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Abstract 

Energy monitoring is one major prerequisite for energy efficiency measures. Energy and power data throughout different levels of production 
allow benchmarking and condition monitoring applications based on insightful energy performance indicators. However, fine-grained 
measurement concepts for energy and power require high investments with uncertain benefits. This paper presents a low-cost approach to monitor 
the component-by-component energy consumption with a minimum of sensor technology that can be applied to a variety of production machines. 
Aggregated energy data combined with components’ control signals are the basis for the determination of components’ energy consumptions 
using two system identification algorithms. While one method is realized in an offline-mode after data collection, the second approach utilizes 
real-time data based on a recursive least squares algorithm. Eventually, the feasibility of the theoretical system identification concepts is shown 
in a laboratory environment. 
 
© 2016 The Authors. Published by Elsevier B.V. 
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1. Introduction 

While the worldwide energy demand, greenhouse gas 
emissions and global average temperatures are increasing [1], 
the social climate change discussion becomes the focus of 
attention. As a result of this, within the scope of the 2015 
United Nations Climate Change Conference, 196 countries 
agreed by consensus on 12 December 2015 to the final draft of 
a global pact (the »Paris agreement«) to reduce carbon output 
and to keep global warming to well below two degrees Celsius  
[2]. More and more countries enforce the energy transition 
based on renewable energy sources in order to meet the energy 
requirements as evidenced by the European Union's goal of 
obtaining at least 27% of its primary energy from renewable 
sources by 2030 [3]. Due to the increasing volatility of energy 
generation a balanced technology mix between renewables, 
flexible power stations, storages, grid expansion and flexible 
consumers in »demand-response« programs is necessary to 
ensure the security of supply in a heavily modified electricity 

system. Another central element of this environmental efforts 
is to increase overall energy efficiency to reduce the global 
energy demand. At the EU summit in October 2014, EU 
countries agreed on a new energy efficiency target of 27% or 
greater by 2030 compared to projections of future energy 
consumption based on the current criteria [3]. 

As a key element of energy efficiency measures as well as 
demand-response applications, providing appliance-specific 
energy consumption feedback (energy monitoring) can 
contribute towards systemic energy optimization as it enables 
better identification and assessment of both energy saving and 
flexibility potentials [4]. Given a projected share of more than 
53% of the total energy use in 2015 [5], the industry sector 
presents a massive leverage for achieving the mentioned 
objectives. It would therefore be advisable to achieve a high 
degree of transparency of energy flows in factories [6]. 

However, considering the tremendous amount of various 
energy consumers in the manufacturing industry, measuring 
the power consumption of individual appliances is extremely 
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costly and tedious [7]. Therefore, a particular research interest 
concerns methods to gain detailed energy data with reduced 
measuring equipment. Next to model-based simulation 
approaches as given in [8,9] a large number of so-called non-
intrusive load monitoring (NILM) algorithms have been 
developed for smart meter applications, which are able to 
identify specific appliances’ load profiles within measured 
aggregate power data  [10–16]. 

Whereas recent progress in information and communication 
technology (ICT) has led to cloud-connected machines or 
equipment that provide data for data-mining applications, the 
available process data should be integrated in disaggregation 
algorithms to improve accuracy of disaggregation algorithms. 
This paper presents a new approach to identify machine 
components’ energy consumption by utilizing aggregate power 
data and control signals in two system identification 
algorithms. While one method is realized in an offline-mode 
with a predefined set of data, the second approach utilizes real-
time data based on a recursive least squares algorithm. 

This paper is structured as follows: Section 2 gives an 
introduction to energy monitoring, disaggregation concepts and 
the utilization of detailed energy data. Subsequently, the two 
system identification disaggregation approaches for energy 
monitoring are presented in section 3, before a practical case 
study of the theoretical system identification concepts is 
presented in chapter 4. Some specific issues of the presented 
disaggregation strategies are discussed in part 5. Finally, the 
paper is closed with a conclusion in section 6. 

