A Reaction-Diffusion System of a Competitor-Competitor-Mutualist Model

Sining Zheng
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109 and Department of Applied Mathematics, Dalian Institute of Technology, Dalian, People's Republic of China*

Submitted by V. Lakshmikantham
Received May 15, 1985

Abstract

We investigate the homogeneous Dirichlet problem and Neumann problem to a reaction-diffusion system of a competitor-competitor-mutualist model. The existence, uniqueness, and boundedness of the solutions are established by means of the comparison principle and the monotonicity method. For the Dirichlet problem, we study the existence of trivial and nontrivial nonnegative equilibrium solutions and their stabilities. For the Neumann problem, we analyze the contant equilibrium solutions and their stabilities. The main method used in studying of the stabilities is the spectral analysis to the linearized operators. The O.D.E. problem to the same model was proposed and studied by B. Rai, H. I. Freedman, and J. F. Addicott (Math. Biosci. 65 (1983), 13-50). (C) 1987 Academic Press, Inc.

1. Introduction

We consider the following reaction-diffusion system of competitor-com-petitor-mutualist model

$$
\begin{align*}
& \frac{\partial u_{1}}{\partial t}=d_{1} \Delta u_{1}+\alpha u_{1}\left(1-\frac{u_{1}}{K_{1}}\right)-\frac{\alpha \beta u_{1} u_{2}}{1+m u_{3}}, \\
& \frac{\partial u_{2}}{\partial t}=d_{2} \Delta u_{2}+\delta u_{2}\left(1-\frac{u_{2}}{K_{2}}\right)-\eta u_{1} u_{2}, \tag{1.1}\\
& \frac{\partial u_{3}}{\partial t}=d_{3} \Delta u_{3}+\gamma u_{3}\left(1-\frac{u_{3}}{L_{0}+l u_{1}}\right), \quad \text { in } \Omega \times \mathbb{R}^{+} .
\end{align*}
$$

* Permanent address.
with initial condition

$$
\begin{equation*}
u_{i}(x, 0)=u_{i 0}(x), \quad i=1,2,3, \quad \text { on } \Omega \tag{1.2}
\end{equation*}
$$

and Dirichlet boundary condition

$$
\begin{equation*}
u_{i}(x, t)=0, \quad i=1,2,3, \quad \text { on } \quad \partial \Omega \times \mathbb{R}^{+}, \tag{1.3}
\end{equation*}
$$

or Neumann boundary condition

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial n}(x, t)=0, \quad i=1,2,3, \quad \text { on } \quad \partial \Omega \times \mathbb{R}^{+} . \tag{1.4}
\end{equation*}
$$

Here, $u_{1}(x, t), u_{2}(x, t)$, and $u_{3}(x, t)$ represent the populations of two competitors and a mutualist with diffusion constants d_{1}, d_{2} and d_{3}, respectively; Ω is a bounded domain in $\mathbb{R}^{n}, \partial \Omega$ is its boundary, $\partial / \partial n$ is the outward normal derivatives on $\partial \Omega ; \Delta$ is Laplace operator. The all parameters in (1.1) are positive constants, m and l being the mutualist constants. It can be seen that in this model, the mutualist u_{3} tends to reduce the competition effect of the second competitor u_{2} on the first one u_{1} but has no direct effect on u_{2} or vice versa.
The homogeneous Neumann boundary condition (1.4) is to be interpreted as "no flux" condition; i.e., there is no migration of all species across the boundary of their habitat. While the homogeneous Dirichlet boundary condition (1.3) can be considered as such a condition that under which neither of the three species can exist on the boundary.

We establish the existence, uniqueness, and boundedness by means of the comparison principle and the monotonicity method. For the Dirichlet problem, we study the existence of trivial and nontrivial nonnegative equilibrium solutions and their stabilities. For the Neumann problem, we analyze the constant equilibrium solutions and their stabilities. The main method used in studying of the stabilities is the spectral analysis to the linearized operators.

The corresponding competitor-competitor-mutualist O.D.E. model was proposed and studied by Rai, Freedman, and Addicott in [9], where the explanations of the ecological background of this model can be found as well. Another reaction-diffusion system corresponding to a predator-preymutualist O.D.E. model of [9] was studied by us in [13]. As for the studies on three species reaction-diffusion systems of predator-prey model, the readers can see $[4,5]$.

2. Preliminaries

First, we consider the more general semilinear parabolic system with more general boundary condition and initial condition

$$
\begin{gather*}
\frac{\partial u_{1}}{\partial t}-L_{1} u_{1}=f_{1}\left(u_{1}, u_{2}, u_{3}\right), \\
\frac{\partial u_{2}}{\partial t}-L_{2} u_{2}=f_{2}\left(u_{1}, u_{2}\right), \tag{2.1}\\
\frac{\partial u_{3}}{\partial t}-L_{3} u_{3}=f_{3}\left(u_{1}, u_{3}\right) \quad \text { in } \Omega \times(0, T], \\
u_{i}(x, 0)=u_{i 0}(x), \quad i=1,2,3 \text { on } \Omega, \tag{2.2}\\
B_{i}\left[u_{i}\right]=\alpha_{i}(x) u_{i}+\beta_{i}(x) \frac{\partial u_{i}}{\partial n}=h_{i}(x), \quad i=1,2,3 \text { on } \partial \Omega \times(0, T] \tag{2.3}
\end{gather*}
$$

as well as the corresponding elliptic system

$$
\begin{align*}
& -L_{1} u_{1}=f_{1}\left(u_{1}, u_{2}, u_{3}\right) \\
& -L_{2} u_{2}=f_{2}\left(u_{1}, u_{2}\right), \tag{2.4}\\
& -L_{3} u_{3}=f_{3}\left(u_{1}, u_{3}\right) \quad \text { in } \quad \Omega \\
& B_{i}\left[u_{i}\right]=h_{i}(x), \quad i=1,2,3 \quad \text { on } \quad \partial \Omega \tag{2.5}
\end{align*}
$$

where L_{i} is a uniformly elliptic operator in $\Omega ; \alpha_{i}(x), \beta_{i}(x)$, and $u_{i 0}(x)$ are smooth functions with $u_{i 0} \not \equiv 0$ and $\alpha_{i}+\beta_{i}>0 ; f_{i}$ is continuously differentiable with respect to its variables for $u_{k} \geqslant 0, i, k=1,2,3$. In addition, we assume

$$
\begin{align*}
& \frac{\partial f_{1}}{\partial u_{2}} \leqslant 0, \quad \frac{\partial f_{1}}{\partial u_{3}} \geqslant 0 \\
& \frac{\partial f_{2}}{\partial u_{1}} \leqslant 0, \tag{2.6}\\
& \frac{\partial f_{3}}{\partial u_{1}} \geqslant 0 \quad \text { for } \quad u_{i} \geqslant 0, i=1,2,3,
\end{align*}
$$

which are obviously satisfied by the reaction terms of (1.1) as well as by those of a more general system corresponding to (2.2) of [9].

Denote $Q_{T}=\Omega \times(0, T], S_{T}=\partial \Omega \times(0, T]$, where T is an arbitrary positive constant.

