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We investigate the homogeneous Dirichlet problem and Neumann problem to 
a reactiondiffusion system of a competitor-competitor-mutualist model. The 
existence, uniqueness, and boundedness of the solutions are established by means of 
the comparison principle and the monotonicity method. For the Dirichlet problem, 
we study the existence of trivial and nontrivial nonnegative equilibrium solutions 
and their stabilities. For the Neumann problem, we analyze the contant equilibrium 
solutions and their stabilities. The main method used in studying of the stabilities is 
the spectral analysis to the linearized operators. The O.D.E. problem to the same 
model was proposed and studied by B. Rai, H. I. Freedman, and J. F. Addicott 
(Math. Biosci. 65 (1983) 13-50). 0 1967 Academic Press, ~nc 

1. IN~~DucTI~N 

We consider the following reaction-diffusion system of competitor-com- 
petitor-mutualist model 

in QxR+. 
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with initial condition 

u;(x, 0) = u,(x), i= 1, 2, 3, on Q 

and Dirichlet boundary condition 

u;(x, t) = 0, i=l,2,3, on XJxKX+, 

(1.2) 

(1.3) 

or Neumann boundary condition 

2 (x, t) = 0, i=l,2,3, on aQxR+. (1.4) 

Here, u,(x, t), u,(x, t), and u,(x, t) represent the populations of two com- 
petitors and a mutualist with diffusion constants dr , d, and d,, respec- 
tively; Q is a bounded domain in [w”, %2 is its boundary, a/an is the out- 
ward normal derivatives on aQ; d is Laplace operator. The all parameters 
in (1.1) are positive constants, m and 1 being the mutualist constants. It can 
be seen that in this model, the mutualist u3 tends to reduce the competition 
effect of the second competitor u2 on the first one ui but has no direct effect 
on u2 or vice versa. 

The homogeneous Neumann boundary condition (1.4) is to be inter- 
preted as “no flux” condition; i.e., there is no migration of all species across 
the boundary of their habitat. While the homogeneous Dirichlet boundary 
condition (1.3) can be considered as such a condition that under which 
neither of the three species can exist on the boundary. 

We establish the existence, uniqueness, and boundedness by means of the 
comparison principle and the monotonicity method. For the Dirichlet 
problem, we study the existence of trivial and nontrivial nonnegative 
equilibrium solutions and their stabilities. For the Neumann problem, we 
analyze the constant equilibrium solutions and their stabilities. The main 
method used in studying of the stabilities is the spectral analysis to the 
linearized operators. 

The corresponding competitor-competitor-mutualist O.D.E. model was 
proposed and studied by Rai, Freedman, and Addicott in [9], where the 
explanations of the ecological background of this model can be found as 
well. Another reactiondiffusion system corresponding to a predator-prey- 
mutualist O.D.E. model of [9] was studied by us in [13]. As for the 
studies on three species reactiondiffusion systems of predator-prey model, 
the readers can see [4,5]. 

409/124,1bl7 
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2. PRELIMINARIES 

First, we consider the more general semilinear parabolic system with 
more general boundary condition and initial condition 

$-L3u,=/,(u,, u3) in sZx(0, T], 

4% 0) = u,(x), i=l,2,3 on 52, (2.2) 

Bi[Ui] = cqx) ui + Pi(X) 2 = hi(X), i= 1,2, 3 on &Sx (0, T] (2.3) 

as well as the corresponding elliptic system 

-L,u, =f1(u,, u2, u,), 
-L2u2 =f2(u1, u2h (2.4) 

-L3u3 =f3(u, > u3) in Sz, 

BiC”il = hi(x)~ i=l,2,3 on %2, (2.5) 

where Li is a uniformly elliptic operator in Sz; q(x), pi(x), and U,,,(X) are 
smooth functions with uiO & 0 and tli + /I, > 0; fi is continuously differen- 
tiable with respect to its variables for uk > 0, i, k = 1, 2, 3. In addition, we 
assume 

@&, afl 
au2 ' duxl 

3 

af2 < 0 -1, au, 
%>O 
au,' for ~~20, i= 1,2, 3, 

(2.6) 

which are obviously satisfied by the reaction terms of (1.1) as well as by 
those of a more general system corresponding to (2.2) of [9]. 

Denote Q,=L2 x (0, T], ST= &C2 x (0, T], where T is an arbitrary 
positive constant. 
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DEFINITION 2.1. Ordered smooth functions 0(x, t) = (ii1 , ii,, I&) and 
_U(x, t) = (g,, _u2, _u~) in QT are called upper and lower solutions of 
(2.1 t(2.3) if they satisfy 

(2.7) 

Bi[“j] 2 hj(x) > Bj[_Uj], i=l,2,3 on S, 

and 

uj(x, O) 2 ujO(x) >_Ui(x, O), i=l,2,3 on Sz. 