2. Background: Energy monitoring and power 
disaggregation 

Energy monitoring and essential metering systems [7] play a 
significant role for  

 providing information about energy or power 
demands, costs, emissions and trends, 

 allowing comparisons with other plants, departments, 
assembly lines, machines, components over time, 

 setting and tracking realistic targets and 
 defining adequate control measures to react to 

deviations/inefficiencies at an early stage. 

Therefore, it is a crucial part of energy management for 
evaluating and optimizing the energy use in terms of both 
energy efficiency [17,18] and energy flexibility [19]. 

2.1. Benefits of continuous fine-grained energy monitoring 

Temporary mobile measurements can be a reasonable 
method to acquire an energetic status quo of production 
systems. However for a comprehensive insight of dynamic 
energy flows in the manufacturing environment, it is highly 
recommended to achieve a continuous in-depth monitoring of 
relevant machines, components, production infrastructure and 
external influences. According to studies energy efficiency 
projects are less likely pursued without sufficient detail of 
information to quantify energy distribution or assess 
implemented efficiency measures [7]. As data on the very 

detailed unit process level is usually structured according to the 
value-creation, it offers the highest benefit concerning the 
technical improvements [20]. Energy performance indicators 
(EnPIs) on this level are diagnostically conclusive as influence 
parameters are more obvious which can be corrected in 
benchmarks and considered in the decision making [21]. In 
general it is plausible that the more detailed energy data are 
available the 

 more precise energy demands can be associated 
according to the costs-by-cause principle, 

 more informative EnPIs can be calculated, 
 more target-oriented sources and causes of 

inefficiencies can be identified and eliminated, 
 better is the awareness of energetic processes in the 

factory in general. 

In order to truly capture and evaluate changes in efficiency 
it is necessary to have a baseline energy target to compare 
against, which includes a breakdown of consumption by end 
use (i.e. space cooling, space heating, lighting, water heating, 
motors, pumps, etc) instead of aggregate data. Thus, energy 
efficient factories of the future continuously obtain energy-
related rich real-time information down to discrete device level 
[22]. 

Properties of physical systems change over time i.e. due to 
wear or the machining process can be accidently altered such 
as by utilizing wrong materials. Both incidents usually affect 
the characteristic energy demand. Continuously monitoring 
and profiling the power demand in combination with 
operational data can be an efficient solution for predictive 
maintenance and process monitoring applications as indicated 
in  Fig. 1 [23,24]. Thus, potential failures can be anticipated so 
that production availability and product quality improves [25]. 

However, as failures should be reliably predicted at an early 
stage and well localized in the production environment, the use 
of such intelligent predictive technologies also requires energy 
monitoring on the very component level. 

2.2. Power disaggregation 

In order to obtain fine-grained power feedback, either 
hardware-based measurements (intrusive) or non-intrusive 
power monitoring methods can be used. Nonintrusive load 
monitoring (NILM), or nonintrusive appliance load monitoring 
(NIALM), can be a cost-efficient solution to gain detailed 

Fig. 1. Condition monitoring exemplary schematic 
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energy data via power disaggregation instead of attaching 
individual monitors on each appliance [13]. By analyzing 
voltages and currents from a single point of measurement, 
NILM can discern individual devices within the aggregate 
power data. The approach is based on the fact that individual 
appliances have different characteristics for steady-state and 
transition states in both reactive and active power, so called 
»energy signatures«. The appliances’ loads are superimposed 
at the point of common coupling (PCC) and the individual 
curves can be extracted from the aggregate data by pattern 
detection algorithms as illustrated in Fig. 2. Before, the systems 
usually need to be trained to recognize a device on the basis of 
one or more raw recordings of the single-device power 
consumption. 

A great number of NILM solutions have been developed in 
the last years especially for residential applications  [10–
13,16]. They can track energy usage in each home appliance 
such as television, toaster, lamp, refrigerator, washing machine 
or vacuum cleaner. Even though the calculated energy data may 
not be as accurate as measurements, in most cases they can be 
sufficient for general energy monitoring applications. 