Definition 2.1. Ordered smooth functions $\bar{U}(x, t)=\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right)$ and $\underline{U}(x, t)=\left(\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}\right)$ in Q_{T} are called upper and lower solutions of (2.1)-(2.3), if they satisfy

$$
\begin{align*}
& \left(\bar{u}_{1}\right)_{t}-L_{1} \bar{u}_{1} \geqslant f_{1}\left(\bar{u}_{1}, \underline{u}_{2}, \bar{u}_{3}\right), \\
& \left(\bar{u}_{2}\right)_{t}-L_{2} \bar{u}_{2} \geqslant f_{2}\left(u_{1}, \bar{u}_{2}\right), \\
& \left(\bar{u}_{3}\right)_{t}-L_{3} \bar{u}_{3} \geqslant f_{3}\left(\bar{u}_{1}, \bar{u}_{3}\right), \\
& \left(\underline{u}_{1}\right)_{t}-L_{1} \underline{u}_{1} \leqslant f_{1}\left(\underline{u}_{1}, \bar{u}_{2}, \underline{u}_{3}\right), \tag{2.7}\\
& \left(\underline{u}_{i}\right)_{t}-L_{2} \underline{u}_{2} \leqslant f_{2}\left(\bar{u}_{1}, \underline{u}_{2}\right), \\
& \left(\underline{u}_{3}\right)_{t}-L_{3} u_{3} \leqslant f_{3}\left(\underline{u}_{1}, \underline{u}_{3}\right) \quad \text { in } \quad Q_{T}, \\
& B_{i}\left[\bar{u}_{i}\right] \geqslant h_{i}(x) \geqslant B_{i}\left[\underline{u}_{i}\right], \quad i=1,2,3 \text { on } S_{T} \tag{2.8}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{u}_{i}(x, 0) \geqslant u_{i 0}(x) \geqslant \underline{u}_{i}(x, 0), \quad i=1,2,3 \text { on } \Omega . \tag{2.9}
\end{equation*}
$$

Suppose such \bar{U} and \underline{U} exist. Denote

$$
\begin{equation*}
S=\left\{\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}: \underline{\rho}_{i} \leqslant u_{i} \leqslant \bar{\rho}_{i}, i=1,2,3\right\}, \tag{2.10}
\end{equation*}
$$

where $\rho_{i}=\inf _{Q_{T}} u_{i}(x, t), \bar{\rho}_{i}=\sup _{Q_{T}} \bar{u}_{i}(x, t), i=1,2,3$. Define

$$
\begin{equation*}
N_{i}=\sup _{s}\left\{\left|\frac{\partial f_{i}}{\partial u_{i}}\right|\right\}, \quad i=1,2,3 . \tag{2.11}
\end{equation*}
$$

Construct the sequences $\left\{\bar{U}^{(k)}\right\}$ and $\left\{\underline{U}^{(k)}\right\}$ with $\bar{U}^{(0)}=\bar{U}$ and $\underline{U}^{(0)}=\underline{U}$ as follows:

$$
\begin{align*}
\left(\bar{u}_{1}^{(k)}\right)_{t}-L_{1} \bar{u}_{1}^{(k)}+N_{1} \bar{u}_{i}^{(k)} & =N_{1} \bar{u}_{1}^{(k-1)}+f_{1}\left(\bar{u}_{1}^{(k-1)}, u_{2}^{(k-1)}, \bar{u}_{3}^{(k-1)}\right), \\
\left(\bar{u}_{2}^{(k)}\right)_{t}-L_{2} \bar{u}_{2}^{(k)}+N_{2} \bar{u}_{2}^{(k)} & =N_{2} \bar{u}_{2}^{(k-1)}+f_{2}\left(\underline{u}_{1}^{(k-1)}, \bar{u}_{2}^{(k-1)}\right), \\
\left(\bar{u}_{3}^{(k)}\right)_{t}-L_{3} \bar{u}_{3}^{(k)}+N_{3} \bar{u}_{3}^{(k)} & =N_{3} \bar{u}_{3}^{(k-1)}+f_{3}\left(\bar{u}_{1}^{(k-1)}, \bar{u}_{3}^{(k-1)}\right), \\
\left(\underline{u}_{1}^{(k)}\right)_{t}-L_{1} u_{1}^{(k)}+N_{1} \underline{u}_{1}^{(k)} & =N_{1} \underline{u}_{1}^{(k-1)}+f_{1}\left(u_{1}^{(k-1)}, \bar{u}_{2}^{(k-1)}, \underline{u}_{3}^{(k-1)}\right), \tag{2.12}\\
\left(\underline{u}_{2}^{(k)}\right)_{t}-L_{2} \underline{u}_{2}^{(k)}+N_{2} \underline{u}_{2}^{(k)} & =N_{2} \underline{u}_{2}^{(k-1)}+f_{2}\left(\bar{u}_{1}^{(k-1)}, \underline{u}_{2}^{(k-1)}\right), \\
\left(\underline{u}_{3}^{(k)}\right)_{t}-L_{3} \underline{u}_{3}^{(k)}+N_{3} \underline{u}_{3}^{(k)} & =N_{3} \underline{u}_{3}^{(k-1)}+f_{3}\left(\underline{u}_{1}^{(k-1)}, u_{3}^{(k-1)}\right), \\
B_{i}\left[\bar{u}_{i}^{(k)}\right] & =h_{i}(x)=B_{i}\left[u_{i}^{(k)}\right], \tag{2.13}\\
\bar{u}_{i}^{(k)}(x, 0) & =u_{i 0}(x)=\underline{u}_{i}^{(k)}(x, 0), \tag{2.14}
\end{align*}
$$

where $i=1,2,3, k=1,2,3, \ldots$
As for the existence of solution of (2.1) (2.3) we have

Theorem 2.1. Suppose that there exists a pair of upper and lower solutions $\bar{U}=\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right)$ and $\underline{U}=\left(\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}\right)$ satisfying $\underline{u}_{i}(x, t) \leqslant \bar{u}_{i}(x, t)$, $i=1,2,3$. Then the sequences $\left\{D^{(k)}\right\}$ and $\left\{\underline{U}^{(k)}\right\}$ obtained by solving (2.12)-(2.14) monotonically from above and below, respectively, to a unique solution $U=\left(u_{1}, u_{2}, u_{3}\right)$ of $(2.1)-(2.3)$ such that

$$
\underline{u}_{i}(x, t) \leqslant u_{i}(x, t) \leqslant \bar{u}_{i}(x, t), \quad i=1,2,3,(x, t) \in Q_{T}
$$

The proof of Theorem 2.1 is standard. We omit it here.
Next consider the corresponding elliptic system (2.4) and (2.5).

Definition 2.2. Ordered smooth functions $\bar{U}(x)=\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right)$ and $\underline{U}(x)=\left(\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}\right)$ in Ω are called upper and lower solutions of (2.4) and (2.5) if they satisfy

$$
\begin{align*}
-L_{1} \bar{u}_{1} & \geqslant f_{1}\left(\bar{u}_{1}, \underline{u}_{2}, \bar{u}_{3}\right), \\
-L_{2} \bar{u}_{2} & \geqslant f_{2}\left(\underline{u}_{1}, \bar{u}_{2}\right), \\
-L_{3} \bar{u}_{3} & \geqslant f_{3}\left(\bar{u}_{1}, \bar{u}_{3}\right), \tag{2.15}\\
-L_{1} \underline{u}_{1} & \leqslant f_{1}\left(\underline{u}_{1}, \bar{u}_{2}, \underline{u}_{3}\right), \\
-L_{2}, \underline{u}_{2} & \leqslant f_{2}\left(\bar{u}_{1}, \underline{u}_{2}\right), \\
-L_{3} \underline{u}_{3} & \leqslant f_{3}\left(\underline{u}_{1}, \underline{u}_{3}\right), \quad x \in \Omega
\end{align*}
$$

and

$$
\begin{equation*}
B_{i}\left[\bar{u}_{i}\right] \geqslant h_{i}(x) \geqslant B_{i}\left[\underline{u}_{i}\right], \quad i=1,2,3, x \in \partial \Omega . \tag{2.16}
\end{equation*}
$$

Theorem 2.2. Suppose \bar{U} and \underline{U} are a pair of upper and lower solutions of (2.4) and (2.5) with $\bar{u}_{i} \geqslant \underline{u}_{i} i=1,2,3$, on Ω, then there exists at least one solution $U(x)=\left(u_{1}, u_{2}, u_{3}\right)$ of (2.4) and (2.5), such that

$$
\underline{u}_{i}(x) \leqslant u_{i}(x) \leqslant \bar{u}_{i}(x), \quad i=1,2,3, x \in \Omega .
$$

The proof of Theorem 2.2 is substantially the same as for the scalar equation case $[10,12]$. See, e.g., $[7,10]$. Note that the theorem does not guarantee the uniqueness of solutions of (2.4) and (2.5) even restricted between \underline{U} and \bar{U}. In fact, as will be seen in the next section, multiple nontrivial nonnegative equilibrium solutions of (1.1)-(1.3) do exist.

