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The purpose of this paper is to give answers to the following problems posed by A.V. 

Arhangel’skii: Is the product of (a,)-spaces (a,) for i = 1, 2, 3, 4, 5? Is every countably compact 

sequential space (a,)? We also give, under CH, a negative answer to the following problem: If a 

subspace of the product of finitely many strongly Frichet spaces is LaSnev, then is it metrizable? 

AMS(MOS) Subj. Class.: Primary 54A20, 54BlO; 

1. Introduction 

A topological space X is said to be strongly FrCchet [ 171 (=countably-bisequential 

in the sense of E. Michael [ 111) if, for every decreasing sequence {A,: i = 1,2,. . .} 

accumulating at XE X, there exists a convergent sequence B of X with XE Bn A, 

for each i. If Ai = Ai for each i and j, then such a space is said to be FrCchet. 

1.1. Problem. When is the product of given Frechet spaces Frtchet? 

This problem has been studied by many mathematicians. Some of the significant 

results for this problem are as follows: 

1.2. Example (J. Isbell and R.C. Olson [ 1.51). There exist two strongly Frechet spaces 

X and Y such that X x Y is not Frechet. 

In the construction of the above Example 1.2, Isbell and Olson used the hypothesis 

2No < 2Kl but the hypothesis is only used to construct an (w,, wT)-gap which was 

done by Hausdorff [8] without extra set-theoretic assumption. 

1.3. Examples (T.K. Bohme and M. Rosenfeld [3] (under the continuum hypothesis 

CH), V.I. Malyhin and B.E. Sapirovskii [lo] (under Martin’s axiom MA), P. Simon 

[16] (without extra set-theoretic assumptions)). There exist two compact Frechet 

spaces X and Y such that X x Y is not Frechet. 
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R.C. Olson [14] showed that every countably compact FrCchet space is strongly 

Frechet, therefore Examples 1.3 give Example 1.2. 

On the other hand, A.V. Arhangel’skii [ 1,2] introduced the classes ((ui) and 

(ai-FU) for i= 1,2,3,4, 5 (in [2], (ai) and (ai_FU) are denoted by (i) and (i-FU), 

respectively. For the definitions of (ai) and (ai-FU), see Section 2 below). It seems 

that these classes are important. He showed in [2] that: 

1.4. Theorem. The product of a countably compact Fre’chet space with an ((Ye-FU)- 

space is Fre’chet, where, for a class % of spaces, an element of % is said to be a g-space. 

Since the class of w-spaces in the sense of G. Gruenhage [5] coincides with the 

class ((Y~-FU) [ 141, Theorem 1.4 implies the following theorem of J. Gerlits and Zs. 

Nagy [7]: The product of a compact Frechet space with a w-space is Frechet. 

A.V. Arhangel’skii [2] also showed that a Frechet space is strongly FrCchet if and 

only if it is an (a,)-space. Hence the notion of strongly Frechetness is generalized 

to two notions, i.e. (cyq) and Frechetness. Examples 1.2 and 1.3 show that, under 

the product operation, the Frechetness is not preserved in the class of strongly 

Frechet spaces. 

In this paper we study the product of (ai)-spaces and give answers in a way to 

the following series of problems posed by A.V. Arhangel’skii [2,5.29-i]. 

1.5. Problem. Is the product of two (a,)-spaces an (ai)-space for i = 1, 2, 3, 4, 5? 

We also show that a sequential version of R.C. Olson’s theorem is not true, i.e., 

we give a counterexample to the following problem posed by A.V. Arhangel’skii 

[2, 5.29-i]. 

1.6. Problem. Is every countably compact sequential space an (a,)-space? 

Another purpose of this paper is to give, under CH, a counterexample to the 

following problem: 

1.7. Problem. If a subspace of the product of finitely many strongly FrCchet spaces 

is LaSnev, then is it metrizable? 

In this paper all spaces are assumed to be HausdorfI topological spaces. 

2. Definitions and the product of < cYi> -spaces 

Let X be a space. A collection 4 of convergent sequences of X is said to be a 

sheaf in X if all members of ti converge to the same point of X, which is said to 

be the vertex of the sheaf d. In this paper all sheaves are assumed to be countable. 
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We consider the following five properties of X which were introduced by A.V. 

Arhangel’skii [ 1,2]. 