However, there is a lack of research results that apply power 
disaggregation approaches to industrial applications. In typical 
manufacturing environments, a great number of basic electrical 
appliances and highly dynamic devices as speed-controlled 
motors with inverters interfere with NILM systems which may 
inhibit the deployment of disaggregation systems. [15] 

To overcome this drawback and to improve accuracy in 
industry applications, machine states can be correlated with the 
aggregate power curves as proposed in [14]. This strategy is 
particularly advantageous as machine data acquisition (MDA) 
is state of the art in modern manufacturing facilities in order to 
track key performance indicators (KPIs), malfunctions or 
maintenance cycles. 

3. System identification disaggregation approach 

While study [14] breaks the aggregate factory power data 
down into individual machines by utilizing a regression model, 
the subsequent proposed disaggregation scheme makes use of 

an online system identification approach with control data to 
perceive individual devices power characteristics in real-time 
(c.f. scheme in Fig. 3). 

To identify the dynamic characteristics (in this case power 
demands) of an unknown physical system, system 
identification uses statistical methods to estimate parameters of 
mathematical models from measured data [26]. Therefore, the 
algorithm adjusts the model parameters to fit the estimated 
model output  and the measured output  with the estimation 
error  to minimize a predefined cost function (c.f. Fig. 4). 

3.1. Mathematical model of the dynamic system 

For describing the dynamic energetic behavior of the system 
a mathematical grey box model in time or frequency domain is 
used. Considering the equidistant discrete-time sample values 
obtained by the measurement system, the description is based 
on a discrete-time model with  as a multiple of the sample 
time  ( ) for proper digital signal processing. A linear 
system with power output , control input  and a 
transfer function  in discrete-time equivalent frequency 
domain representation is assumed as given in (1) with 

. The model numerator polynomial  and denominator 
polynomial  correspond to parameters  with order 

 respectively to  with order  where . 

 (1) 

On this basis, most physical characteristics e.g. delays or 
transients with oscillations and damping behavior (PT2 
element) can be modelled. However to reduce the complexity 
of parameter identification in this work, a simple proportional 
element with transfer function (2) and gain  as parameter  
is utilized. 

 (2) 

 

Fig. 2. Disaggregation scheme from single point of aggregate measurement 

 

Fig. 3. Proposed disaggregation scheme utilizing aggregate power data 
correlated with machine data 
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3.2. System identification method of Least Squares (LS) 

Taking the generalized error  according to (3) into account, 
the system output for  samples  beginning from sample 
instant time   can be indicated as (4). The  
matrix  incorporates the measured aggregate output power 
and control data as given in (5). The system model parameters 
are included in vector  (6) and estimate errors in vector  (7). 

  (3) 

 
(4) 

 (5) 

 (6) 

 (7) 

For fitting the model, the parameter vector  of the 
overdetermined system of equations with  
needs to be determined so that the estimate error  
becomes as small as possible. In the least quare (LS) method  
is minimized with respect to a quadratic sum cost function 

 as given in (8). 

 (8) 

Following this, the fitted parameters with minimum costs 
can be calculated through (9) for invertible and positive definite 
matrices . 

  (9) 

3.3. Recursive method of Least Squares (RLS) 

As can be seen in (9), the inversion of a 
 matrix is necessary to identify the parameters. 

This calculation burden is a considerable limitation for online 

system identification where changes of the system parameters 
are supposed to be tracked in real-time. In case of the supposed 
power disaggregation application, the online feature is essential 
for condition monitoring systems as described in chapter 2. 

However, by applying the recursive least square algorithm 
(RLS) new data can be integrated with reduced complexity in 
each recursion step. According to [27] the updated parameter 
vector  can be calculated based on the old parameters  
with the updated data matrix , output  and the 
auxiliary matrix  as given in (10). 
Furthermore, the matrix  is determined in a recursive way in 
(11). 

 
(10) 

 
(11) 

3.4. Enhancement for Multiple Input – Single Output (MISO) 

Considering a multiple input single output (MISO) system, 
 sub-systems (electrical devices) correspond to the control 

signals  and the gain parameters  of the 
proportional models. According to that, the data matrix and 
parameter vector turn into (12) and (13). 

 (12) 

 
(13) 

By incorporating more devices in the model, the disturbance 
loads get smaller which improves the accuracy of the proposed 
disaggregation approach. 