3. Dirichlet Problem

In this section we consider the system (1.1) with initial condition (1.2) and homogeneous Dirichlet boundary condition (1.3).

We first establish the boundedness and nonnegativity to the solution.
Theorem 3.1. Let $U(x, t)=\left(u_{1}(x, t), u_{2}(x, t), u_{3}(x, t)\right)$ be a solution of (1.1)-(1.3). Then for $(x, t) \in \Omega \times \mathbb{R}^{+}$we have

$$
\begin{aligned}
& 0 \leqslant u_{1}(x, t) \leqslant \max \left\{K_{1}, \sup _{\Omega} u_{10}(x)\right\} \\
& 0 \leqslant u_{2}(x, t) \leqslant \max \left\{K_{2}, \sup _{\Omega} u_{20}(x)\right\} \\
& 0 \leqslant u_{3}(x, t) \leqslant \max \left\{L_{0}+l K_{1}, \sup _{\Omega} u_{30}(x)\right\} .
\end{aligned}
$$

Proof. The case where u_{i} takes its maximum on superplane $t=0$ is trivial.

Now, let us prove that (1.1) has the following invariant region [12]

$$
\Sigma=\left\{\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}, 0 \leqslant u_{1} \leqslant K_{1}, 0 \leqslant u_{2} \leqslant K_{2}, 0 \leqslant u_{3} \leqslant L_{0}+l K_{1}\right\}
$$

Set

$$
V=\left[\alpha u_{1}\left(1-\frac{u_{1}}{K_{1}}\right)-\frac{\alpha \beta u_{1} u_{2}}{1+m u_{3}}, \delta u_{2}\left(1-\frac{u_{2}}{K_{2}}\right)-\eta u_{1} u_{2}, \gamma u_{3}\left(1-\frac{u_{3}}{L_{0}+l u_{1}}\right)\right]
$$

$G_{j}=-u_{j} \quad j=1,2,3, \quad G_{4}=u_{1}-K_{1}, \quad G_{5}=u_{2}-K_{2}$,
$G_{6}=u_{3}-\left(L_{0}+l K_{1}\right)$.
Then, according to Theorem 14.13 of [12] as well as the fact that the intersection of invariant regions is an invariant region (see Sect. B, Chapt. 14 of [12]), we have

$$
\begin{gathered}
\left.\nabla G_{j} \cdot V\right|_{u_{j}=0}=0 \quad \text { in } \Sigma, \quad \text { so } u_{i} \geqslant 0, j=1,2,3, \\
\left.\nabla G_{4} \cdot V\right|_{u_{1}=\kappa_{1}}=-\frac{\alpha \beta K_{1} u_{2}}{1+m u_{3}} \leqslant 0 \\
\quad \text { in } \Sigma, \quad \text { so } u_{1} \leqslant K_{1}, \\
\left.\nabla G_{5} \cdot V\right|_{u_{2}=K_{2}}=-\eta u_{1} K_{2} \leqslant 0 \\
\quad \text { in } \Sigma, \quad \text { so } u_{2} \leqslant K_{2}, \\
\left.\nabla G_{6} \cdot V\right|_{u_{3}=L_{0}+l K_{1}}=\gamma\left(L_{0}+l K_{1}\right)\left(1-\frac{L_{0}+l K_{1}}{L_{0}+l u_{1}}\right) \leqslant 0 \\
\quad \text { in } \Sigma, \quad \text { so } u_{3} \leqslant L_{0}+l K_{1} .
\end{gathered}
$$

The proof of the theorem is completed.
Due to Theorem 2.1, in order to establish the existence of solutions of (1.1)-(1.3), we need only to construct a pair of upper and lower solutions.

Let λ_{0} be the principal eigenvalue of operator $-\Delta$ with homogeneous Dirichlet boundary condition. We can construct a function $\tilde{\varphi}_{0}(x)$ [1, 11], normalized by $\sup _{\Omega} \tilde{\varphi}_{0}(x)=1$, such that

$$
\begin{align*}
\Delta \tilde{\varphi}_{0}+\lambda_{0} \tilde{\varphi}_{0} \leqslant 0, & x \in \Omega, \tag{3.1}\\
\tilde{\varphi}_{0}>0, & x \in \bar{\Omega} .
\end{align*}
$$

Choose positive constants $M_{i}, i=1,2,3$, such that

$$
u_{i 0}(x) \leqslant M_{i} \tilde{\varphi}_{0}(x), \quad i=1,2,3, x \in \bar{\Omega} .
$$

Set

$$
\begin{align*}
& \bar{u}_{1}(x, t)=M_{1} \tilde{\varphi}_{0}(x) \exp \left\{\left(-d_{1} \lambda_{0}+\alpha\right) t\right\} \\
& \bar{u}_{2}(x, t)=M_{2} \tilde{\varphi}_{0}(x) \exp \left\{\left(-d_{2} \lambda_{0}+\delta\right) t\right\} \tag{3.2}\\
& \bar{u}_{3}(x, t)=M_{3} \tilde{\varphi}_{0}(x) \exp \left\{\left(-d_{3} \lambda_{0}+\gamma\right) t\right\}
\end{align*}
$$

It is easy to check that, $\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right)$ and $(0,0,0)$ define a pair of upper and lower solutions of $(1.1)-(1.3)$. According to Theorem 2.1 and the arbitrariness of T, we get

Thforem 3.2. There exists the unique solution $\left(u_{1}(x, t), u_{2}(x, t)\right.$, $\left.u_{3}(x, t)\right)$ of problem (1.1)-(1.3) satisfying

$$
0 \leqslant u_{i}(x, t) \leqslant \bar{u}_{i}(x, t), \quad i=1,2,3,(x, t) \in \Omega \times \mathbb{R}^{+}
$$

where $\bar{u}_{i}(x, t)(i=1,2,3)$ are defined by (3.2).
Now study the existence and the stabilities of equilibrium solutions of (1.1)-(1.3).

We first discuss the trivial equilibrium solution $(0,0,0)$.
Theorem 3.3. Let λ_{0} be the principal eigenvalue of $-\Delta$ with homogeneous Dirichlet boundary condition. Assume

$$
A=\max \left\{-d_{1} \lambda_{0}+\alpha,-d_{2} \lambda_{0}+\delta,-d_{3} \lambda_{0}+\gamma\right\}<0
$$

Then $(0,0,0)$ is the only nonnegative equilibrium solution of $(1.1)-(1.3)$. Moreover, it is globally asymptotically stable.