Let & be a sheaf in X with the vertex XE X. Then there exists a sequence B 

converging to x such that: 

((or) if A E &, then \A- B\ < N,,, where, for a set C, \C\ denotes the cardinality 

of c, 

(a*) if A E &, then A n B is an infinite subsequence of A and B, 

( a3) I{A E ~4: An B is an infinite subsequence of A and B}I = KO, 

(CQ) \{AE.&:A~B#~}\=K~, 

(as) An B#B for each AE&. 

We say B satisfies (ai) with respect to &, if B satisfies the property (ai). The class 

of spaces satisfying the property ((-Ui) for every sheaf & and vertex x E X is denoted 

by (a,) for i = 1, 2, 3, 4, 5. We denote by (ai-FU) the intersection of the class of 

Frechet spaces and the class (ai) for i = 1, 2, 3, 4, 5. 

Clearly each (a,)-space is an (ai+,)-space for i = 1, 2, 3, and each (a,)-space is 

an (a,)-space. We first show the following easy theorem. 

2.1. Theorem. ( CQ) = ( (YJ. 

Proof. We show each (a,)-space is an (c&space. 

Let & = {A,,: n E N} be a sheaf in an (a,)-space X with the vertex x, where N 

denotes the integers. We put A,, = {a:: m E N} and A,,,, = {a;: k > m}. Since X is 

an (a,)-space, there exists a convergent sequence B such that B satisfies ((Ye) with 

respect to {A,,,: (n, m) E N2}. Clearly B satisfies ( czz) with respect to SB. The proof 

is completed. 

In a previous paper [14] we showed that if X and Y are (ai-FU)-spaces and if 

X x Y is Frechet, then X x Y is an (ai-FU)-space for i = 1, 2, 3. But the proof 

implies that if X and Y are (cri)-spaces, then X x Y is an (cY,)-space for i = 1, 2, 3. 

Moreover, we also showed that the classes (ai), i = 1, 2, 3, are almost countably 

productive. (A class %’ of spaces is said to be almost countably productive if 

ny=, Xi E 65’ for each n E N, then flT=“=, Xi E %.) We obtain the following theorem. 

2.2. Theorem. The classes (q), i = 1,2,3, 5, are countably productive. 

2.3. Remark. The spaces X and Y in Example 1.2 are (a,)-spaces. Hence, by the 

above theorem, X x Y is an (a,)-space. The author does not know if the space 

X X Y in Examples 1.3 are ( (YJ or not. 

Before we prove that the product of two strongly Frechet spaces (=((Y~-FU)- 

spaces) need not be an (a,)-space, we study when the product of (a,)-spaces is 

again ( (YJ. 

2.4. Theorem. Let X be an (o&-space and Y be an (a,)-space. Then X x Y is an 

( ad)-space. 
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Proof. Let %’ = {C,: n E N} be a sheaf in X x Y with the vertex z = (x, y). Let ~~ 

and ry be the projections from X x Y to X and to Y, respectively. If I{n E 

N: 7r;c’(x) n C, is an infinite set}1 = K, or I{n E N: 9~-:(y) n C, is an infinite set}1 = KO, 

then the arguments are completed trivially. Therefore we assume, without loss of 

generality, that r;‘(x) n C,, = 0 and n&‘(y) A C, = 0 for all n E N. Since ~4 = 

{ T~( C,,): n E N} is a sheaf in X with the vertex x, there exists a convergent sequence 

A which satisfies ((YJ with respect to d. We put M = {n E N: A n rx( C,,) is an 

infinite subsequence of 7rx( C,)} and, for n E M, put D, = C, n n;;‘(A n nx( C,)). 

Then 53 = {ry(D,): n E M} is a sheaf in Y with the vertex y. Let B be a convergent 

sequence in Y which satisfies (cG,) with respect to 93. Put L = 

{REM: Bn?r,(D,,)#@}. For each neL and bEBn75y(D,,), choose a(b)E 

rF’( b) n D,. Then clearly C = {(a(b), b): b E B} is a convergent sequence in X x Y 
which satisfies (K,) with respect to %. The proof is completed. 

2.5. Theorem. Let X be an (a,)-space and Y be a regular countably compact space. 

If X x Y is Fre’chet, then it is an (a,)-space. 

Proof. Let 92 = {C,: n E N} be a sheaf in X x Y with the vertex z = (x, y). By the 

same reason of the above proof, we assume r&‘(x) n C, = 0 and r;‘(y) n C, = 0 

for all n E N. Let “I’= {V} be a neighborhood base of y in Y. We put C,( V) = C,, n 
XxVforeach V~CIT.Thend(V)={~,(C,(V)):n~N}isasheafinXwiththe 

vertex x. Let A(V) be a convergent sequence which satisfies ((YJ with respect to 

d(V). We can also assume that A(V) satisfies the following property: For each 

aEA(V), there exists b(a(V))E V and n(a)EN such that (a(V), b(a(V)))E 

Cnc,,( V) and if a’(V) E A(V), a’(V) # a(V), then n(a) # n(a’). 

