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Abstract 

The segregation of size is studied by linear and nonlinear acoustic methods for an unconsolidated granular medium. By applying 

vertical vibrations we study the variation of the average compacity and the acoustic transfer function in order to follow the 

segregation process with an acoustic probing. 

© 2010 Elsevier B.V.
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1. Introduction 

The segregation of size is a process occurring in natural unconsolidated media like sand, cereals and in industrial 

media such as metallic powder. It is sometime referred to the so-called "brazil-nut effect" due to the observation of 

the segregation effect in manipulated mixed nuts containing large Brazil nuts: they always end-up at the top of the 

pile [1]. This effect, such as the compaction process, can be studied in a laboratory scale experiment, where a small 

container filled with two sizes of spherical beads made of the same material is submitted to repeated mechanical 

taps. Here we propose some characterization of the segregation process by acoustic means, having in mind that the 

acoustic properties of the granular medium should depend on the bead size. However, it is not straightforward to 

understand how the acoustic propagation is influence by the bead size, neither in the long wavelength limit nor in 

the multiple scattering regimes. One of our goals is consequently to extract the acoustic wave attenuation and 

velocity evolutions with bead size in three-dimensional granular media, especially when the wavelength is much 

larger than the bead size. 

 
By applying vertical vibrations of the initially prepared medium where the largest beads (a half volume of the 

total medium) are at the bottom and smallest at the top, we study the variation of the average compacity (obtained 

from a measurement of the volume) and the evolution of the acoustic transfer function close to the bottom of the 

container. We observe that this average compacity evolution with taps is not monotonous like in mono dispersed 
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media but grows to a maximum before decreasing at the end of the segregation process. Due to the differences in the 

acoustic properties for packing with different bead sizes, it is possible to follow the segregation process with an 

acoustic probing. To do so, we record the acoustic transfer function between two piezo-transducers at 60 stages 

along the process. Using the observed resonances, we derive the linear elastic parameters of the medium. We also 

apply the nonlinear resonance method in order to obtain some nonlinear elastic parameters and their evolutions 

along the segregation process. We show that the acoustic transfer functions are strongly sensitive to the segregation 

stage.  
 

The acoustics of three-dimensional bidispersed granular packing is poorly documented in the literature. We start 

here with the simple case of the bidispersed chain of beads, and derive the long wavelength acoustic wave velocity. 

For two beads with the same mechanical characteristics [2] [3], 

 

beads 1, radius R1, masse m1, 

beads 2, radius R2 , masse m2. 

 

The distance of approach is written as  
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and the stiffness constant is  
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where F0 is the force applied on the beads and EE 413
2 /*  is the effective modulus the beads, with E  the 

Young's modulus and  the Poisson's ratio. 

 

We consider now a one-dimensional chain composed of two types of beads as shown in Fig.(1) where contacts 

between two beads are represented as springs. 

 
 

Fig.1 One-dimensional bidispersed chain 
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For each type of beads corresponds one equation of motion [4]: 
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 with a 2 R1 R2  are used to find the dispersion relation, 
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with 0 K /m1 and 0 K /m2 . The long wavelength sound velocity for the acoustical mode is then 

obtained in the form: 

C0 R2
1/ 3Rr

1/ 6 1 Rr

5 / 6
1 Rr

3 1/ 2
, (6)

where Rr R1 /R2 with Rr 1. This formula shows that even for a simple one-dimensional bidispersed chain, the 

long-wavelength wave velocity has already a complicated dependence on the bead radius ratio. For three-

dimensional bidispersed arrangements, it is expected that in addition to this possible effect of contact elasticity 

dependence on the bead radius, other effects could play a role as for instance the average number of contact per 

bead.

2. Description of the sample 

The experimental setup shown on Fig.(2) is composed of a container with a movable plate at the bottom excited 

by vertical mechanical solicitations from a low-frequency shaker. These imposed "taps" produce an acceleration 

( ) of the movable plate of about 20 G  sufficient to induce segregation of the medium (in our case by a 

convection-type motion of the grains [5]). Along the segregation process, the shaker applies 106
 taps (one period of 

a sine wave at 60 Hz ) separated by one second to allow for the mechanical relaxation of the medium. At 60
stages of the segregation process, an acoustic probing of the medium is performed. 
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Two piezo-transducers placed on two opposite side walls close to the bottom of the container measure the 

frequency response function of a granular medium slab. Acoustic resonances of this slab can be observed, starting 

for the lowest frequency with a half wavelength resonance because of the rigid-rigid boundary conditions imposed 

by the piezo-transducers. From the resonance frequency evolution with the number of taps, it is possible to assess 

the evolution of the longitudinal sound velocity. At a given stage of acoustic probing, it is also possible to apply the 

so-called nonlinear resonance method, in order to extract the nonlinear hysteretic parameters [6]. Two other piezo-

transducers are used to measure the change in height of the medium along the segregation process, by a pulse-echo 

method. 

We perform the acoustic probing of a granular sample made of glass beads with a glass density  about 

2500 kg.m 3
. The total mass of the medium is 2 kg  where half of it is composed of beads with a radius 

R1 1.10 3 m  and the other half with beads of radius R2 4.10 3 m . At the beginning of the experiment, the 

largest beads are placed at the bottom of the container. At the end of the segregation process the larger beads are at 

the top of the sample and the smaller ones at the bottom (where the acoustic probing is performed). 