Proof. Let $\left(u_{1}^{*}(x), u_{2}^{*}(x), u_{3}^{*}(x)\right)$ be an arbitrary nonnegative equilibrium solution, i.e.,

$$
\begin{gather*}
d_{1} \Delta u_{1}^{*}+\alpha u_{1}^{*}\left(1-\frac{u_{1}^{*}}{K_{1}}\right)-\frac{\alpha \beta u_{1}^{*} u_{2}^{*}}{1+m u_{3}^{*}}=0, \\
d_{2} \Delta u_{2}^{*}+\delta u_{2}^{*}\left(1-\frac{u_{1}^{*}}{K_{2}}\right)-\eta u_{1}^{*} u_{2}^{*}=0, \tag{3.3}\\
d_{3} \Delta u_{3}^{*}+\gamma u_{3}^{*}\left(1-\frac{u_{3}^{*}}{L_{0}+l u_{1}^{*}}\right)=0, \quad x \in \Omega \\
\left.u_{i}^{*}\right|_{\partial \Omega}=0, \quad i=1,2,3
\end{gather*}
$$

which implies that $u_{1}^{*}(x)$ is a nonnegative solution of the following linear elliptic equation

$$
\begin{align*}
d_{1} \Delta u_{1}+a(x) u_{1} & =0, \quad x \in \Omega \tag{3.4}\\
\left.u_{1}\right|_{\partial \Omega} & =0
\end{align*}
$$

where $a(x)=\alpha\left(1-u_{1}^{*} / K_{1}-\beta u_{2}^{*} /\left(1-m u_{3}^{*}\right)\right)$.
Due to $u_{i}^{*} \geqslant 0, i=1,2,3$ and $-d_{1} \lambda_{0}+\alpha<0$, we know that

$$
a(x) \leqslant \alpha<d_{1} \lambda_{0}
$$

Thus, we deduce

$$
\begin{equation*}
\left\{\frac{a(x)}{d_{1}}: x \in \Omega\right\} \cap \sigma(-\Delta)=\varnothing \tag{3.5}
\end{equation*}
$$

where $\sigma(-\Delta)$ denotes the point spectrum of $-\Delta$ with homogeneous Dirichlet boundary condition. (3.5) implies

$$
\Delta u_{1}^{*}+\frac{a(x)}{d_{1}} u_{1}^{*} \neq 0 \quad \text { for all } \quad x \in \Omega
$$

whenever

$$
u_{1}^{*} \neq \text { constant zero. }
$$

So,

$$
u_{1}^{*}(x) \equiv 0, \quad x \in \bar{\Omega}
$$

It can be shown in the same way that

$$
u_{2}^{*}(x)=u_{3}^{*}(x) \equiv 0, \quad x \in \bar{\Omega},
$$

and hence $(0,0,0)$ is the only equilibrium solution of $(1.1)-(1.3)$.

The conclusion on globally asymptotic stability follows from the assumption $\Lambda<0$ and the upper solution formula (3.2). This completes the proof.

If the assumption $\Lambda<0$ is violated, then there may exist some nontrivial nonnegative equilibrium solutions to (1.1)-(1.3).

Theorem 3.4. Assume $-d_{1} \lambda_{0}+d>0,-d_{2} \lambda_{0}+\delta,-d_{3} \lambda_{0}+\gamma<0$, then there exists a nontrivial nonnegative equilibrium solution $\left(u_{1}^{*}(x), 0,0\right)$ of (1.1)-(1.3), which is linearly stable.

Proof. Consider the following Dirichlet problem of semilinear elliptic equation

$$
\begin{gather*}
d_{1} \Delta u_{1}+\alpha u_{1}\left(1-\frac{u_{1}}{K_{1}}\right)=0, \quad x \in \Omega, \tag{3.6}\\
\left.u_{1}\right|_{\partial \Omega}=0 .
\end{gather*}
$$

Take

$$
\begin{align*}
& \bar{u}_{1}(x)=M \tilde{\varphi}_{0}(\chi), \\
& \underline{u}_{1}(x)=\varepsilon \varphi_{0}(x), \quad x \in \bar{\Omega}, \tag{3.7}
\end{align*}
$$

where $\tilde{\varphi}_{0}(x)$ satisfies (3.1), $\varphi_{0}(x)$ is the principal eigenfunction of $-\Delta$ with eigenvalue λ_{0}; both of them are normalized by $\sup _{\Omega} \tilde{\varphi}_{0}(x)=1$, $\sup _{\Omega} \varphi_{0}(x)=1 ; \quad$ constants $\quad M \geqslant\left(K_{1}\left(-d_{1} \lambda_{0}+d\right) / \alpha \inf _{\Omega} \tilde{\varphi}_{0}(x)\right), \quad \varepsilon \leqslant$ $K_{1}\left(-d_{1} \lambda_{0}+\alpha\right) / \alpha$. We can check that $\bar{u}_{1}(x)$ and $\underline{u}_{1}(x)$ defined by (3.7) form a pair of upper and lower solutions of (3.6). Due to Theorem 2.2, we know that there exists a nontrivial solution of (3.6), such that

$$
0<\underline{u}_{1}(x) \leqslant u_{1}^{*}(x) \leqslant \bar{u}_{1}(x), \quad x \in \Omega
$$

So, $\left(u_{1}^{*}(x), 0,0\right)$ is a nontrivial nonnegative equilibrium solution of (1.1)-(1.3).

Let us linearize the reaction terms of (1.1) at $U^{*}=\left(u_{1}^{*}(x), 0,0\right)$ and analyze the spectrum of the linearized operators. Rewrite system (1.1) into an evolution equation in Banach space $X=\oplus_{i=1}^{3} X_{i}=\oplus_{1}^{3} L^{2}(\Omega) \cap C^{2}(\Omega)$:

$$
\begin{equation*}
\frac{d U}{d t}=A U+F(U) \tag{3.8}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{lll}
A_{1} & & \tag{3.9}\\
& A_{2} & \\
& & A_{3}
\end{array}\right]=\left[\begin{array}{lll}
d_{1} \Delta+\alpha & & \\
& d_{2} \Delta+\delta & \\
& & d_{3} \Delta+\gamma
\end{array}\right]
$$

$$
\begin{align*}
U(t) & =\left(u_{1}(t), u_{2}(t), u_{3}(t)\right) \in D(A) \subset X \\
D(A) & =\left\{U \in X:\left.U\right|_{\partial \Omega}=0\right\}, \\
F(U) & =\left(-\frac{\alpha u_{1}^{2}}{K_{1}}-\frac{\alpha \beta u_{1} u_{2}}{1+m u_{3}},-\frac{\delta u_{3}^{2}}{K_{2}}-\eta u_{1} u_{2},-\frac{\gamma u_{3}^{2}}{L_{0}+l u_{1}}\right)^{T} . \tag{3.10}
\end{align*}
$$

Linearizing $F(U)$ at U^{*}, we get

$$
\begin{equation*}
F\left(U+U^{*}\right)=F\left(U^{*}\right)+B U+g(U) \tag{3.11}
\end{equation*}
$$

where

$$
\begin{gather*}
g(U)=o\left(\|U\|_{X}\right) \\
B=B_{1}=\left[\begin{array}{ccc}
-\frac{2 \alpha u_{1}^{*}}{K_{1}} & -\alpha \beta u_{1}^{*} & 0 \\
0 & -\eta u_{1}^{*} & 0 \\
0 & 0 & 0
\end{array}\right] . \tag{3.12}
\end{gather*}
$$