We choose such b( a( V)) E V for each a( V) E: A(V). Since Y is countably compact 

and Frechet, there exist a subsequence {b(ai( V)): i E N} of {b(a( V)): a(V) E A(V)} 

and y(V) E v such that lim b(ai( V)) =y( V). Note that the sequence 

{(ai( V), b(ai( V)): iE N} is a convergent sequence with the limit point (x, y( V)). 

By the regularity of Y, y E {y( V): VE v}. Since Y is Frechet, we can choose a 

convergent sequence {y( Vi): i E N} of {y(V): VE 7”} with the limit point y. We put 

D,={(a,(V,),b(a,(V,)):i~N}-~{Ck:k~n}.Then(x,y)~~{D,:n~N}.Since 

X x Y is FrCchet, there exists a convergent sequence C c U {D,: n E N} with the 

limit point (x, y). Now we show that C satisfies ((Ye) with respect to %‘. Assume 

C c l_l{ C,: k G n} for some n E N. Then, since 0, n (U {C,: k s n}) = 0 for n < m, 

Cc U {Dk: k G n}. The last implication is impossible since Dk is a convergent 

sequence with the limit point (x, y( V,)) for k < n. The proof is completed. 

3. Examples and problems 

We denote by /?N the Stone-Tech compactification of N. For a subset A of N, 

we denote A* = Cl,,A - A. Let F be a closed subset of N*. Put X = N v {F} and 
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topologize X as follows: Points of N are isolated. The set of the U u {F} is a 

neighborhood base of {F} in X, where U is a subset of N such that F c U*. The 

following facts are well known. 

3.1. Fact. Let Z be a non-empty zero set in N*. Then Int,*Z # 0. 

3.2. Fact. Two disjoint cozero sets in N* have disjoint closures. 

3.3. Fact. Let X = N u {F}. A subset A of N* converges to {F} if and only if A* = F. 

3.4. Lemma ([ 191). Let X = N u {F}. 

(i) X is Frechet if and only if F is a regular closed subset of N*. 

(ii) X is strongly Frkchet ifand only ifX is Frechet and, for each zero set Z of N*, 

F n Z # 0 implies F n Int N* Z f 0. 

3.5. Lemma. Let X = N u {F} and Y = N u {G}. Then the subspace A u {F} x { G} 

of theproduct space X x Y is homeomorphic to N u {F n G}, where A = {(n, n): n E N} 

is the diagonal of N*. 

Proof. The natural correspondence f: N u {F n G} + A u {F} X { G} defined as 

f(n) = (n, n), f ({ F n G}) = {F} x { G} gives a homeomorphism. The proof is com- 

pleted. 

3.6. Lemma. Let { U,, : n E N} be a countable collection of pairwise disjoint non-empty 

clopen subsets of N* and K be a nowhere dense closed subset of N*. Then X = N u 

{KuU{U,: nE N} does not satisfy (q). 

Proof. Let A, be a subset of N such that AZ = U,, for each n E N. Then A, converges 

to the point {KuU{U,: nEN} by Fact 3.3. Choose a,EA,=U{Ai: i<n}, and 

let B = {a,: n E N}. Then Bn A, is finite for each n E N. Therefore B* n 

IJ { U,,: n E N} = 0. This shows that B* is not a subset of K u lJ { U,,: n E N} since 

K is nowhere dense. By Fact 3.3, B does not converge to {K u lJ { U,,: n E N}}. The 

proof is completed. 

3.7. Remark. Let A = (0) u {l/n: n E N} be a convergent sequence and T = 

@ {Ai: i E N}, where @ denotes the disjoint union and Ai denotes a copy of A for 

each i E N. Let S be the quotient space obtained from T by identifying {Oi: i E N} 

to a point. Then S is a LaSnev space (=a closed continuous, onto image of a metric 

space). It is easy to show that the space X in the above lemma is homeomorphic 

to S if K = 0. 

