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Abstract-Typically the literature has advocated the use of the dominant right eigenvector and an 
associated consistency ratio “C.R.” We give reasons why the geometric mean (GM) (also known as the 
LLSM or logarithmic least-squares method) may be preferable as an estimator of the unknown underlying 
scale u. We also develop an index of consistency and related rules to judge the consistency of a matrix 
when using the GM as an estimator. The rules for the index of consistency are closely related to the 
commonly used rule that the CR. should be 10.1. 

INTRODUCTION 

We assume a collection of entities Ei, i = 1,. . . , n, and the existence of an unknown underlying 
scale u = (u,,. .,uJT, where ui/uj is the relative worth of entity Ei to entity Ej. 

We assume a (reciprocal symmetric) judgment matrix A = [aij], where aij is an estimate of the 
relative worth of Ei to E,. We are concerned here with the choice of an appropriate procedure to 
yield estimates u of the underlying scale u. 

Typically the literature has advocated the use of the dominant right eigenvector (EV) and an 
associated consistency ratio “C.R.” [l]. We give reasons why the geometric mean (GM) (also 
known as the LLSM, or logarithmic least-squares method) may be preferable as an estimator of u 
and suggest related rules to judge the consistency of a matrix. These rules are closely related to 
the commonly used rule that the C.R. should be <O.l. 

In general the GM and the EV are numerically quite close. Compared with the experimental 
error inherent in A the differences in the GM or the EV will be small, especially if the dimension 
is small (the two scales will be equal if the dimension is 63) or if A is almost consistent (the scales 
will be equal if A is consistent). 

Given the numerical similarity of the EV and the GM procedures, it is not surprising that they 
suffer some of the same drawbacks. Jensen [2, pp. 320-3211 shows that if the respondent uses a 
bounded response scale the EV and GM procedures may make consistency adjustments outside 
those bounds. Further, neither the EV nor the GM (regardless of the distribution of errors) are 
necessarily optimal if rank preservation is the sole criterion. Also the use of either method may be 
philosophically at odds with commonly used respondent scales. 

In the overall structure of an Analytic Hierarchy Process (AHP) the analyst must make extra- 
mathematical decisions that may substantially affect the results of the analysis. These decisions 
may have more important effects on the results than the choice between the EV and the GM 
estimating procedure. 

Analyzing an AHP requires estimating the underlying scale, and we believe there are theoretical 
and practical reasons for preferring the GM. The qualities of the EV have received much attention 
in the literature. In this paper we have concentrated on properties of the GM. A possible 
shortcoming of the GM has been the lack of a test for consistency comparable to “C.R. < 0.1”. 
The principal new result in this paper is the section on “An Index of Consistency” where a test for 
consistency is developed that is in keeping with the spirit of the GM. The test has been developed 
from the CR. < 0.1 test for consistency. It is comparable to, and in practice usually equivalent to, 
the CR. consistency for the EV procedure. 

t Adapted in part and reprinted from: G. Crawford and C. Williams, A note on the analysis of subjective judgment 
matrices. J. math. Psychol. 29, 387-405 (1985). Reprinted by permission of the publisher, Copyright 0 1985 Academic 
Press. 
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Elsewhere [3] the empirical performances of the two procedures have been compared with a 
series of Monte Carlo experiments where the underlying scale is known and the ratios of the 
components of the scale are perturbed by random errors to yield judgment matrices. These 
experiments have shown that in all the scenarios considered the GM does as well as, or better 
than, the EV by several measures, including rank preservation. As might be expected, the procedures 
are very close in performance under the likely scenarios where the dimension is small or the 
judgment matrices are almost consistent. As the dimension or the variance of the errors increases, 
the performance of the GM exceeds that of the EV by all of the measures considered, including 
rank preservation. 

There are examples in the literature specifically constructed to show that the GM and the EV 
may give different rankings. We reject the suggestion that a difference highlights shortcomings of 
the GM any more than it highlights shortcomings of the EV. Of the practical examples given in 
the literature we have noticed only one (the school selection example [l]) where the two procedures 
suggest a different resolution. In that case the utilities of the two entities are nearly equal under 
the GM and the EV estimates. The EV gives a weak preference for school B, but the GM gives 
preference to school A. (Having personal experience with the erratic judgment of adolescents, we 
will not put excessive emphasis on the ultimate decision that was made-to attend school A-by 
the respondent, Saaty’s son.?) 