We analyze the spectrum of operator $\mathscr{U} \equiv A+B_{1}[2,3,6]$. The resolvent equation for \mathscr{U} is

$$
\left(A+B_{1}-\mu I\right) U=V, \quad \mu \in \mathbb{C}, V=\left(v_{1}, v_{2}, v_{3}\right)^{T} \in X
$$

i.e.,

$$
\left[\begin{array}{ccc}
A_{1}-\frac{2 \alpha u_{1}^{*}}{K_{1}}-\mu & -\alpha \beta u_{1}^{*} & 0 \\
0 & A_{2}-\eta u_{1}^{*}-\mu & 0 \\
0 & 0 & A_{3}-\mu
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

for $\mu \in \rho\left(A_{2}-\eta u_{1}^{*}\right) \cap \rho\left(A_{3}\right)$, where $\rho\left(A_{3}\right)$ denotes the resolvent set of A_{3}, etc. Setting $\bar{A}_{1}(\mu)=A_{1}-\left(2 \alpha u_{1}^{*} / K_{1}\right)-\mu$, we have

$$
\left[\begin{array}{c}
\bar{A}_{1}(\mu) u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{ccc}
I & \alpha \beta u_{1}^{*} R\left(\mu, A_{2}-\eta u_{1}^{*}\right) & 0 \\
0 & R\left(\mu, A_{2}-\eta u_{1}^{*}\right) & 0 \\
0 & 0 & R\left(\mu, A_{3}\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

where $R\left(\mu, A_{3}\right)$ is the resolvent operator of A_{3}, etc.
We have the following four lemmas:

Lemma 3.1. Denote

$$
\mathscr{R}=\left\{\mu: \mu \in \rho\left(A_{2}-\eta u_{1}^{*}\right) \cap \rho\left(A_{3}\right), \bar{A}_{1}(\mu) \text { is invertible in } L^{2}(\Omega)\right\},
$$

then

$$
\mathscr{R} \subset \rho(\mathscr{U}) .
$$

Lemma 3.2. Let $\mu \in \rho\left(A_{2}-\eta u_{1}^{*}\right) \cap\left(A_{3}\right)$, then $\bar{A}_{1}(\mu)$ is invertible in $L^{2}(\Omega)$ if and only if zero is not an eigenvalue of $\bar{A}_{1}(\mu)$.

Lemma 3.3. There exist $\theta^{*} \in(0, \pi / 2)$ and $\gamma^{*}>0$, such that

$$
S^{*} \equiv\left\{\mu \in \mathbb{C}:\left|\arg \left(\mu+\gamma^{*}\right)\right| \leqslant \frac{\pi}{2}+\theta^{*}\right\} \subset \mathscr{R}
$$

Lemma 3.4.

$$
\sigma(\mathscr{U}) \subset\left\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda<-\gamma^{*}\right\} .
$$

Lemmas 3.1 and 3.2 are obvious [6]. Lemma 3.4 follows from Lemmas 3.13 .3 while the linear stability of $\left(u_{1}^{*}(x), 0,0\right)$ results from Lemma 3.4 [12]. So, we need only to prove Lemma 3.3.

Proof of Lemma 3.3. Due to $d_{2} \lambda_{0}+\delta, d_{3} \lambda_{0}+\gamma<0$, it is clear that

$$
\begin{equation*}
K^{*}=\max \left\{\operatorname{Re} \lambda: \lambda \in \sigma\left(A_{2}-\eta u_{1}^{*}(x)\right) \cup \sigma\left(A_{3}\right)\right\}<0 \tag{3.13}
\end{equation*}
$$

In view of Lemma 3.2, it suffices to show that there exist $\theta^{*} \in(0, \pi / 2)$ and $\gamma^{*}>0$, such that $\bar{A}_{1}(\mu)$ does not have zero eigenvalue whenever $\mu \in S^{*}$.

Let $\eta(\mu)$ be an arbitrary eigenvalue of $\bar{A}_{1}(\mu), \varphi(\mu)$ be the corresponding eigenfunction, $\varphi(\mu) \geqslant 0$, normalized by $\|\varphi\|_{L^{2}(\Omega)}=1$. Put

$$
\begin{aligned}
\mu_{1} & =\operatorname{Re} \mu, & \mu_{2} & =\operatorname{Im} \mu \\
\eta_{1}(\mu) & =\operatorname{Re} \eta(\mu), & \eta_{2}(\mu) & =\operatorname{Im} \eta(\mu)
\end{aligned}
$$

Then

$$
\begin{aligned}
\bar{A}_{1}(\mu) \varphi(\mu) & =\eta(\mu) \varphi(\mu) \\
\eta(\mu) & =\left\langle\bar{A}_{1}(\mu) \varphi(\mu), \varphi(\mu)\right\rangle \\
& =\left\langle\left(A_{1}-\frac{\alpha u_{1}^{*}}{K_{1}}\right) \varphi(\mu), \varphi(\mu)\right\rangle+\left\langle-\frac{\alpha u_{1}^{*}}{K_{1}} \varphi(\mu), \varphi(\mu)\right\rangle-\mu
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \eta_{1}(\mu)=\left\langle\left(A_{1}-\frac{\alpha u_{1}^{*}}{K_{1}}\right) \varphi(\mu), \varphi(\mu)\right\rangle+\left\langle-\frac{\alpha u_{1}^{*}}{K_{1}} \varphi(\mu), \varphi(\mu)\right\rangle-\mu_{1} \\
& \eta_{2}(\mu)=-\mu_{2}
\end{aligned}
$$

We recall that $u_{1}^{*}(x)$ satisfies (3.5), i.e.,

$$
\begin{gather*}
\left(A_{1}-\frac{\alpha u_{1}^{*}}{K_{1}}\right) u_{1}^{*}=0, \quad x \in \Omega \tag{3.14}\\
\left.u_{1}^{*}\right|_{\partial \Omega}=0
\end{gather*}
$$

This means that the second order elliptic operator $A_{1}-\left(\alpha u_{1}^{*} / K_{1}\right)$ has positive function $u_{1}^{*}(x)$ as its eigenfunction with zero eigenvalue. Therefore, we deduce that [6]

$$
\left\langle\left(A_{1}-\frac{\alpha u_{1}^{*}}{K_{1}}\right) \psi, \psi\right\rangle \leqslant 0, \quad \forall \psi \in H_{0}^{1}(\Omega)
$$

and hence

$$
\begin{equation*}
\eta_{1}\left(0, \mu_{2}\right) \leqslant\left\langle-\frac{\alpha u_{1}^{*}}{K_{1}} \varphi(\mu), \varphi(\mu)\right\rangle<0 . \tag{3.15}
\end{equation*}
$$

In view of the continuous dependence of $\eta(\mu)$ on μ, we know from (3.13) that there exist $c^{*}>0$ and $\alpha^{*}>0,-\alpha^{*} \in\left(K^{*}, 0\right)$, such that $\eta_{1}\left(\mu_{1}, \mu_{2}\right)<0$ whenever

$$
\mu \in\left\{\mu \in \mathbb{C}: \mu \in \rho\left(A_{2}-\eta u_{1}^{*}\right) \cap \rho\left(A_{3}\right), \operatorname{Re} \mu \in\left(-\alpha^{*}, 0\right),|\operatorname{Im} \mu|<c^{*}\right\}
$$

Observing $\left|\eta_{2}\left(\mu_{1}, \mu_{2}\right)\right|=\left|\mu_{2}\right| \geqslant c^{*}>0$ when $\left|\mu_{2}\right| \geqslant c^{*}$, we claim that $\bar{A}_{1}(\mu)$ does not have zero as an eigenvalue if

$$
\mu \notin\left\{\mu \in \mathbb{C}: \mu \in \rho\left(A_{2}-\eta u_{1}^{*}\right) \cap \rho\left(A_{3}\right), \operatorname{Re} \mu<-\alpha^{*},|\operatorname{Im} \mu|<c^{*}\right\} .
$$

Taking

$$
\theta^{*} \in\left(0, \arctan \frac{\alpha^{*}-\gamma^{*}}{c^{*}}\right) \quad \text { and } \quad \gamma^{*} \in\left(0, \alpha^{*}\right)
$$

we complete the proof of Lemma 3.3 and hence get the conclusion of the theorem.