A collection 9 of infinite subsets of a set A is said to be almost disjoint if 

IPnQI<K,for PZQ, P~9’and QE~?. 
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Let $9’ be an almost disjoint collection of subsets of N. The Franklin compact 

9( 9’) is a topological space whose underlying set is N u 9 u (00) and whose topology 

is given as follows: N is a set of isolated points, a basic neighborhood of a point 

P E 9’ is {P} u cofinite subset of P, {co} is a point distinct from all n E N and P E 9, 

which compactifies the space N u 9’. Note that the subspace N u {CO} of 9(9’) is 

homeomorphic to N u { N* -U {P*: P E 9’)). Hence, by Lemma 3.4, 9(g) is 

FrCchet if and only if N* - IJ {P*: P E 9) is regular closed set in N*. Let 9’ be an 

almost disjoint collection of N. We denote by 9\A = {An P: An P is an infinite 

set and PE 9). We consider the following property (*) of 9: 

(*) For each infinite subset A of N, if 9lA is a maximal almost disjoint collection 

of A, then (9’IAl< KO. 

The following lemma is obvious. 

3.8. Lemma. Let 9 be an almost disjoint collection of N. Let ~4 = {Ai: i E N} be a 

countable subcollection of 8. If 9 has the property (*), then 97 -d also has property 

(*). 

Now we shall construct two compact FrCchet (hence strongly FGchet, see Section 

1) spaces whose product is not an (cr,)-space. The following lemma, proved by 

P. Simon [16], is important for our construction. 

3.9. Lemma. There exist an injinite maximal almost disjoint collection 9? of N and its 

partition 9, u .Y2 = B such that Pi satis$es (*) for i = 1,2. 

Note that if the cardinality of one of 9’, or C9’* is KO, then the other does not 

satisfy (*). Hence both 9’, and p2 are uncountable. 

3.10. Theorem. There exist two compact Frkchet spaces whose product is not an 

(a,)-space. 

Proof. Let 9, PI and CJ2 be the collections mentioned in the above lemma. Let d 

be a countable infinite subcollection of 9’,. Then, by Lemma 3.8, 9, - ti also satisfies 

(*). Let X = 9(5??, -A!) and Y = 9(9”,). Then X and Y are compact FrCchet. Let 

us consider the subspace 2 = A u ((03, a)} of X x Y. Then Z is homeomorphic to 

Nu{(N*-U{P*: PEP,-.&})n(N*-U{P*: PEAR})} 

by Lemma 3.5. Note that 

(N*-U{P*: PEP,-&})n(N*-U{P*: PE~‘~})= 

=(N*-U{P*: PE??})uU{P*: PE&}. 

Since N* - IJ {P*: P E 9’) is a nowhere dense closed subset of N*, Z is not an 

(a,)-space by Lemma 3.6. The proof is completed. 
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A subset U of a space X is said to be sequentially open if each sequence converging 

to a point in U is eventually in U. X is said to be a sequential space [4] if each 

sequentially open subset of X is open. Clearly each Frechet space is sequential. 

3.11. Corollary. There exists a compact sequential space which is not an (ad)-space. 

Proof. Let X and Y be the spaces constructed in the above theorem. Then X X Y 

is sequential since the product of countably many countably compact sequential 

spaces is sequential [12]. Therefore the space X x Y is a compact sequential space 

which is not an (a,)-space. The proof is completed. 

E. Michael [ll] showed that a LaSnev space X is metrizable if and only if X is 

strongly Frechet. K. Tamano [18] showed that, under the product operations, 

‘something nice’ is preserved in the class of LaSnev spaces. Is the following general- 

ization of E. Michael’s theorem true? 

3.12. Problem. Let Z be a subspace of the product of LaSnev spaces X and Y If 

Z is strongly FrCchet, then is Z metrizable? 

The following example shows that an analogous one of the above problem is not 

true under CH. 

3.13. Theorem (CH). There exist two strongly Frkchet spaces X, Y and a subspace 

W of X x Y such that W is a non-metrizable Laznev space. 

Proof. We shall construct, under CH, strongly Frechet spaces X = N u {F} and 

Y=Nu{G} such that FnG=U{Ui: ie N}, where {Ui: iEN} is a countable 

collection of pairwise disjoint non-empty clopen subsets in N*. Then, by Lemma 

3.5 and Remark 3.7, W = A u {F} X(G) is a LaSnev space which is not metrizable. 

Let { Ui: i E N} is a countable collection of pairwise disjoint non-empty clopen 

subsets in N*. We put Z = N* -u { Ui: i E N}. Then Z is a zero set in N* with 

non-empty boundary in N*. Let H be the boundary of Z in N*. We construct two 

regular closed sets F, and G, in N* such that 

(i) F, c Z and G, c Z, 

(ii) Bdy,* F, = Bdy,, G, = H, 

(iii) Int,* F, n Int,* G, = 0, 

(iv) for each zero set K of N* such that H n Bdy,. K # 0, K n IntN* F, # 0 and 

K n Int,. G, # 0. 