For most estimation problems, the wealth of statistical literature on estimation procedures and 
their properties has enhanced understanding of the problem. Below we relate the estimation of u, 
and a related quantification of consistency, to well-known statistical models. The geometric mean 
vector v = (ul, v2,. . . , v,JT, defined by vi = nja,‘j’“, satisfies the continuity and consistency criteria 
used to defend the dominant eigenvector, and has several other desirable traits. In certain 
circumstances, it is statistically optimal and gives rise to an estimate of scales and a measure of 
consistency with known statistical distributions. In empirical studies [3] it seems to do as well as, 
or better than, the eigenvector in preserving rank order. In addition, it satisfies several criteria that 
might reasonably be expected of a method for estimating multiplicative scales. It is also supported 
by a literature describing methods of handling a wealth of variations of the problem, including 
missing data and multiple judges.1 

The scale corresponding to a judgment matrix is only determined to within a multiplicative 
factor. To make the scale unique different normalizations may be used, the most common being 
to normalize so that the sum of the components of the scale and the estimate add up to 1. Here, 
in keeping with the multiplicative nature of the problem, and to simplify the notation, we will 
normalize so that the product of the components of the scale will be 1. 

THE GM SCALE 

For n x n judgment matrices A = [aij] and C = [cij], define 

[ 1 
l/Z 

m(A, C) = C 1 (lnaij - lncij)’ 
i j>i 

It is not difficult to verify that m satisfies the triangle inequality and is a metric on the space of 

t In fairness it should be mentioned that in Saaty’s comments [l] he remarks that he did not interfere in this decision 
to attend school A although he believed the CR. was too high. He also notes that although costs were not considered by 
his son or spouse, the costs of school B were much higher than for school A. There are clear advantages to being a pragmatic 
analyst. 

$ In an interesting twist, Narasimhan [4] gives a procedure to adjust a judgment matrix and make it consistent before 
using the EV procedure to estimate the scale. Budescu [S] shows that the Narasimhan procedure yields precisely the same 
estimates as using the GM on the unadjusted judgment matrix. 
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n x n judgment matrices.? Theorem 3 shows that for any n x n judgment matrix A, there is a 
consistent matrix C that is m-closest to A. Such a consistent matrix is given by cij = Ui/Uj, where 
ui = rcjai’j’“; i.e. ui is the GM of the elements of the ith row of A. We will use the vector v, suitably 
normalized, as the estimate of the underlying ratio scale corresponding to A. 

The following two invariance properties show that m is a suitable choice of metric for the space 
of judgment matrices. Their proofs follow from the definition of m. 

Theorem 1 (invariance under transpose) 

(i) Let A = [aij] and C = [cij] be n x n judgment matrices. Then AT and C’ are also judgment 
matrices, and m(AT, CT) = m(A, C). 

(ii) Let A = [aij] be an n x n judgment matrix, and suppose that C = [cij] is the consistent 
matrix that is m-closest to A. Then CT is the consistent matrix that is m-closest to A’. 

In the following we denote the componentwise or Hadamard product of two matrices A and B 
(or vectors A and B) of the same dimension by A - B. 

Theorem 2 (invariance under multiplication) 

Let A, B and C be n-dimensional judgment matrices. Then A - B is a judgment matrix, 

(i) m(A, C) = m(A* B, C- B) 
and 

(ii) if C is the m-closest consistent matrix to A, and B is consistent, then C-B is the m-closest 
consistent matrix to A -B. 

Recall that we seek a procedure for associating ratio scales with judgment matrices in such a 
way that the ratio scales capture the subjective information inherent in the corresponding matrices. 
Let A be an n x n judgment matrix. Let C = [cij] be a consistent matrix that is m-closest to A, 
and suppose that v = (ui, u2,. . . , u,JT is a ratio scale for C; i.e. cij = ui/vj. We choose (u,, u2,. . . ,uJT 
as the estimator of the ratio scale corresponding to A. 