Similarly, we have the following two theorems:
Theorem 3.5. Assume $-d_{2} \lambda_{0}+\delta>0,-d_{1} \lambda_{0}+\alpha,-d_{3} \lambda_{0}+\gamma<0$, then there exists a nontrivial nonnegative equilibrium solution $\left(0, u_{2}^{*}(x), 0\right)$ of (1.1)-(1.3), which is linearly stable.

THEOREM 3.6. Assume $-d_{3} \lambda_{0}+\gamma>0,-d_{1} \lambda_{0}+\alpha,-d_{2} \lambda_{0}+\delta<0$, then there exists a nontrivial nonnegative equilibrium solution $\left(0,0, u_{3}^{*}(x)\right)$ of (1.1)-(1.3), which is linearly stable.

The proofs of Theorems 3.5 and 3.6 are almost the same as that of Theorem 3.4. We observe that the linearizations at $\left(0, u_{2}^{*}, 0\right)$ and $\left(0,0, u_{3}^{*}\right)$ are

$$
B_{2}=\left[\begin{array}{ccc}
-\alpha \beta u_{2}^{*} & 0 & 0 \tag{3.16}\\
-\eta u_{2}^{*} & -\frac{2 \delta u_{2}^{*}}{K_{2}} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
B_{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{3.17}\\
0 & 0 & 0 \\
\frac{l \gamma u_{3}^{* 2}}{L_{0}^{2}} & 0 & -\frac{2 \gamma u_{3}^{*}}{L_{0}}
\end{array}\right]
$$

respectively, and that

$$
\begin{equation*}
\max \left\{\operatorname{Re} \lambda: \lambda \in \sigma\left(A_{1}-\alpha \beta u_{2}^{*}\right) \cup \sigma\left(A_{3}\right)\right\}<0 \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left\{\operatorname{Re} \lambda: \lambda \in \sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)\right\}<0 \tag{3.19}
\end{equation*}
$$

hold, respectively. Inequality (3.18) ((3.19)) comes from the assumption of Theorem 3.5 (Theorem 3.6) that $-d_{1} \lambda_{0}+\alpha,-d_{3} \lambda_{0}+\gamma<0\left(-d_{1} \lambda_{0}+\alpha\right.$, $-d_{2} \lambda_{0}+\delta<0$).

The following simple theorem is the complement of Theorem 3.3.

Theorem 3.7. If

$$
A=\max \left\{-d_{1} \lambda_{0}+\alpha,-d_{2} \lambda_{0}+\delta,-d_{3} \lambda_{0}+y\right\}>0
$$

then the trivial equilibrium solution $(0,0,0)$ is unstable.
Proof. Linearizing $F(U)$ at $(0,0,0)$ we get

$$
\mathscr{U}=A+B=\left[\begin{array}{lll}
d_{1} \Delta+\alpha & & \\
& d_{2} \Delta+\delta & \\
& & d_{3} \Delta+\gamma
\end{array}\right]=\left[\begin{array}{lll}
A_{1} & & \\
& A_{2} & \\
& & A_{3}
\end{array}\right]
$$

and hence

$$
\sigma(\mathscr{U})=\sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right) \cup \sigma\left(A_{3}\right) .
$$

Since $\Lambda>0$, it is clear that

$$
\sigma(\mathscr{U}) \cap\{\mu \in \mathbb{C}: \operatorname{Re} \mu>0\} \neq \varnothing .
$$

This completes the proof of the theorem.
The last three theorems of this section will deal with the cases where the habitat Ω is even "larger" (hence λ_{0} is smaller), or the diffusion mechanism of the species is even weaker, or their growth rates are even greater, such that two of $-d_{1} \lambda_{0}+\alpha,-d_{2} \lambda_{0}+\delta$, and $-d_{3} \lambda_{0}+\gamma$ are positive, but the left one is negative.

Theorem 3.8. Assume $-d_{1} \lambda_{0}+\alpha,-d_{2} \lambda_{0}+\delta>0,-d_{3} \lambda_{0}+\gamma<0$, then
(i) There exists a nontrivial nonnegative equilibrium solution $\left(u_{1}^{*}(x), 0,0\right)$, which is linearly stable if

$$
\begin{equation*}
\max \left\{\operatorname{Re} \lambda: \lambda \in \sigma\left(A_{2}-\eta u_{1}^{*}\right)\right\}<0 \tag{3.20}
\end{equation*}
$$

and is unstable if

$$
\begin{equation*}
\max \left\{\operatorname{Re} \lambda: \lambda \in \sigma\left(A_{2}-\eta u_{1}^{*}\right)\right\}>0 . \tag{3.21}
\end{equation*}
$$

(ii) There exists a nontrivial nonnegative equilibrium solution $\left(0, u_{2}^{*}(x), 0\right)$, which is linearly stable if

$$
\begin{equation*}
\max \left\{\operatorname{Re} \lambda: \lambda \in \sigma\left(A_{1}-\alpha \beta u_{2}^{*}\right)\right\}<0 \tag{3.22}
\end{equation*}
$$

and is unstable if

$$
\begin{equation*}
\max \left\{\operatorname{Re} \lambda: \lambda \in \sigma\left(A_{1}-\alpha \beta u_{2}^{*}\right)\right\}>0 . \tag{3.23}
\end{equation*}
$$

(iii) There exists a nontrivial nonnegative equilibrium solution ($\tilde{u}_{1}(x)$, $\left.\tilde{u}_{2}(x), 0\right)$ if

$$
\begin{align*}
& \frac{K_{1}\left(-d_{1} \lambda_{0}+\alpha\right)}{\alpha \inf _{\Omega} \tilde{\varphi}_{0}(x)}<\frac{-d_{2} \lambda_{0}+\delta}{\eta}, \tag{3.24}\\
& \frac{K_{2}\left(-d_{2} \lambda_{0}+\delta\right)}{\delta \inf _{\Omega} \tilde{\varphi}_{0}(x)}<\frac{-d_{1} \lambda_{0}+\alpha}{\alpha \beta} . \tag{3.25}
\end{align*}
$$

Proof. (i) Note that $\max \left\{\lambda: \lambda \in \sigma\left(d_{3} \Delta+\gamma\right)\right\}<0$ since $-d_{3} \lambda_{0}+\gamma<0$. So, (3.13) holds if (3.20) is true. According to the proof of Theorem 3.4, we know that ($\left.u_{1}^{*}(x), 0,0\right)$ is linearly stable under the assumption (3.17).

Observe that

$$
\sigma\left(A_{2}-\eta u_{1}^{*}(x)\right) \subset \sigma(\mathscr{U}),
$$

where $\mathscr{U}=A+B_{1}, \quad B_{1}$ is the linearization at $\left(u_{1}^{*}(x), 0,0\right)$. Therefore, ($\left.u_{1}^{*}(x), 0,0\right)$ is unstable under (3.21).

