Accordingly, we prefer to code each recursive call by a

new variable, keeping the arguments of the recursive call. That way, each step of the

iteration will only need to make substitutions in the previous iterate, the number of

which will be polynomial in the size of the program.

So this abstract interpretation can easily be lifted to higher-order functions. As the

encoding is very close to the abstract domain, we can have a better build function

that associates the boolean function to the set of variables, keeping only monotonic

functions: build{nl, . . ,xp} def ly. A buiZd{xl ,..., xpl} v y A buiZd{x2~-~+, ,..., xzm}.

Given Pb for higher-order functions, here is the abstract function:

Sb[h.ejp(gb) dzf Sb[e]p[x --f buiZd(u(x))](gb)

p is an environment function. It maps program variables to TDGs. If the variable is

associated to a previously analyzed function, it gives the TDG representing the result. If

it is a free variable, it gives the TDG as constructed in the previous section representing

a variable function, which is, if f is such a function, buiZd(u(f)). We use the type of

the variable in order to know what u(f) is, that is to say the exact number of boolean

variables needed. If the variable represents the function defined (recursive call), then

p returns a single boolean variable, and each time it is applied it is replaced by a new

variable that will represent the application.

Example. s x y z = (x z> (y z). l7

The type of x is a + p -+ y, and so it can take at least 24 different values. So we

need four boolean variables v(x) = { XI,X~,X~,X~} to represent all the different possible

states of x:

p(x) = kz.jlb.x, v x3 A a v (x2 v x4 A a) A b.

lfp(Sb[(x z> (y z)]p) is the TDG represented in Fig. 4. As, if (xI,x~,x~,x~) =

(0, 0, 0, 0), the TDG is 0, s is strict in x. But if x1 = 1, the TDG is 1, so the

interpretation tells us nothing about the strictness of s in y or z.

I7 This function is one of the most famous higher-order functions as with S, k (k x y =x) and i (i
x =x), one can code the entire I-calculus.

110 L. MauborgnelScience of Computer Programming 31 (1998) 91-112

Xl

/
/

x2.
/

/

/ \

x3 23
/

/

/
X4

\

\

\

\ 4
\ I1 ;I Yl

\ / /
\ \ / /

\

~

\ / /
-1 YZ /

\ /

\ I

/ _

_\I ’
4 f:
’ \-I

b:

Fig. 4. s x y z = (X Z) (y z> .

The ordering on .Yb is the implication, so the max of two TDG is very easy to

compute; it is A which is orthogonal. So we can use the widening operator on that

example. Moreover, the pointwise ordering on the abstract functions leads to the same

ordering (implication) on the representations of the abstract function, so that the same

widening can be applied to the abstract set and to the abstract functions.

4.3. Practical results

Strictness analysis have been implemented using TDGs, ” and tested on examples

given by Sebastian Hunt to compare the efficiency of this implementation with the one

he developed based on ‘frontiers’. All the results below are for the interpreted version

(in camllight) and could be improved by compilation. Besides the implementation of

Sebastian Hunt was only a prototype implementation, so the comparison might be

unfair. However, this results should not be taken as comparable with state of the art

strictness analysis, but as an indication of what can be gained using TDGs in program

analysis.

I8 The TDG package used for this implementation is the one developed by Brace, Rude11 and Bryant, as

a subset of COSMOS.

L. MauborgneIScience of Computer Programming 31 (1998) 91-112 111

The problems raised by these examples are typical and standard for strictness anal-

ysis. The first three examples did not require the use of the widening operator, so

the results have the same accuracy as with frontiers. The first one is a quite classic

nqueen solver, using few higher-order functions. The results are quite good with both

methods. The second one uses map and foldr. I9 The third one uses foldr at a higher

order, applying it to append, so the result of the analysis is much bigger.

The fourth example analyzes foldr written in continuation passing style, leading to a

drastic increase in the type order. Two functions are analyzed with type (CI list -+ a

list--+ (cI 1istAp) --+j?> +a list 1 ist--+cr list --+ (a list--p) -p. It is

interesting because the result is so huge that it cannot be computed and intermediate re-

sults could not be stored by the computer. So it seems to be an example where the TDG

representation is exponential that shows the usefulness of the widening presented above.

Of course, the result of the analyze is approximate due to the use of this operator.

For the last example, a good alternative to a complete analysis was presented in [131,

that gives results in a few seconds. However, this analysis only answers one question

and so is not usable for separate compilation. Moreover, the same technique could be

applied using TDGs to answer the same question.

5. Conclusion

This approach proved to be efficient in strictness analysis and could be advanta-

geously used in many other abstract interpretations, whatever the context, as its idea is

based on the semantic domain not on a fixpoint algorithm. For instance, it would work

with backward and forward analysis, total or partial fixpoint computation, etc. But the

last example shows that it may still be too slow to be usable in practice. This work is

totally compatible with the theoretical framework of abstract interpretation, so it could

be used in association with other works on this subject. The idea of lazy evaluation of

abstract functions from Ferguson and Hughes was mentioned above, but the results of

Baraki *O on interpretation of polymorphic functions in [2] would be very useful for this

approach too, as it could lead to a compact analysis usable in separate analysis. The au-

thor believes that the combination of these techniques could give analyzers based on ab-

stract interpretation for higher order functions efficient enough to be usable in practice.