 

Fig. 4. Principle of system identification 

Fig. 5. Setup and functional schematic of the test system 
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4. Case Study 

A case study is carried out to examine the power 
disaggregation application based on the MISO RLS system 
identification approach under laboratory conditions. A »KEA« 
cleaning machine from MAFAC with a Bosch Rexroth PLC 
served as the basis for the analysis. The aggregate power 
measurement is realized by a Janitza 96 RM-P universal 
measurement device which is connected to the PLC by 
ProfiBus. The aggregate power data and the control variables 
of the electrical main consumers like heaters, pumps drives and 
fans are shared via OPC-UA communication protocol. 
Subsequently, the data are gathered by a Bosch Rexroth 
General Data Server (GDS) which executes the algorithm 

based on a Matlab runtime DLL [24]. The setup and the 
functional schematic is further visualized in Fig. 5. For analysis 
purposes the individual power curves of three devices (bath 
heater, air heater and nozzle pump) are recorded with external 
measurement equipment as can be seen in Fig. 6. 

The algorithm and measurements are executed with a 
sample rate of . The measured aggregate and 
component power curves are plotted in Fig. 7. As can be seen 
in Fig. 8, the RLS disaggregation algorithm is able to identify 
the power characteristics of the individual loads. The zero start 
parameter vector continuously adjusts to the actual average 
power value over time. However due to very rapid state 
transitions, the settling time for identifying the air heater power 
demand is quite high in this setup. 

5. Discussion 

The power disaggregation performance of the presented 
system identification algorithms is presented by practical 
analysis. However, there are some limitations and open issues 
of the proposed disaggregation approaches that are discussed 
in this section. 

First, it is assumed that the power demand can be described 
as a linear system in reference to the control signal. Even 
though this is applicable for most cases, non-linear models can 
be necessary for selected appliances which might require a non-
linear system identification approach. 

Furthermore, the presented algorithm might fail to identify 
high dynamic devices with variable operating points like 
speed-controlled motors. However, most of those converter-
based embedded systems offer built-in feedback of current 
power consumption which can be incorporated into the model 
for disturbance rejection. 

Aside from that, the current algorithm inevitably needs 
persistent control signals of the devices available. This is likely 
to cause difficulties if control embedded systems do not offer 
status feedback which then cannot be acquired and used for 
further calculations. For cases like that, a hybrid disaggregation 
approach could be favorable that combine ‘classical’ NILM 
algorithms based on machine-learning and pattern recognition 
with the proposed control-data-based system identification 
strategy. 

Further work will focus on improving this disaggregation 
strategy for industrial applications as well as on studying more 
complex machines and components as described above. 

Fig. 6. Measurement setup within the test bench 

Fig. 7. Measured aggregate and component power curves 
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Fig. 8. Transient response of online power disaggregation results compared to the actual measured power curves 
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6. Conclusion 

In this paper, a new power disaggregation approach based 
on a system identification algorithm utilizing aggregate power 
and control data is presented. By applying this monitoring 
concept on machine PLCs or on a machine data acquisition 
(MDA) server, individual device power demands can be 
extracted from aggregate power data. To reduce the 
computation burden, the proposed linear least square fitting 
algorithm is modified for recursive online calculation with real-
time data input. Furthermore, the noise rejection and accuracy 
is improved by extending the system model for multiple 
appliances into a multiple input single output (MISO) 
formulation. 

Finally, the MISO RLS algorithm is validated with a test 
bench based on a cleaning machine connected to a data server. 
The results reveal that the power demand of the individual 
machine components can be estimated by utilizing the 
developed disaggregation strategy. To increase accuracy as 
well as applicability for various machines and components, 
further research is needed in this field. 

However as MDA is increasingly available in manu-
facturing environments, the approach of using aggregate power 
data correlated to machine and process data may be a cost-
efficient solution for fine-grained continuous energy 
monitoring in industrial applications. Thus, the proposed 
strategy can contribute to increase energy transparency in 
factories as the general basis of further energy efficiency, 
energy flexibility and energy-based condition monitoring 
measures. 
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