Under this association, Theorem 1 guarantees that the scale (i/v,, l/u,, . . , l/v,,)= is the estimator 
of the scale corresponding to A’. The appeal of this invariance arises in a natural way. Suppose a 
respondent put his estimate of Ui/Uj in the position rji instead of rij. (There appears to be nothing 
intrinsically right or wrong about recording the estimates this way.) In that case, the estimation 
procedure should return estimates of l/ui instead of ui. With this convention the estimated value 
of ui should not depend on an artifact of the way the data are recorded. It follows from Theorem 
1 that the GM procedure has this invariance property. The EV procedure does not have this 
property although in practice it is usually c1ose.S 

If the judgment matrix components are the product of multiplicative errors and the ratios of the 
respective components of the true scale, then Theorem 2 guarantees that our choice of ratio scale 
is invariant under a scale change in the judgment matrix. We do not argue that this invariance is 
indispensable in dealing with subjective judgment, nor that the numerical differences are large (see 
the remarks following Lemma 1) but it is another example of invariance of the GM scale that is 
not satisfied by the EV scale. 

Theorem 3 guarantees that the GM scale gives the m-closest consistent matrix to any judgment 
matrix. 

t Fichtner [6] has developed a metric m with the property that the m-closest consistent matrix to a subjective judgment 
matrix is the consistent matrix corresponding to the maximal eigenvector. Typically a metric is of interest because it 
provides an intuitive understanding of the topology of a space-i.e. it tells you what points are close to (neighborhoods of) 
other points, hence what sequences converge, and to what points. On the space of inconsistent judgment matrices Fichtner’s 
metric yields the discrete topology, a pathological topology wherein every point is an open set, and the only sequences that 
converge are those whose terms are all the same from some point on. It is the same topology given by the metric that calls 
the distance from two points 1 if the points are not equal and 0 if they are. 

$ See Johnson [7] for an excellent discussion of this lack of symmetry and its relation to the dominant right or left EV. 
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Theorem 3 

Let A = [aij] be an n x n judgment matrix. Let C = [cij] be the consistent matrix given by 
Cij = Ui/Vj, where I~i is the GM of the elements of the ith row of A; i.e. vi = xja,!j”, i = 1, 2,. . , n. 
Then m(A, C) is the minimal m-distance from A to any n x n consistent matrix. 

Proof. For any consistent C, C = [cij], we can write cij = Wi/Wj, where w = (wl, w2,. . . , w,)~ 

is a ratio scale. We seek a scale that minimizes the sum of squares S = 1 1 [lnaij 
i j>l 

- (In wi - In wj)]‘. As mentioned, we normalize by imposing the side condition rcjwj = 1. Let yij 
= In aij, i,i = 1, 2,. . , n; bi = In wi, i = 1,2,. . ,n. Then the problem is to minimize 1 c 

i jai 

[yij - (bi - bj)12 under the side condition 2 bi = 0. S is strictly convex in the differences bi - bj 

and therefore strictly convex in the vector b, so it has a unique minimum at the point where its 
first partials with respect to bi are zero. Setting these partial derivatives equal to zero, for 
k= 1,2 ,..., n, 

aSJabk = -2C(y,j - b, + bj) = -2 Cykj - nb, + Cbj = 0 
j j 

and therefore, since c bj = 0, it follows that c ykj = nb,. Thus S is minimized by bk = 1 ykj/n; i.e. 

In wL = c a,j/n, k = ;, 2,. , n; and consequen;ly the m-distance from A to C is minimiied by the 

vector v given by vii = rrja$“. This completes the proof of Theorem 3. 

Lemma 1 

Let A and B be judgment matrices and A’ and B’ be, respectively, their closest consistent matrices. 
Then A’ - B’ is the closest consistent matrix to the judgment matrix A. B. 

Proof. That A. B is a judgment matrix, and that A’. B’ is consistent follow from Theorem 2. Let 
aij, bij, af/aJ, bj/b; be the elements of A, B, A’, B’, respectively. Let gi/gj be the elements of the 
closest consistent matrix to A - B. It follows from Theorem 3 that 

lngi = (l/n)x(lnaij + In bij) 

= lna! + lnbi, 

as was to be shown. 
Lemma 1 implies that the mapping from judgment matrices (using componentwise multiplication) 

into their GM scale is a homomorphism; i.e. the image of the product of A and B is the product 
of the image of A and the image of B. 