Suppose such 0 and _V exist. Denote 

S=((u,,u2,u,)E[W3:_Pi~~i~Pi,i=1,2,3}, 

where pi = inf,,gi(x, t), pi = supQr iii(x, t), i = 1, 2, 3. Define 

(2.8) 

(2.9) 

(2.10) 

Ni = sup 
s 

i= 1,2, 3. (2.11) 

Construct the sequences { oCk)} and { I/ck)} with u(O) = 0 and _u(O) = 5/ 
as follows: 

(~(,k’),-L,~~k)+N1~jk)=Nl~(:-‘)+fl(~~k~’),_U~k~‘),~~k~‘)), 

(~~k’),-L2~~k)+N2~~k’=N2~~k-‘)+f2(_U(:-’),~~k-’)), 

(u~k’),-L3tlSk’+N3ur’=N3U~k~‘)+f3(Ulk~’), G$k-I’), 

(g’:‘) - LIgik)+ N u I l-(lk)=Nl_U(lk-‘)+fl(-U(lk-‘), fif-1),&l)), 
(2.12) 

@r’) - L,@$k) + N f U(k) = N 
2- 2 

&- 1) +f2($- ‘), + 1’) 
2- 2 

(_uik’) , - L,gr) + N 3g$k) = N,gl, k- ‘) +f3@1 
(k-1) 

,_u, 3 
(k- 1’) 

B.[u!k’] = hi(X) = Bi[&k’] I I I ) 

Ujk’(X, 0) = u&x) = _Utk’(X 0) I)) 

where i = 1, 2, 3, k = 1, 2, 3 ,.... 
As for the existence of solution of (2.1 k(2.3) we have 

(2.13) 

(2.14) 
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THEOREM 2.1. Suppose that there exists a pair of upper and lower 
solutions O= (U1, i&, zi3) and _U= (u,, _u 2, _U3) satisfying _Ui(x, t) < ui(xy t), 
i= 1,2, 3. Then the sequences { OCk’} and { _UCk)} obtained by solving 
(2.12)-(2.14) monotonically from above and below, respectively, to a unique 
solution U= (u,, u2, u3) of (2.1 t(2.3) such that 

_Ui(x, t, < ui(x, t, d ui(x, Q, i= 1,2, 3, (x, t) E QT. 

The proof of Theorem 2.1 is standard. We omit it here. 
Next consider the corresponding elliptic system (2.4) and (2.5). 

DEFINITION 2.2. Ordered smooth functions D(x) = (U1, U,, &) and 
U(x) = (_ul, _uz, _u3) in D are called upper and lower solutions of (2.4) and 
(2.5) if they satisfy 

(2.15) 

and 

Bi[Uila hi(x) B Bi[_~i]y i=l,2,3,xEaQ. (2.16) 

THEOREM 2.2. Suppose D and _V are a pair of upper and lower solutions 
of (2.4) and (2.5) with Ui a_ui i= 1, 2, 3, on 52, then there exists at least one 
solution U(x) = (ul, u2, u3) of (2.4) and (2.5), such that 

!!i(x) G ui(X) < ui(x)9 i = 1, 2, 3, x E Sz. 

The proof of Theorem 2.2 is substantially the same as for the scalar 
equation case [ 10, 121. See, e.g., [7, lo]. Note that the theorem does not 
guarantee the uniqueness of solutions of (2.4) and (2.5) even restricted 
between _V and D. In fact, as will be seen in the next section, multiple 
nontrivial nonnegative equilibrium solutions of ( 1.1 )-( 1.3) do exist. 
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3. DIRICHLET PROBLEM 

In this section we consider the system (1.1) with initial condition (1.2) 
and homogeneous Dirichlet boundary condition (1.3). 

We first establish the boundedness and nonnegativity to the solution. 

THEOREM 3.1. Let U(x, t) = (u,(x, t), u2(x, t), u3(x, t)) be a solution of 
(l.l)-(1.3). Thenfor (x,t)~QxR+ we have 

0 <ul(x, t) Gmax {K,, sup u,,(x)>, 
a 

0 G u,(x, t) < max {K,, sup u,,(x)}, 
Iz 

0 < u3(x, t) d max {Lo + K,, sip Q,(X)}. 

ProoJ The case where ui takes its maximum on superplane t= 0 is 
trivial. 

Now, let us prove that ( 1.1) has the following invariant region [12] 

c= ((4, u,,u3)EIW3,0du,~K,,0~u*dK,,0~u3~L~+IK,). 

Set 

G,=-uj j=l,2,3, G4=u, -K,, G5=u2-K,, 

G,=uj-(Lo+lK1). 

