population with re-endothelialization and matrix turnover.

Christof Stamm, MD
Dept. of Cardiothoracic and Vascular Surgery
Deutsches Herzzentrum Berlin
Berlin, Germany

Gustav Steinhoff, MD
Dept. of Cardiac Surgery
Universität Rostock
Rostock, Germany

References

Letters to the Editor

Reply to the Editor:
We thank Drs Stamm and Steinhoff for their comments. In the field of tissue-engineered heart valves, the choice between synthetic and biologic (either allogeneic or xenogeneic) scaffolds is a major concern. As have many others, we hypothesized that the best valve replacement remains a heart valve. Porcine heart valves have been used for decades in cardiac surgery with good clinical results, especially in terms of durability in elderly patients. In particular, hemodynamic behavior of the latest generation of porcine bioprostheses, the stentless porcine valves, was found to be similar to that of native aortic valves.

These scaffolds, however, need preimplantation treatment to avoid acute xenogenic rejection. Decellularization seems a promising choice, because it both induces a decrease of cell-induced acute rejection and may allow autologous cell recolonization. Our study suggests that nonenzymatic decellularization may be used without inducing mechanical failure of the matrix in vivo. Previous decellularization procedures, such as deep osmotic shock (with distilled water) or use of trypsin and ribonuclease, have resulted in graft failure. Adverse immune reactions were advocated; however, we observed that a less aggressive decellularization procedure did not induce mechanical failure after 4-month exposure in the systemic arterial strain, suggesting that the decellularization procedure was critical for the in vivo outcome.

Stamm and coworkers used an enzymatic decellularization procedure, but they reinforced the scaffold with a biodegradable polymer coating. Short-term results were satisfactory, but little is known about the long-term behavior of these polymers. Previous long-term studies on biodegradable scaffolds as heart valve substitutes have reported fibrosis, retraction, and graft dysfunction.

As noted by Stamm and Steinhoff, coagulation and complement activation, with the risk of collagen-induced platelet aggregation early after implantation, are a major concern with decellularized matrices. We found no evidence of thrombus formation on implanted decellularized scaffolds, and thrombosis occurred only in a nondecellularized xenograft. However, it should be underlined that in our study all animals received aspirin therapy (500 mg daily), as in usual clinical practice with biologic valves.

Finally, our study suggests that xenogenic scaffolds decellularized through a nonenzymatic procedure do not induce matrix failure in a sheep model, and interestingly allow partial recellularization in vivo. Longer implantation studies are mandatory to confirm these mechanical results. Moreover, because autologous cell recolonization of these decellularized scaffolds remains only partial, other strategies to induce complete recolonization by proper autologous cells are needed.

Lung transplantation in a patient with Mounier-Kuhn syndrome

To the Editor:
We previously reported the first case of successful lung transplantation in a patient with Mounier-Kuhn syndrome. The patient was a 59-year-old woman with a history of bronchiectasis of unknown etiology since childhood. The patient developed very severe obstructive lung disease and multiple episodes of pneumonia due to Pseudomonas aeruginosa that necessitated hospitalization. Computed chest tomography and bronchoscopy were diagnostic of Mounier-Kuhn syndrome. The patient underwent bilateral lung transplantation, and the degree of bronchoemegaly was not as pronounced as the tracheomegaly and posed little difficulty during transplantation. The patient had a difficult postoperative course, with multiple failed extubations, P aeruginosa pneumonia, and prolonged respiratory failure necessitating tracheostomy. The pa

André Vincentelli, MD, PhD
Francis Juthier, MD
Brigitte Jude, MD, PhD
Institut National de la Santé et de la Recherche Medicale (Inserm) ERI-9,
Faculté de Médecine
Clinique de Chirurgie Cardio-vasculaire
Cardiologic Hospital
Lille, France

The Journal of Thoracic and Cardiovascular Surgery • Volume 132, Number 3 737