The mapping of judgment matrices into their EV scale is homomorphic if one of the matrices is 
consistent: Vargas’ formula [l, pp. 196, 1971 shows that if A and B are judgment matrices and w 
is the image under the EV mapping of A, then the image under the EV mapping of the product of 
A - B is the product of the image of A and the image of A * V- B, where 1/ is the transpose of the 
consistent matrix [wi/wj].t If A is consistent then I/ consists of the elementwise reciprocals of A, 
and therefore A. V is equal to the Hadamard identity matrix; hence A * V- B reduces to B. Thus, in 
this case the EV image of A. B is the EV image of A times the EV image of B. If A is almost 
consistent, then A - V is almost equal to the identity matrix, and the mapping is “almost” 
homomorphic. 

Barzilai et al. [S] show that among all mappings that take a consistent matrix into its 
corresponding scale and are invariant under permutations in the ordering of the entities, the 
requirement that the mapping be homomorphic uniquely determines the GM mapping. Thus, in 
this sense, Lemma 1 is a necessary and sufficient condition that the mapping be the GM. 

t In reconciling this form of Vargas’ theorem, recall we are normalizing so that the product of the components of the 
scale is I. 
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THE GM VECTOR AND THE MAXIMUM LIKELIHOOD ESTIMATOR 

We have shown that, given an arbitary judgment matrix A, the GM vector gives rise to the 
m-closest consistent matrix to A. The problem of using a judgment matrix to estimate a ratio scale 
can also be cast in the framework of the general linear statistical regression model. Since the 
m-closest matrix C is obtained by minimizing the quadratic form S, it is not surprising that under 
suitable assumptions on the distribution of errors in the expert’s judgment, the GM vector is the 
maximum likelihood estimator for the ratio scale corresponding to the judgment matrix. 

Explicitly, letting A = [aij] be an n x n judgment matrix, we assume that there is an underlying 
scale (w,,w,,..., w,) whose ratios are perturbed (by inconsistent human judgment) to give the 
elements of A, namely aij = (wi/wj)(eij), and thus In aij = In wi - In wj + In eij, i = 1, 2,. . . , n; j > i. 

Regarding the choice of distribution of the error term eij, the context of the AHP approach 
assumes a multiplicative model-if u = (ui, . , uJT is a scale for the entities {Q}, then the value 
of Ei relative to Ej is given by ui/uj. Accordingly, we have assumed that errors are multiplicative. 
Further, this context assumes that if aij estimates ui/uj, then aji is a comparable estimate of uj/ui; 
hence it is appropriate that the distribution of eij be reciprocal symmetric in the sense that 
P(a < eij < b) = P(U < l/eij < b). 

Just as the normal distribution is a common model for additive errors, the lognormal distribution, 
for similar reasons, is a common mathematical model for multiplicative errors [9]. Additionally, 
the lognormal distribution is reciprocal symmetric. We assume that model here. 

Assuming the judgment matrix is the componentwise product of ratios of elements of the true 
scale and lognormal errors, and making the substitution Y = (In a,,, , In a,,,, . , In a,_ l,n)T, 
B=(lnw, ,..., ln~,)~andE=(lne,,,,lne,,, ,..., lne,_ I,.)T, the equation A = W-E can be written 
as the general linear equation Y = XB + E, where the matrix X has components - 1, 0, + 1. In 
this framework it is well-known [lo] that the maximum likelihood estimate for B = [ln wi] is the 
estimate that minimizes the quadratic form S and is given by the least-squares estimate /Ii = (l/n) 

zlnuij. The estimate has all of the usual desirable properties of least-squares estimates under the 

general linear hypothesis (unbiased, minimum variance etc.). Taking exponentials, the maximum 
likelihood estimate of wi is given by: oi = exp(Pi) = nju,‘j’“. (The same estimate is derived above 
from the metric m on the space of judgment matrices.) 

This argument shows that the GM is optimal under certain conditions on the distribution of 
errors. The optimality does not require that the estimate of Wi/Wj be independent of all other 
estimates, but it does make certain requirements of the multiplicative errors. A sufficient condition 
for optimality, commonly assumed in regression analysis, is that the errors are independent with 
identical variances. Here, as in most applications of the least-squares method, the independence 
assumption may be suspect. McElry [ 1 l] has shown these estimates to be optimal in the sense of 
being the minimum variance estimate among all unbiased estimates in the more general case where 
errors are normal (lognormal in our application) with a constant covariance matrix (a covariance 
matrix with 1s on the major diagonal and all other entries constant). McElry also shows that with 
this covariance matrix the condition of normality may be relaxed and the estimates will be the 
minimum variance among all linear unbiased estimates. 