Then, according to Theorem 14.13 of [12] as well as the fact that the inter- 
section of invariant regions is an invariant region (see Sect. B, Chapt. 14 of 
[12]), we have 

VG,.VI,=,=O in Z, so ui>O, j= 1,2, 3, 

aPK, ~2 VG,. VI”,=“,=--60 
3 

in 2, so u,<K,, 

VG,, VI.,=,,=-vu,K,<O 

in Z, so uz<Kz, 

in C, so q<L,+lK,. 



260 SINING ZHENG 

The proof of the theorem is completed. 

Due to Theorem 2.1, in order to establish the existence of solutions of 
(l.l)-(1.3), we need only to construct a pair of upper and lower solutions. 

Let A, be the principal eigenvalue of operator -A with homogeneous 
Dirichlet boundary condition. We can construct a function &,(x) [ 1, 111, 
normalized by sup, &,(x) = 1, such that 

A@, + I,,& Q 0, XEQ, 

+o>o, XEl-2. 
(3.1) 

Choose positive constants Mi, i= 1, 2, 3, such that 

%dx) G Mi&l(X)~ i= 1,2,3, xEQ. 

Set 

(3.2) 

It is easy to check that, (Ui , ril, ~7~) and (0, 0,O) define a pair of upper 
and lower solutions of (l.l)-(1.3). According to Theorem 2.1 and the 
arbitrariness of T, we get 

THEOREM 3.2. There exists the unique solution (u,(x, t), u,(x, t), 
z+(x, t)) of problem (l.l)-( 1.3) satisfying 

0 < Ui(X, t) d i&(x, t), i= 1,2, 3, (x, t)EGx lR+, 

where z&(x, t) (i= 1, 2, 3) are defined by (3.2). 

Now study the existence and the stabilities of equilibrium solutions of 
(1.1~(1.3). 

We first discuss the trivial equilibrium solution (0, 0,O). 

THEOREM 3.3. Let II, be the principal eigenvalue of -A with 
homogeneous Dirichlet boundary condition. Assume 

n=max{ -dd,l,+cc, -d,&+6, -d,&+r} ~0. 

Then (0, 0,O) is the onZy nonnegative equilibrium solution of (l.l)-(1.3). 
Moreover, it is globally asymptotically stable. 

Proof. Let (u:(x), u:(x), u:(x)) be an arbitrary nonnegative 
equilibrium solution, i.e., 
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aj?u: 24: -= 0, 
1 +mu: 

XEQ, 

(3.3) 

U*l,,=O, i= 1, 2, 3, 

which implies that U:(X) is a nonnegative solution of the following linear 
elliptic equation 

d,Au,+a(x)u,=O, XEO, 

UlIdR=OT 

where a(x) = a( 1 - UT/K, - fluT/( 1 -mu:)). 
Due to UT 30, i= 1,2,3 and -d,il,+cr<O, we know that 

a(x)<a<d,1,. 

Thus, we deduce 

{F:x&}i\o(-A)=@, 

(3.4) 

where G( -A) denotes the point spectrum of -A with homogeneous 
Dirichlet boundary condition. (3.5) implies 

4x1 Au:+- 
4 

u:zo for all xEs2 

whenever 

24: #constant zero. 

so, 
u?(x) = 0, XED. 

It can be shown in the same way that 

u;(x) = u?(x) = 0, XE8, 

and hence (0, 0,O) is the only equilibrium solution of (1.1~(1.3). 
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The conclusion on globally asymptotic stability follows from the 
assumption A < 0 and the upper solution formula (3.2). This completes the 
proof. 

If the assumption A < 0 is violated, then there may exist some nontrivial 
nonnegative equilibrium solutions to (1.1 )-( 1.3). 

THEOREM 3.4. Assume -d, &, + d > 0, - d,& + 6, -d,& + y < 0, then 
there exists a nontrivial nonnegative equilibrium solution (u:(x), 0,O) of 
(l.l )-(1.3), which is linearly stable. 

Proof Consider the following Dirichlet problem of semilinear elliptic 
equation 

(3.6) 

Take 

4(x) = M@,(X)> 
_u,(x) = w&h XESZ, 

(3.7) 

where &,(x) satisfies (3.1) q,(x) is the principal eigenfunction of --A with 
eigenvalue A, ; both of them are normalized by sup,&(x) = 1, 
sup, &x) = 1; constants A4 > (K,( -d,& + d)/a info 4,,(x)), E < 
K,( -dI& + ~()/a. We can check that U,(x) and _ui(x) defined by (3.7) form 
a pair of upper and lower solutions of (3.6). Due to Theorem 2.2, we know 
that there exists a nontrivial solution of (3.6), such that 

o<_u,(x)<u:(x)<~I(x), XEl2. 