3. Average compacity evolution along the segregation process 

The compacity of the granular sample is defined by 

Vb

Vt

, (7)

Fig.2 Schematics of the experimental setup [6].
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where Vb  is the volume of the beads and Vt  is the total volume of the sample (beads + saturating air). Equation (7) 

can be rewritten with the geometrical parameters of beads and container for a bidispersed medium in the form: 

4

3
niRi

3

i 1

2

L2h
, (8)

where Ri is the radius and ni the number of each types of beads, L  are the lateral dimensions of the container and 

h is the height of the granular sample. As we measure the variations in the granular sample height, we have access 

to the total volume changes, thus to the compacity averaged over the sample volume. Fig.(3) shows the results for 

the evolution of the average compacity (repeated over five experiments). This non-monotonous curve shows that 

there are two stages during the segregation process. The first stage corresponds to the medium mixing and the 

second stage to the separation in two distinct regions of the beads with different sizes. The first stage is associated 

with an increase of the compacity and the second one to a decrease of the compacity. At the beginning of the 

experiment, pores between larger beads are filled by the smaller beads, which explains why the compacity increases, 

and also why it reaches a higher value than the random close packing limit of 0.63 for identical beads. The 

compacity is maximum when the medium is well mixed. When the larger beads begin to rise up the sample and to 

separate, the compacity decreases. 

We distinguish two main stages during the segregation process, that can be described using four steps as shown 

in Fig.(3). 

1. At first, the larger beads are at the bottom of the container. 

2. The medium is being mixed, the smaller beads fall into the large pores between the large beads. The 

average compacity increases. 

Fig.3 Stages and dynamics of the average compacity along the segregation process 
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3. The maximum of average compacity is reached; the first larger beads reach the top of the sample. After this 

point, the average compacity decreases. 

4. The final configuration where the smaller beads are at the bottom and the larger at the top is reached. 

4. Acoustic transfer function of the granular slab 

The acoustic transfer function of the granular slab is recorded at 60 stages of the segregation process. Fig.(4) 

shows the evolution of the transfer function amplitude in color scale from 1000 to 2000 Hz , around the first 

resonance of the granular slab. The white line highlights the maximum of the resonance curve. The resonance 

frequency has a non-monotonous behavior, close to the one observed for the average compacity as a function of the 

number of taps. 

Fig.(5) shows the comparison between the normalized variations of the frequency and of the compacity along the 

segregation process. The maxima are not located at the same number of taps. This difference could be explained, at 

least partially, by the fact that the acoustic probing is performed close to the bottom of the container and the 

compacity is measured in average over the sample. 

A plot of the normalized variation of the resonance frequency as a function of the normalized variation of the 

average compacity, derived from the data plotted in Fig.(5), is presented in Fig.(6). This curve shows that for the 

same measured average compacity, it is possible to obtain at least two different resonance frequency values, i.e. two 

different wave velocities. 

Fig.4 Evolution of acoustic tranfer function of the granular slab as a function of the numbers of taps. The white spline shows the resonance 

frequency 
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Fig.5 Normalized shift of the resonance frequency along the 

segregation process compared to the normalized variation of the 

compacity. 

Fig.6 Normalized resonance frequency variation as a function of 

the normalized compacity.

In conclusion, the measured resonance frequencies, directly connected to the acoustic wave velocities in the 

medium, are the lowest in the initial state (larger beads), tend to increase up to their maximum value for the different 

bead size mixture, and then decrease close to the end of the segregation process when the larger beads escape from 

the probed region (the smaller bead packing is probed). The same wave velocity can thus be observed for different 

bead mixtures.  

5. Nonlinear resonances 

It is worth mentioning here that in our configuration where a resonance of the granular slab is studied, it is 

possible to increase the excitation amplitude in order to observe nonlinear effects on the resonance curves [6]. For 

each tap, we perform a transfer function measurement for nine amplitudes of excitation. We observe a so-called 

"softening" effect: the resonance frequency decreases with an excitation amplitude increase. Fig.(7) shows the 

softening effect for the beginning and the end of the segregation experiment. An estimation of nonlinear parameters 

(hysteretic elastic and dissipative parameters) along the segregation process, i.e. for different bead sizes and for 

mixtures of sizes, could in principle be performed as in [6] for the compaction process. Currently, few problems 

such as the low quality factor of the resonance curves and the complicated and unexplained physics of the wave 

propagation through the large bead packing (scattering, coupling with the saturating air...) do not allow for a precise 

estimation of these parameters.  
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6. Conclusions 

In this work, the segregation of size in unconsolidated granular media has been studied with acoustic methods. 

Correlation between the average compacity and the first resonance frequency of the granular slab shows that a linear 

acoustic probing is sensitive to the presence of larger or smaller beads in the probed region, and to a mixture of 

small and large beads. A larger wave velocity is observed in the mixture of bead sizes than for the smaller or larger 

bead packing themselves. This could be due to the larger number of contacts in the polydispersed packings than in 

the monodispersed packings. Work is in progress in order to study precisely the nonlinear properties of the packing 

along the segregation process. 

This work has been supported by ANR project "grANuLar", 2005-2008. 
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