If the variances or the covariance matrix are known, and not of the form considered by McElry, 
the least-squares procedure, modified to take advantage of this information, will still be optimal. 
For details of this and other comments on the robustness of the least-squares procedure, see Scheffe 

ClOl. 
The procedure outlined above can be modified to solve more general estimation problems. 

Suppose that instead of a single comparison for each pair of objects Ei and Ej, there are nij 
comparisons, Uij~, k = 1,. . . , nij, where nij may be 0 (reflecting missing data) or > 1 (reflecting 
multiple comparisons, perhaps by different judges). The problem is then to find a vector w that 

minimizes the sum of squares: S = c 1 c [l n uijk - (In wi - In wj)]‘. This generalization does not 
i j>ik=l 

yield a simple closed-form solution such as the geometric mean vector, but in practice S can be 
minimized and w determined using standard least-squares regression packages. 

De Jong [12] treats the statistical qualities of the GM under other assumptions regarding 
dependence in extensive detail. He shows it to be the minimum variance estimate among all linear 
unbiased estimates. His treatment yields the covariance matrix for the components of the estimate 

n” 9:3,5-1 
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of the scale. It is shown that the components of the GM estimate are optimal estimates of the 
corresponding components of the underlying scale. 

AN INDEX OF CONSISTENCY 

Regardless of the values of nij, the GM estimation procedure leads to a natural measure of 
consistency for judgment matrices that is well-grounded in statistical theory and can be used in 
hypothesis testing. Let s2 be the residual mean square s 2 = S/d.f., where d.f. is the number of 
independent observations minus the number of linearly independent parameters. (Note that if 
“ij = 1, then d.f. = [n(n - 1)/2] - (n - 1) = (n - l)(n - 2)/2.) Then s2 is an unbiased estimator of 
a2 (the variance of the perturbations) and hence is a natural measure of consistency of A. 

Recall that if nij E 1, then s2 can be viewed as the squared distance from A to the m-closest 
consistent matrix. Therefore s2 is zero when A is consistent, is close to zero when A is close to 
consistent and is removed from zero as A becomes increasingly inconsistent. Moreover, because s2 
depends entirely on ratios, it is invariant under scale changes and transposes in the sense of 
Theorems 1 and 2. 

A practical test to determine when a judgment matrix is “too inconsistent” is important. The 
commonly accepted benchmark for consistency has been the rule that C.R. < 0.1. This rule has 
been widely accepted and found useful. We will follow that line of reasoning here to develop a 
comparable measure for the rule s2, 

The CR. is computed from a consistency index, C.I., given by C.I. = (2 - n)/(n - l), where k is 
the maximal right EV of the judgment matrix. The C.R. is defined as CL/‘(n), where f(n) is an 
empirically determined function of n, the dimension of the scale; f(n), called a random index, is the 
average C.I. resulting from a number of randomly generated judgment matrices. The commonly 
used table for f(n) [l, p. 211 resulted from matrices generated by randomly selecting, with a uniform 
distribution, an integer from the response scale of l-9. That number was randomly placed in a 
judgment matrix, and its reciprocal was appropriately placed to preserve the reciprocal symmetric 
nature of a judgment matrix [l, p. 211. Repeating this experiment yielded f(n), the average C.I. of 
the matrices so generated for values of n between 3 and 15: 

l;(n) 0.358 0.“90 1.12 5 1.24 6 1.32 7 1.41 8 1.45 9 1.49 10 1.51 11 1.48 12 1.56 13 1.57 14 1.59 15 

[The last four average C.1.s were computed on the basis of a small sample size by different 
researchers, possibly explaining the seeming irregularity at f( 12).] 

Budescu et al. [ 131 have extended this approach and used this procedure, and others, to generate 
random matrices and measure their average C.I. and average s*. They generated matrices using a 
9, 13 and 50 integer response scale. In addition they generated judgment matrices using the constant 
sum method suggested by Torgerson [14]. The results are shown to depend on the dimension, as 
above, in addition to the procedure (constant sum vs response scale) and on the size of the response 
scale used. They calibrated the results for both the EV and the GM procedures. Additionally, they 
provide analytic approximations to the results to allow the user to interpolate and substitute his 
own values of dimension and response scale and achieve a consistency test comparable to the 
C.R. < 0.1 test for both the EV and the GM. 