So, (u:(x), 0,O) is a nontrivial nonnegative equilibrium solution of 
(l.lk(1.3). 

Let us linearize the reaction terms of (1.1) at U* = (u:(x), 0, 0) and 
analyze the spectrum of the linearized operators. Rewrite system (1.1) into 
an evolution equation in Banach space X= @:= 1 X, = 0: L*(Q) n C’(G): 

dU=AU+F(U), (3.8) dt 
where 

A= 

i 

A, 
A2 

A3 I 

= 
d,A+a 

d,A+6 

I 

2 (3.9) 
W+y 
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D(A)= {UEX ulJQ=o}, 

(3.10) 

Linearizing F(U) at U*, we get 

F(U+U*)=F(U*)+BU+g(U), 

where 

g(U=4II Ullx), 

(3.11) 

(3.12) 

We analyze the spectrum of operator % = A + B, [2, 3,6]. The resolvent 
equation for @ is 

i.e., 

A,-‘; I* -- P -a/h: 

0' A,-~/4-p 0 

0 0 

for /I EP(A, - vu:) np(A,), where p(A,) denotes the resolvent set of A,, 
etc. Setting A,(p) = A, - (2au:/K,) - p, we have 

I alWR(p,A2-w?) 0 

0 W/A A2 - vlul*) 

0 0 

where R(p, A3) is the resolvent operator of A,, etc. 
We have the following four lemmas: 

LEMMA 3.1. Denote 

W = (p: p E p(A, - rp:) n p(A,), A,(p) is inuertible in L’(Q)}, 
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then 

LEMMA 3.2. Let p E p(A, - rp?) n (AX), then A,(p) is invertible in L*(Q) 
if and only if zero is not an eigenvalue of 6, (p). 

LEMMA 3.3. There exist 8* E (0,7c/2) and y* > 0, such that 

LEMMA 3.4. 

a(%)~= {IE@:ReI< -y*}. 

Lemmas 3.1 and 3.2 are obvious [6]. Lemma 3.4 follows from Lem- 
mas 3.1-3.3 while the linear stability of (u:(x), 0,O) results from 
Lemma 3.4 [ 121. So, we need only to prove Lemma 3.3. 

Proof of Lemma 3.3. Due to d,l, + 6, d3&, + y < 0, it is clear that 

K*=max{ReA:1E~(Az-q~~(x))u~(A3)}<0. (3.13) 

In view of Lemma 3.2, it suffices to show that there exist 0* E (O,rc/2) and 
y* > 0, such that J,(p) does not have zero eigenvalue whenever p E S*. 

Let q(p) be an arbitrary eigenvalue of A,(p), (p(p) be the corresponding 
eigenfunction, (p(p) > 0, normalized by 11 cp 11 L~Cnj = 1. Put 

Then 

pI=RepL, p2=ImpL, 

VAP) = Re V(P), v2b4 = Im rl(~u). 
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We recall that U:(X) satisfies (3.5), i.e., 

(A,-EJ+o, XEQ 

U;laQ=o. 

This means that the second order elliptic operator A, - (au:/K,) has 
positive function u:(x) as its eigenfunction with zero eigenvalue. Therefore, 
we deduce that [6] 

and hence 

In view of the continuous dependence of ?(/A) on p, we know from (3.13) 
that there exist c* >O and a* >O, -a* E (K*, 0), such that ql(pi, p2)<0 
whenever 

~(~{~~@:~~~(A~-~~)np(A,),Re~~(-a*,O),lIm~l~c*}. 

Observing 1 q&,, pLz)l = I ,u2 13 c* > 0 when 1 ,u2 ( 3 c*, we claim that A,(P) 
does not have zero as an eigenvalue if 

pb {~LE:CLEp(A2-rlul*)np(A,), Rep< -a*, lImpI cc*}. 

Taking 

8* E 0, arctan 7 and Y* E (0, a*), 

we complete the proof of Lemma 3.3 and hence get the conclusion of the 
theorem. 

Similarly, we have the following two theorems: 

THEOREM 3.5. Assume -d,& + 6 > 0, -d, ,I, + a, -d3& + y < 0, then 
there exists a nontrivial nonnegative equilibrium solution (0, u,*(x), 0) of 
( 1 .l )-( 1.3 ), which is linearly stable. 