I9 foldr is the classical function that applies recursively a binary function to a list.

2o He designed a way of using results on polymorphic functions to find the properties of their instantiations.

112 L. Mauborgne I Science of Computer Programming 31 (1998) 91-I 12

Acknowledgements

1 would particularly like to thank Patrick Cousot, for his very heplful advice and

support, and for the good idea of using TDGs to represent abstract properties. All the

members of his team helped me too with every little problem. The comments from

Thomas Jensen were very useful to increase the clarity of this paper. Thanks also to

Sebastian Hunt for his very useful examples.

References

VI
VI

131
t41

[51

[61

[71

PI

[91

[lOI
1111
u21

[I31
[I41

u51

[I61

[I71

[I81

u91

WI

PII
WI

S.B. Akers, Binary decision diagrams, IEEE Trans. Comput., 1978.
G. Baraki, Abstract interpretation of polymorphic higher-order functions, Ph.D. Thesis, Computing

Science Research Report of the University of Glasgow, 1993.
J.P. Billon, Perfect normal forms for discrete programs, Technical Report 87039, BULL, 1987.
A.R. Brayton, B. Lin, H.J. Touati, Don’t care minimization of multi-level sequential logic network,

Proc. lCCAD’90, 1990.
R.E. Bryant, Graph based algorithms for Boolean function manipulation, IEEE Trans. Comput. C-35

(1986) 677-691.
R.E. Bryant, Symbolic Boolean manipulation with ordered binary-decision diagrams, ACM Comput.

Surveys 24 (1992) 293-318.
G.L. Bum, C. Hankin, S. Abramsky, Strictness analysis for higher-order functions, Science of Computer

Programming 7 (3) (1986) 249-278.
M.-M. Corsini, M. Musumbu, A. Rauzy, B. Le Charlier, Efficient bottom-up abstract interpretation of

logic programs by means of constraint solving, PLILP ‘93, 1993.
P. Cousot, R. Cousot, Static determination of dynamic properties of recursive procedures, IFIP Conf.

on Formal Description of Programming Concepts, St-Adrews, N. B., Canada, 1977, pp. 237-277.
P. Cousot, R. Cousot, Constructive version of Tarski’s fixed point theorems, Pacific J. Math. (1979).
P. Cousot, R. Cousot, Abstract interpretation framework, J. Logic Comput. 2 (4) (1992) 51 l-547.
P. Cousot, R. Cousot, Galois connection based abstract interpretations for strictness analysis,

Proc. Intemat. Conf. on Formal Methods in Programming and their Applications, Lecture Notes in

Computer Science, vol. 735, Springer, Berlin, 1993, pp. 98-127.
A. Ferguson, J. Hughes, Fast abstract interpretationusing sequential algorithms, Proc. WSA’93 (1993) 45 -59.
P. Hudak, J. Young, Higher order strictness analysis in untyped lambda calculus, ACM Principles

Programming Languages (1986) 97- 109.
B. Le Charlier and P. Van Hentemyck, Groundness analysis for prolog: Implementation and evaluation

of the domain Prop., Proc. PEPM’93, 1993.
J.C. Madre, C. Berthet, 0. Coudert, New ideas in symbolic manipulation of finite state machines, hoc.

ICCAD’90, 1990.
J.C. Madre, J.P. Billon, Proving circuit correctness using formal comparison between expected and

extracted behavior, Proc. 25th DAC, 1988.
A. Mycroft, The theory and practice of transforming call-by-need into call-by-value, Proc. 4th

Intemat. Symp. on Programming, Lecture Notes in Computer Science, vol. 83, Springer, Berlin, 1980,

pp. 270-280.
C. Ratel, Definition et realisation d’un outil de verification formelle de programmes LUSTRE, These

de I’Universite de Grenoble 1, Chapter 11, 1992.
J. Schwable, K.L. McMillan, Formal verification of the encore gigamax cache, Intemat. Symp. on Shared

Memory Multiprocessor, 199 1.
C.E. Shannon, A symbolic analysis of relay and switching circuits, Trans. AIEE 57 (1938) 305-316.
D. Taubner, E. Enders, T. Filkom, Generating BDDs for symbolic model checking in CCS,

Proc. CAV’BI, 1991, pp. 203-213.
[23] H.J. Touati, H. Savoj, R.K. Brayton, Extracting local don’t care for network optimization,

Proc. ICCAD’91, 1991.
[24] P. Van Hentemyck, A. Cortesi, B. Le Charlier, Evaluation of Prop., J. Logic Programming (1995)

237-278.