In addition to the differences noted by Budescu et al. [13], it is to be expected that the average 
C.1.s of randomly generated judgment matrices will also depend on the choice of distribution of 
the integers of the response scale. Distributions other than the uniform may be appropriate, small 
integers may occur more commonly than large ones in judgment matrices. It has been shown, for 
instance, that the occurrence of integers in a surprising variety of tables and natural and artificial 
collections [ 15,163 follow a logarithmic frequency, not a uniform frequency. Theoretical justification, 
based on an invariance argument, is given for the logarithmic frequency. 

Further, the use of a 9 (or 13 or 50) integer response scale, with qualitative descriptions for what 
each digit signifies, while common and empirically justified, may be at odds with the interpretation 
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of (he judgment matrix either by the EV or the GM procedure. Whereas the respondent may be 
operating &n the premise that “3” indicates a “weak importance of one over another”, we note the 
analyst uses this entry in a judgment matrix as an estimate of the ratio of the values of the two 
entities-i.e. one entity is three times as valuable as the other. The degree of consistency of a 
matrix, commonly considered important as a measure of the merit of a judgment matrix for the 
job at hand, depends on the interpretation that the elements are estimates of ratios. (Despite this 
seeming irregularity, we cannot ignore an important fact: the analysis of an AHP-as advocated 
by Saaty and others works [l, pp. 17-26]-has been useful, important and widely used.) 

In the justification of the GM procedure we have found it helpful to consider the elements of 
the judgment matrix to be the ratio of the scales perturbed by a multiplicative random error. We 
continue that approach here and develop a test for the s2 measure of consistency comparable to 
the C.R. test. 

We note that the C.I. [ 1, p. 1 SO] may be expressed as a sum of the multiplicative errors: 

C.I. = - 1 + [l/n(n - l)] C (eij + l/eij), 

where the sum is over 1 6 i < j < n. Rearranging terms: 

C.I. = [l/n(n - l)] 1 (eij + l/eij - 2). 

Assuming that the distribution of the error terms is reciprocal symmetric, it follows that the 
expected value of the C.I. is given by Ex(X - l), where X is distributed as the error terms eij. 
Given a suitable distribution for the error terms, this relationship may be exploited to give a region 
of acceptance for s2 based on the acceptance region C.I. < (O.l)f(n) that follows from the C.R. test 
for consistency. 

Explicitly, if errors are assumed to be lognormally distributed, Ex [in(X) = 0, and 
var [ln (X)] = fr2, then the above expression for C.I. gives Ex. C.I. = exp [(1/2)a2] - 1. 

It follows that if it is reasonable to accept a matrix with C.I. < (O.l)f(n), then under the assumption 
of lognormal errors, the comparable test for s2 would be s2 < 2 In [(O.l)f(n) + 11. Abbreviating the 
rejection region s2 < g(n), we have: 

3 4 5 6 7 8 9 10 11 12 13 14 15 
0.113 0.172 0.212 0.234 0.248 0.264 0.271 0.278 0.281 0.276 0.290 0.292 0.295 

Summarizing, for a test comparable to C.R. > 0.1, the matrix should be considered satisfactory 
if it is of dimension 3 and s2 < 0.1, if the dimension is 4-7 and s2 < 0.2, and if the dimension is 
>7 and s2 < 0.3. 

If errors are multiplicative with a reciprocal symmetric distribution and a relatively small second 
moment, both the C.I. and s2 have small variances. [This will generally be true even without the 
assumption of independent errors. The distribution of s2 can be shown to be fairly robust with 
respect to a moderate relaxation of the independence assumption (see Scheffe [lo).] 

Although in practice the variance of the multiplicative errors seems to be small when the 
dimension is small and increases as it gets larger, the variance of both the C.I. and s2, for fixed 
variance of the error term, decreases as the square of dimension. 

For these reasons it is to be expected that both the C.I. and s2 will be close to their expected 
values. It follows from the construction of the acceptance region for s2 that generally the tests are 
equivalent; that is, one of the tests will result in accepting a matrix if, and only if, the other test 
would also result in acceptance. 
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