THEOREM 3.6. Assume - d,& + y > 0, -d, lo + a, - d2& + 6 < 0, then 
there exists a nontrivial nonnegative equilibrium solution (0, 0, u:(x)) of 
(l.l)-( 1.3), which is linearly stable. 
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The proofs of Theorems 3.5 and 3.6 are almost the same as that of 
Theorem 3.4. We observe that the linearizations at (0, u:, 0) and (0, 0, a:) 
are 

B,= 

and 

B,= 

respectively, and that 

and 

max{Re 1 

max{Re A 

- ujh4: 0 
2cs.4: 

-r/u; -- 
K* 

0 0 

0 

0 

0 

0 

0 

2YG 
LO 

1 
1 

(3.16) 

(3.17) 

nEa(A,-ucrgu:)ua(A,)} -co. (3.18) 

kr(A,)ua(A,)}<O (3.19) 

hold, respectively. Inequality (3.18) ((3.19)) comes from the assumption of 
Theorem 3.5 (Theorem 3.6) that - d, 1, + CI, - d3 1, + y < 0 ( -d, I, + u, 
-d,I,+b<O). 

The following simple theorem is the complement of Theorem 3.3. 

THEOREM 3.7. Zj 

A=max{-d,&+cr, -&A,+& -d,&+y)>O, 

then the trivial equilibrium solution (0, 0, 0) is unstable. 

Proof Linearizing F(U) at (0, 0,O) we get 

d,A+a A, 
&=A+B= d,A+6 

W+y II I 

= A2 
‘43 

and hence 

a(‘%) = a(A,) u a(A,) u a(A,). 
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Since A > 0, it is clear that 

a(‘J&)n{,uE@: Rep>>} #a. 

This completes the proof of the theorem. 

The last three theorems of this section will deal with the cases where the 
habitat Q is even “larger” (hence & is smaller), or the diffusion mechanism 
of the species is even weaker, or their growth rates are even greater, such 
that two of -d, R, + a, -d2& + 6, and - d3& + y are positive, but the left 
one is negative. 

THEOREM 3.8. Assume - dl L,, + a, - d,l, + 6 > 0, - d3 lo + y < 0, then 

(i) There exists a nontrivial nonnegative equilibrium solution 
(u:(x), 0, 0), which is linearly stable if 

max{Re;l:LEcr(A2-t/U~)}<0 (3.20) 

and is unstable if 

max{ReL:AEa(A,-qu:)}>O. (3.21) 

(ii) There exists a nontrivial nonnegative equilibrium solution 
(0, u:(x), 0), which is linearly stable if 

max{Rei:AEo(A,-a@$)}<0 (3.22) 

and is unstable if 

max{Rel:AEo(A1-a/?u~)}>O. (3.23) 

(iii) There exists a nontrivial nonnegative equilibrium solution (G,(x), 
fi?(X), 0) zf 

K,(-d,l,+a)< -d,&+6 
a inf, &(x) rl ’ 

K,(-d,&+S)< -d,&+a 
6 inf, f&(x) aP 

(3.24) 

(3.25) 

ProojI (i)Note that max{L:IIE~(d3A+y)}<0 since -d,&+y<O. 
So, (3.13) holds if (3.20) is true. According to the proof of Theorem 3.4, we 
know that (u:(x), 0,O) is linearly stable under the assumption (3.17). 

Observe that 

4A, - w:(x)) = 4% 
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where S!=A+B,, B, is the linearization at (u:(x), 0,O). Therefore, 
(u:(x), 0, 0) is unstable under (3.21). 

The proof of (ii) is the same as that of (i). 
(iii) Consider 

(3.26) 

XEi-2, 

Put 

fjI(X) = M, &l(X)> _ul(X) = &I%(X), 
(3.27) 

iz(x) = ~i,4&)> _u*(x) = %%(X), 

where &,(x) and &x) are described as before, Mi and si are to be chosen, 
i = 1,2. We hope that (3.27) defines a pair of upper and lower solutions of 
(3.26). 

Observe that 

if 

if 

M >&Fdd,+4 

2’ 6 inf, &(x) ’ 

(3.28) 

(3.29) 

if 

(3.30) 
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and take 

if 

and take 

E <PK, 
1\- 2 

-4Jo+cM 
@ 

(3.31) 

(3.32) 

(3.33) 

Obviously, under conditions (3.24) and (3.25), we can choose M,, Ei, 
i= 1, 2, such that (3.28)-(3.33) hold. So, (C,(x), U2(x)) and (g,(x), g*(x)) 
defined by (3.27) form a pair of upper and lower solutions of (3.26). Due to 
Theorem 2.2, there exists a solution (fir(x), ii2(x)) of (3.26) satisfying 

0 -c&(X) 6 ii,(x) d i&(x), i=1,2,xE52. 

This completes the proof of (iii). 

THEOREM 3.9. Assume -d, & + ~1, - d3& + y > 0, - d2& + 6 < 0, then 

(i) There exist nontrivial nonnegative equilibrium solutions of the 
forms (u:(x), 0,O) and (0, 0, u:(x)), both of which are unstable. 