The proof of (ii) is the same as that of (i).
(iii) Consider

$$
\begin{gather*}
d_{1} \Delta u_{1}+\alpha u_{1}\left(1-\frac{u_{1}}{K_{1}}\right)-\alpha \beta u_{1} u_{2}=0 \tag{3.26}\\
d_{2} \Delta u_{2}+\delta u_{2}\left(1-\frac{u_{2}}{K_{2}}\right)-\eta u_{1} u_{2}=0 . \quad x \in \Omega \\
\left.u_{1}\right|_{\partial \Omega}=\left.u_{2}\right|_{\partial \Omega}=0
\end{gather*}
$$

Put

$$
\begin{array}{ll}
\bar{u}_{1}(x)=M_{1} \tilde{\varphi}_{0}(x), & \underline{u}_{1}(x)=\varepsilon_{1} \varphi_{0}(x) \tag{3.27}\\
\bar{u}_{2}(x)=M_{2} \tilde{\varphi}_{0}(x), & \underline{u}_{2}(x)=\varepsilon_{2} \varphi_{0}(x)
\end{array}
$$

where $\tilde{\varphi}_{0}(x)$ and $\varphi_{0}(x)$ are described as before, M_{i} and ε_{i} are to be chosen, $i=1,2$. We hope that (3.27) defines a pair of upper and lower solutions of (3.26).

Observe that

$$
-d_{1} M_{1} \lambda_{0} \tilde{\varphi}_{0}+\alpha M_{1} \tilde{\varphi}_{0}\left(1-\frac{M_{1} \tilde{\varphi}_{0}}{K_{1}}\right)-\alpha \beta M_{1} \varepsilon_{2} \tilde{\varphi}_{0} \varphi_{0} \leqslant 0
$$

if

$$
\begin{gather*}
M_{1} \geqslant \frac{K_{1}\left(-d_{1} \lambda_{0}+\alpha\right)}{\alpha \inf _{\Omega} \tilde{\varphi}_{0}(x)} \tag{3.28}\\
-d_{2} M_{2} \lambda_{0} \tilde{\varphi}_{0}+\delta M_{2} \tilde{\varphi}_{0}\left(1-\frac{M_{2} \tilde{\varphi}_{0}}{K_{2}}\right)-\eta M_{2} \varepsilon_{1} \tilde{\varphi}_{0} \varphi_{0} \leqslant 0
\end{gather*}
$$

if

$$
\begin{gather*}
M_{2} \geqslant \frac{K_{2}\left(-d_{2} \lambda_{0}+\delta\right)}{\delta \inf _{\Omega} \tilde{\varphi}_{0}(x)} \tag{3.29}\\
-d_{1} \varepsilon_{1} \lambda_{0} \varphi_{0}+\alpha \varepsilon_{1} \varphi_{0}\left(1-\frac{\varepsilon_{1} \varphi_{0}}{K_{1}}\right)-\alpha \beta \varepsilon_{1} M_{2} \varphi_{0} \tilde{\varphi}_{0} \geqslant 0
\end{gather*}
$$

if

$$
\begin{equation*}
M_{2}<\frac{-d_{1} \lambda_{0}+\alpha}{\alpha \beta} \tag{3.30}
\end{equation*}
$$

and take

$$
\begin{gather*}
\varepsilon_{1} \leqslant \frac{\beta K_{1}}{2}\left(\frac{-d_{1} \lambda_{0}+\alpha}{\alpha \beta}-M_{2}\right), \tag{3.31}\\
-d_{2} \varepsilon_{2} \lambda_{0} \varphi_{0}+\delta \varepsilon_{2} \varphi_{0}\left(1-\frac{\varepsilon_{2} \varphi_{0}}{K_{2}}\right)-\eta \varepsilon_{2} M_{1} \varphi_{0} \tilde{\varphi}_{0} \geqslant 0
\end{gather*}
$$

if

$$
\begin{equation*}
M_{1}<\frac{-d_{2} \lambda_{0}+\delta}{\eta} \tag{3.32}
\end{equation*}
$$

and take

$$
\begin{equation*}
\varepsilon_{2} \leqslant \frac{\eta K_{2}}{2 \delta}\left(\frac{-d_{2} \lambda_{0}+\delta}{\eta}-M_{1}\right) . \tag{3.33}
\end{equation*}
$$

Obviously, under conditions (3.24) and (3.25), we can choose M_{i}, ε_{i}, $i=1,2$, such that (3.28)-(3.33) hold. So, ($\left.\bar{u}_{1}(x), \bar{u}_{2}(x)\right)$ and ($\left.\underline{u}_{1}(x), \underline{u}_{2}(x)\right)$ defined by (3.27) form a pair of upper and lower solutions of (3.26). Due to Theorem 2.2, there exists a solution $\left(\tilde{u}_{1}(x), \tilde{u}_{2}(x)\right)$ of (3.26) satisfying

$$
0<\underline{u}_{i}(x) \leqslant \tilde{u}_{i}(x) \leqslant \bar{u}_{i}(x), \quad i=1,2, x \in \Omega .
$$

This completes the proof of (iii).
Theorem 3.9. Assume $-d_{1} \lambda_{0}+\alpha,-d_{3} \lambda_{0}+\gamma>0,-d_{2} \lambda_{0}+\delta<0$, then
(i) There exist nontrivial nonnegative equilibrium solutions of the forms $\left(u_{1}^{*}(x), 0,0\right)$ and $\left(0,0, u_{3}^{*}(x)\right)$, both of which are unstable.
(ii) There exists a nontrivial nonnegative equilibrium solution of the form $\left(\tilde{u}_{1}(x), o, \tilde{u}_{3}(x)\right)$, which is always linearly stable.

Proof. (i) We will only prove the instabilities. Recall from (3.12) and (3.17) that the linearization at $\left(u_{1}^{*}(x), 0,0\right)$ and $\left(0,0, u_{3}^{*}(x)\right)$ are

$$
B_{1}=\left[\begin{array}{ccc}
-\frac{2 d u_{1}^{*}}{K_{1}} & -\alpha \beta u_{1}^{*} & 0 \\
0 & -\eta u_{1}^{*} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
B_{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\frac{\gamma \gamma u_{3}^{* 2}}{L_{0}^{2}} & 0 & -\frac{2 \gamma u_{3}^{*}}{L_{0}}
\end{array}\right]
$$

respectively. So,

$$
\begin{aligned}
& \sigma\left(A_{3}\right) \subset \sigma\left(A+B_{1}\right), \\
& \sigma\left(A_{1}\right) \subset \sigma\left(A+B_{3}\right) .
\end{aligned}
$$

We know that

$$
\max \left\{\operatorname{Re} \lambda: \lambda \in \sigma\left(A_{3}\right)\right\}>0
$$

since $-d_{3} \lambda_{0}+\gamma>0$ as well as that

$$
\max \left\{\operatorname{Re} \lambda: \lambda \in \sigma\left(A_{1}\right)\right\}>0
$$

since $-d_{1} \lambda_{0}+\alpha>0$. Therefore, both of $\left(u_{1}^{*}(x), 0,0\right)$ and $\left(0,0, u_{3}^{*}(x)\right)$ are unstable.
(ii) We know that $\tilde{u}_{1}(x)$ and $\tilde{u}_{3}(x)$ satisfy (3.6) and

$$
\begin{gather*}
d_{3} A u_{3}+\gamma u_{3}\left(1-\frac{u_{3}}{L_{0}+l u_{1}}\right)=0, \quad x \in \Omega, \tag{3.34}\\
\left.u_{3}\right|_{\partial \Omega}=0 .
\end{gather*}
$$