After constructing such F, and G,, we put F = F, u U { Ui: i E N} and G = G, u 

U { U,: i E N}. Then X = N u {F} and Y = N u {G} are strongly Frechet by (iv) and 

F n G = IJ { Ui: i E N} by (ii) and (iii). 
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Now we construct such F, and G, by transfinite induction. Note that the cardinality 

of the set of all zero sets in N* equals the cardinality of the continuum. Let 

(2,: LY < 0,) be a family of all zero sets in 2 such that H n Bdy,, 2, # 0 for each 

(Y < w,, where wl is the first uncountable ordinal number. Let { W,: Q < co,} be zero 

sets in Z such that W,s W, for a>& Wa=n{W,:P<ct} if Q is limit and 

n { W,: LY < wl} = H. We choose 0, and V,, non-empty disjoint clopen subsets of 

Z,, and inductively we suppose that we have defined, for each /3 < CY, non-empty 

clopen subsets 0, and V, of N* such that: 

(1) U{O,: ~<+o,~Int,.zJJ{V,: r<P}c VocInt,*Z, 

(2) ~pnzp#O,v~nzp~O,(~p -U{O,: r<P>~u(v~-U{v,: r<Pl)c W,, 
(3) O,n V&=0 for Iy, 6<Ly. 

We define 0, and V,. We first define aS& and V& as follows: If (Y is limit, then since 

U {U,,: n E N}, IJ {op: p < (Y} and U {VP: p -=c a} are disjoint cozero sets in N*, by 

fact 3.2 and W = n { W, : p < a}, there exist disjoint clopen subsets O& and V& such 

that O&u V&cZ, lJ{O,:p<a}c~&, iJ{Vp:p<~}c V&. and (CD- 

U{O,:~<(Y}U(V~-_U{V~:~~~})~ W,.Ifaisisolated,put0&=0,_,andV&= 

V,_,. Note that Z -0; and Z - V& are zero sets in N” whose boundary in N* are H. 

Since Z,n(Z-O&)n(Z-V&)#0, Int,*(Z,n(Z-O&)n(Z-V&))#0 by Fact 

3.1. Let S, and T, be non-empty disjoint clopen subsets of N” such that 

S, u T, c Int,* (Z, n (Z-O&) n (Z - V&)). 

Let0,=0b,uS, and V,=V&uT,. 

We have chosen 0, and V, (a < w,) satisfying the conditions (l), (2) and (3). 

Put F,=L_{O,: a<o,} and G,=lJ{V,: a <co,}. Then clearly Fl and G, satisfy 

(i), (iii) and (iv). We show (ii). Let U be any clopen subset of N* with U n H Z 0. 

Then U n Z is a non-empty zero set with U n Z n H # 0. Hence U n Fl # 0 and 

U n G, # 0 by (iv). This implies that H is the boundary of F, and G,. Similarly we 

can show that H is the boundary of F and G. The proof is completed. 

3.14. Remarks. Every LaSnev subspace of a regular countably compact space with 

countable tightness (a space X is said to be a space with countable tightness if, for 

each subset A of X and XE A, there exists a countable subset B of A such that 

x E B) is metrizable [13]. Hence every LaSnev subspace of the product space X x Y 

in Example 1.3 or Theorem 3.10 is metrizable. 

Note that X x Y in Theorem 3.12 is not FrCchet by Theorem 2.5. But the author 

cannot prove that the space X x Y in Theorem 3.13 is Frechet or not. The following 

problems naturally arise. 

3.15. Problem. Let X and Y be strongly Frechet spaces. If X X Y is FrCchet, then 

is X X Y an (ff,)-space? 

3.16. Problem. Let X be a (countably) compact Frechet space. If X2 is Frechet, 

then is X3 Frechet? More generally, is there a (countably) compact Frechet space 

X such that X” is Frechet but X”+’ is not FrCchet for n 2 2? 
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3.17. Remarks. Under MA, G. Gruenhage [6] constructed a strongly FrCchet space 

X such that X” is Frechet for all n E N but X” is not Frechet. Note that Problem 

3.12 is yes if one of X or Y is countably compact Frechet and a negative answer 

of Problem 3.16 implies a negative answer of Problem 3.15. 

3.18. Problem. Let X and Y be strongly Frechet (or compact Frtchet) spaces. If 

X x Y is an (a,)-space, then is X x Y Frechet? 
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