(ii) There exists a nontrivial nonnegative equilibrium solution of the 
form (ii,(x), o, ii3(x)), which is always linearly stable. 

Proof: (i) We will only prove the instabilities. Recall from (3.12) and 
(3.17) that the linearization at (u:(x), 0,O) and (0, 0, u:(x)) are 

B, = 

2du: 
-- 

K, 
-apuT 0 

0 -fp: 0 

0 0 0 
and 
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respectively. So, 

We know that 

4‘43) = 44 + B,), 

a(A,)ca(A+B,). 

max{ReL:IEa(A,)}>O 

since - d3 A, + y > 0 as well as that 

max{Re1:IEo(A,)}>O 

since -d, 1, + CI > 0. Therefore, both of (U:(X), 0,O) and (0, 0, U;(X)) are 
unstable. 

(ii) We know that iir(x) and r&(x) satisfy (3.6) and 

d,du,+yu,(l-&)=O, ~~622, 
(3.34) 

U3Ian=O. 

Due to Theorem 3.4, there exists a positive solution iir(x) of (3.6). Sub- 
stituting rir(x) for ur in (3.34), we obtain in the same way that there exists 
a positive solution r&(x) of (3.34). 

As to the linear stability, consider the linearization at this point 

2aii, -- 
K, - 
0 

Ylfi3 
(Lo + liq2 

a@, 
l+mii, 

-'lfi, 

0 - 

0 

0 

2YG .- 
L,+Zfi, 

The resolvent equation for & = A + B, is 

&!!+ -& 

[ 

0 . 

0’ 
3 

A*-rl~,-P 

“dG3 

-(L,+&,)* O 
A3-Li;u -- _ P 

0 1 

for p E p(A, - Y@,), (II,, v2, u3) E X. Setting 

Ul 

Ii 

01 

u* = v* 

u3 03 

2aii, 
&b)=A,---L4 

I 
A3(r)=A3-+y+, 

0 1 
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then 

Yk 
- (L, + iii,)* u1+ &(PL) u3 = 03. 

Denote 

d = {p: p E p(A, -vii,), both A,(p) and A,(p) are invertible in L2(Q)} 

As did in the proof of Theorem 3.4, we can get four lemmas similar to Lem- 
mas 3.1-3.4. Observe that K* = max{ Re 1: 1 E a(A, - qi?r)} < 0 and that 
i,(x) and z?~(x) satisfy (3.6) and (3.34), and hence they are positive eigen- 
functions of second order elliptic operators A, - cG,/K, and 
A 3 - (yiiJ(& + Zii,)), respectively, with zero eigenvalue. We omit the 
details. 

THEOREM 3.10. Assume -d,&+6, -d,&+y>O, -d,&+cr<O, then 

(i) There exist nontrivial nonnegative equilibrium solutions of the 
forms (0, u:(x), 0) and (0, 0, u:(x)), both of them are unstable. 

(ii) There exists a nontrivial nonnegative equilibrium solution of the 
form (0, d,(x), E3(x)), which is always linearly stable. 

We omit the proof of Theorem 3.10, which is somewhat similar to those 
of Theorems 3.8 and 3.9. 

4. NEUMANN PROBLEM 

In this section we consider system (1.1) with initial condition 
homogeneous Neumann boundary condition ( 1.4). 

(1.2) and 

First, we can prove in the same way as in Section 3 that the solution is 
nonnegative and bounded: 

THEOREM 4.1. Let U(x, t) = (u,(x, t) u,(x, t) u?(x, t)) be a solution of 
(l.l), (1.2) and (1.4), then 

06u,(x, t)<max(K,, supu,,(x)}, 
n 

0 d u,(x, t) G max { K2, sup u2,,(x)}, 
51 

O<uu,(x, t)<maxfL,+IK,,supu,,(x)). 
D 

409:124/,-,X 
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Now establish the existence of solutions. 
Set 

6, = sup U,(X) > 0. i= I, 2, 3 
n 

Consider the following initial problem of ODE system 

U;(f)=p3(f) 1 - U,!f) ' 
L,+IA4, ’ In ) 

. Qn 

u,(O) = li,, i = 1, 2, 3, 

where constant M, is to be taken later. Obviously, 

&l, 
dn a<> 

=o i= 1, 2, 3. 

It is easy to get 

Take 

M, = sup U,(f) < co. 
I>0 

Then 

I 
L,+IM,-ii, -’ 

UJf)=(Lo+IM,) l+ ^ 
u3 I 

(4.1) 

Clearly, (0, 0, 0) and (u,(t), am, u3(t)) define a pair of upper and lower 
solutions of (1.1 ), (1.2), and (1.4). According to Theorem 2.1 and 
arbitrariness of T, we get immediately 
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THEOREM 4.2. There exists a solution (u,(x, t), uJx, t), u,(x, t)) of (1.1) 
(1.2) and (1.4), such that 

0 d Ui(X, t) 6 uj(t) d Mi < 00, i= 1,2,3, (x, t)EQx R+, 

where Mi = supt a 0 u,(t), u,(t) is the solution of (4.1) i= 1, 2, 3. 

Next study the constant equilibrium solutions of (l.l), (1.2) and (1.4), 
i.e., solutions of 

au, l-u’-uz 

[ K, 1+mu3 1 
u2,+& ] 

= 0, 
1 = 0, 

+&-]=o. 

(4.2) 

The all possible solutions of (4.2) (see [9]) have the forms of 

&I = (0, 0, Oh E, = (K,, 0, 01, 

E, = (0, K,, Oh E, = 640, JW, 

& = (0, K,, Lo), 

&=(K,,O,L,+lK,), E, = (cl, ii,, 9, 
iii>O, i= 1,2,3, 

where Eo,..., Ed, E6 always exist. E, exists if 

UK - 1 X6, - 6) ’ 0, (4.3) 

W-l)(K,KzBrl-~)>O. (4.4) 

While the condition under which E7 exists will be given later. 
Now analyze the stabilities of these equilibrium solutions. Let us rewrite 

(1.1 ), ( 1.2), and (1.4) into an envolution equation in Banach space 
Y= 0: C2(Q) n L2(Q); 

$4u+F(a), (4.5) 

where A and Fare defined by (3.9) and (3.10) 
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Linearizing the right side of (4.5) at Ei, i = 0, l,..., 6, respectively, we get 

d,A+a 0 

~o(K4 = 0 d,A+6 
0 0 

I d, A-a - aBK, 

J+f,(E,) = 0 d2A+6-qK, 

1 0 

d, A +T- a/N2 

M,(E,) = - flK2 
0 

i 

d,A+a 
0 

Yl 
M,(J%) = 

M4(&) = 

aB& dlA+a------- 

[ 

l+mL, 

- ~4 

Yl 

M,(E, I= 

0 

0 

d2A-6 
0 

0 

d,A+6 
0 

0 

d2A-6 

0 

-apuT 

0 0 > &A-y I 
afimu: 24: 1 

d,d-$u: 0 
2 

0 d,A +y 

Denote 

r aSKI 
1 +m(L,+ZK,) 

0 

d2A+6-qK1 0 . 

0 &A-y 1 
Pi( 1, A) = det( AZ - M,), 

0 

0 > 

U+y 1 

Ai={~:P,(l,~)=O,forsome~~~(d)}, i = 0, l,..., 7, 
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where a(d) is the point spectrum of A with homogeneous Neumann boun- 
dary condition. It can be shown that [2] 

a(Mi) c n~, i=o, l)...) 7. 

Recall that a(d) is an infinite but discrete set of simple real eigenvalues 
bounded from above, i.e., 

Clearly, EO, E,, E2, E3, and ES are unstable since the corresponding 
P;(q, ,u), i= 0, 1, 2, 3, 5, has at least one positive root for p,, = 0 E a(A). 

E, is linearly stable if 

1+&o (4.6) 
0 

and is unstable if 

l- BK2 >o ~. 
1 +mL, 

(4.7) 

E6 is linearly stable if 
S-nK,<O (4.8) 

and is unstable if 

We have proved 

S-qK, >O. (4.9) 

THEOREM 4.3. (i) Nonnegative equilibrium solution E, exists if (4.3) 
and (4.4) hold. 

(ii) Neither of E,,, E,, E2, E,, and ES is stable. 
(iii) E, is linearly stable under (4.6) and is unstable under (4.7). 
(iv) E6 is linearly stable under (4.8) and is unstable under (4.9). 

Finally, discuss the conditions of the existence and the stability for 
E,=(ii,, ii,, z&), Z&PO, i=l,2,3. 

THEOREM 4.4. (Rai et al. [9]). 

(i) If I+ mL, = /IK, and nK, Z 6, then ET does not exist. 
(ii) If 1 + mL, = @K, and nK, < 6, then ET exists uniquely and is given 

by 

ii, = K, - (6 - nK,) pK2/m1S, ii, = K2(S - nii,)/S, ii, = Lo + Ii?, . 



276 SINING ZHENG 

(iii) If 1 + mL, - PK, > 0, then E7 is given uniquely by the positive 
value of ii, = {T f [t’ f 4m162KI(l + mL, - /?K,)]1’2)/2m16, ii2 = 
K,6-‘(6-niiI), ii,=L,+fii,, where 

z=mk?K,+/?nK,K,-6(1 +mL,) (4.10) 

provided ii, < 6/r]. 

(iv) If 1 + mL, - /?K, < 0 and z 6 0, then E, does not exist. 

(v) If 1 + mL, - /IK2 < 0 and z > 0, then E, does not exist, exists uni- 
quely, or has two possible values according as 22 + 4m16*K,( 1 + m& - /?K,) 
is negative, zero, or positive, and in the latter two cases ii, c 6/n, where ii, t?,, 
ii3 are given as in (iii). 

Suppose there exists E, = (Cl, ii,, &) with iii > 0, i = 1,2, 3. Linearizing 
at E, we get 

r, 

/ 

d,&$ -apii, aflmii, ii, 

I 1 + mii, (1 + mii,)2 

M,(E,) = -?fi2 d,d-F 0 . 
2 

Yl 0 &A-y 

Now, let us analyze the spectrum of M7(E7). Put 

P,=A3+a,A2+a2A+a3 for some p E a( A). 

Then 

a, = 
- hii, 3+ 
1 

~+wM+4++4 
2 

I - 
UlU2 

( 

wK2 WI 

a2=K, 
a6+T+T - 

u2 Ul ) 

a/?lymii, ii2 aPtl6 1 fi2 -- 
(1 + mii,)* 1 +mii, 

+p2(dld2+d,d3+d2d3)-p y(d,+d,)+T(d,+d,) 
1 

+?(d,+d,) , 
2 1 

a,=b,+b,, 
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where 

h,= 
ayii, ii* 

K, K2( 1 + mii,)* 
{ 6m212i$ + (1 + mL,)[2mlc%, + 6( 1 + mL,) 

- b’rlKl K2 I- mWK, K2 1, (Bl) 

h,=-p3d,dA+p2 yd,d,+Fd,d,+$d,d, 
1 2 

a&, ii2 Gi% fi2 
d,y$+d2y:+d3KK-d3- 

2 1 I 2 1 +mii, 

_ d lyabm~ I fi2 
2 (1 +mfi,)* 1 ’ 

Here, the fact that ,U < 0 for p E o(d) and that 

( 1-s 7 I -- 1 +mii, fi”“2 =o ) 

6 ( 1-s -1 -gG,=O, 
2 

l- u3 ~ = 0, 
L, + 123, 

are used. 
Assume 

/X2 6 1+ mL,, 

qK, < 6. 

Then 

thus 

z2+4m162K,(1 +mL,-fiK,)>O, 

ml&i, > 7, 

(4.11) 

(4.12) 

(4.13) 

(1 + mLo)[2mlSii, + 6( 1 + mLo) - flqK, K2] - ml/?K, K2 

B (1 + mL,,)[z + 6( 1 + mL,) - BqK, K,] - ml/3K1 K, 

= (1 + mL,) m16K, - mlIJGK, K2 3 m216K, L, > 0 

and hence h, > 0. 
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On the other hand, due to (4.11) we have that the last term of (B2) 
equals 

d,ydii,(l +mL,+2mlii,-ImK,) 

K,(l +mL,,+mh,) 

It can be shown that h, > 0 if 

1 + mL,, + 2mlii, - ImK, > 0. (4.14) 

Note 

P? =l+mL,+mlK,+T K,K2-(1 +mL,)-ImK, 

P? =s K,K,>O. 

This means (4.14) is true. So, a3 > 0 under assumptions (4.12) and (4.13). 
By a computation we know [9] 

ala2-U3=C, +C*, 

where 

m212ayii: vii, 
“=Kf+(1+mii3)2 (4 + YK,) + 6K1( 1 + mii,) 

x (1 +mL,)(2mlc%+6(1 +mL,))-m&?GK,K, 

* - 
+ rnl/IqK, K2 ii I F+$+y +@yK,ii,(l +mL,) , 

1 2 II 
c2 = - p3(dl + d, + d3)(dl d, + d, d3 + d,d,) 

+ p2 y(d, + d2) +F (d, + d3) + 
2 

$(d2+d3)] 
1 



COMPETITOR-COMPETITOR-MUTUALIST MODEL 279 

In [9], it had been shown that c, > 0. Due to p < 0 for p E a(d), it is not 
diflicult to check that c2 > 0. Hence 

a,a,-a3=c,+c2>0. 

By using the Routh-Hurwitz criteria and Theorem 4.4, we obtain our 
last theorem 

THEOREM 4.5. Zj” (4.12) and (4.13) hold, then E, exists uniquely. 
Moreover, it is linearly stable. Particularly, if pK2 < 1, then E, is linearly 
stable for all mutualism constant m > 0. 
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