Due to Theorem 3.4, there exists a positive solution $\tilde{u}_{1}(x)$ of (3.6). Substituting $\tilde{u}_{1}(x)$ for u_{1} in (3.34), we obtain in the same way that there exists a positive solution $\tilde{u}_{3}(x)$ of (3.34).
As to the linear stability, consider the linearization at this point

$$
B_{4}=\left[\begin{array}{ccc}
-\frac{2 \alpha \tilde{u}_{1}}{K_{1}} & -\frac{\alpha \beta \tilde{u}_{1}}{1+m \tilde{u}_{3}} & 0 \\
0 & -\eta \tilde{u}_{1} & 0 \\
-\frac{\gamma / \tilde{u}_{3}}{\left(L_{0}+l \tilde{u}_{1}\right)^{2}} & 0 & -\frac{2 \gamma \tilde{u}_{3}}{L_{0}+l \tilde{u}_{1}}
\end{array}\right] .
$$

The resolvent equation for $\mathscr{U}=A+B_{4}$ is

$$
\left[\begin{array}{ccc}
A_{1}-\frac{2 \alpha \tilde{u}_{1}}{K_{1}}-\mu & -\frac{\alpha \beta \tilde{u}_{1}}{1+m \tilde{u}_{3}} & 0 \\
0 & A_{2}-\eta \tilde{u}_{1}-\mu & 0 \\
-\frac{\gamma \mid \tilde{u}_{3}}{\left(L_{0}+l \tilde{u}_{1}\right)^{2}} & 0 & A_{3}-\frac{2 \gamma \tilde{u}_{3}}{L_{0}+l \tilde{u}_{1}}-\mu
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

for $\mu \in \rho\left(A_{2}-\eta \tilde{u}_{1}\right),\left(v_{1}, v_{2}, v_{3}\right) \in X$. Setting

$$
\bar{A}_{1}(\mu)=A_{1}-\frac{2 \alpha \tilde{u}_{1}}{K_{1}}-\mu, \quad \bar{A}_{3}(\mu)=A_{3}-\frac{2 \gamma \tilde{u}_{3}}{L_{0}+l \tilde{u}_{1}}-\mu,
$$

then

$$
\begin{gathered}
\bar{A}_{1}(\mu) u_{1}=v_{1}+\frac{\alpha \beta \tilde{u}_{1}}{1+m \tilde{u}_{3}} R\left(\mu, A_{2}-\eta \tilde{u}_{1}\right) v_{2} \\
u_{2}=R\left(\mu, A_{2}-\eta \tilde{u}_{1}\right) v_{2} \\
-\frac{\gamma l \tilde{u}_{3}}{\left(L_{0}+l \tilde{u}_{1}\right)^{2}} u_{1}+\bar{A}_{3}(\mu) u_{3}=v_{3}
\end{gathered}
$$

Denote

$$
\mathscr{R}=\left\{\mu: \mu \in \rho\left(A_{2}-\eta \tilde{u}_{1}\right), \text { both } \bar{A}_{1}(\mu) \text { and } \bar{A}_{3}(\mu) \text { are invertible in } L^{2}(\Omega)\right\} .
$$

As did in the proof of Theorem 3.4, we can get four lemmas similar to Lemmas 3.1-3.4. Observe that $K^{*}=\max \left\{\operatorname{Re} \lambda: \lambda \in \sigma\left(A_{2}-\eta \tilde{u}_{1}\right)\right\}<0$ and that $\tilde{u}_{1}(x)$ and $\tilde{u}_{3}(x)$ satisfy (3.6) and (3.34), and hence they are positive eigenfunctions of second order elliptic operators $A_{1}-\alpha \tilde{u}_{1} / K_{1}$ and $A_{3}-\left(\gamma \tilde{u}_{3} /\left(L_{0}+l \tilde{u}_{1}\right)\right)$, respectively, with zero eigenvalue. We omit the details.

Theorem 3.10. Assume $-d_{2} \lambda_{0}+\delta,-d_{3} \lambda_{0}+\gamma>0,-d_{1} \lambda_{0}+\alpha<0$, then
(i) There exist nontrivial nonnegative equilibrium solutions of the forms $\left(0, u_{2}^{*}(x), 0\right)$ and $\left(0,0, u_{3}^{*}(x)\right)$, both of them are unstable.
(ii) There exists a nontrivial nonnegative equilibrium solution of the form $\left(0, \tilde{u}_{2}(x), \tilde{u}_{3}(x)\right)$, which is always linearly stable.

We omit the proof of Theorem 3.10, which is somewhat similar to those of Theorems 3.8 and 3.9.

4. Neumann Problem

In this section we consider system (1.1) with initial condition (1.2) and homogeneous Neumann boundary condition (1.4).

First, we can prove in the same way as in Section 3 that the solution is nonnegative and bounded:

Theorem 4.1. Let $U(x, t)=\left(u_{1}(x, t) u_{2}(x, t) u_{3}(x, t)\right)$ be a solution of (1.1), (1.2) and (1.4), then

$$
\begin{aligned}
& 0 \leqslant u_{1}(x, t) \leqslant \max \left\{K_{1}, \sup _{\Omega} u_{10}(x)\right\}, \\
& 0 \leqslant u_{2}(x, t) \leqslant \max \left\{K_{2}, \sup _{\Omega} u_{20}(x)\right\}, \\
& 0 \leqslant u_{3}(x, t) \leqslant \max \left\{L_{0}+l K_{1}, \sup _{\Omega} u_{30}(x)\right\} .
\end{aligned}
$$

Now establish the existence of solutions.
Set

$$
\hat{u}_{i}=\sup _{\Omega} u_{i 0}(x)>0 . \quad i=1,2,3 .
$$

Consider the following initial problem of ODE system

$$
\begin{align*}
& u_{1}^{\prime}(t)=\alpha u_{1}(t)\left(1-\frac{u_{1}(t)}{K_{1}}\right), \\
& u_{2}^{\prime}(t)=\delta u_{2}(t)\left(1-\frac{u_{2}(t)}{K_{2}}\right), \tag{4.1}\\
& u_{3}^{\prime}(t)=\gamma u_{3}(t)\left(1-\frac{u_{3}(t)}{L_{0}+l M_{1}}\right), \quad \text { in } Q_{T}, \\
& u_{i}(0)=\hat{u}_{i}, \quad i=1,2,3,
\end{align*}
$$

where constant M_{1} is to be taken later. Obviously,

$$
\left.\frac{\partial u_{i}}{\partial n}\right|_{\partial \Omega}=0 \quad i=1,2,3
$$

It is easy to get

$$
\begin{aligned}
& u_{1}(t)=K_{1}\left[1+\frac{K_{1}-\hat{u}_{1}}{\hat{u}_{1}} e^{-x t}\right]^{-1}, \\
& u_{2}(t)=K_{2}\left[1+\frac{K_{2}-\hat{u}_{2}}{\hat{u}_{2}} e^{-\delta t}\right]^{-1} .
\end{aligned}
$$

Take

$$
M_{1}=\sup _{t \geqslant 0} u_{2}(t)<\infty
$$

Then

$$
u_{3}(t)=\left(L_{0}+l M_{1}\right)\left[1+\frac{L_{0}+l M_{1}-\hat{u}_{3}}{\hat{u}_{3}}\right]^{-1}
$$

Clearly, $(0,0,0)$ and $\left(u_{1}(t), u_{2}(t), u_{3}(t)\right)$ define a pair of upper and lower solutions of (1.1), (1.2), and (1.4). According to Theorem 2.1 and arbitrariness of T, we get immediately

Theorem 4.2. There exists a solution $\left(u_{1}(x, t), u_{2}(x, t), u_{3}(x, t)\right)$ of (1.1), (1.2), and (1.4), such that

$$
0 \leqslant u_{i}(x, t) \leqslant u_{i}(t) \leqslant M_{i}<\infty, \quad i=1,2,3,(x, t) \in \Omega \times \mathbb{R}^{+}
$$

where $M_{i}=\sup _{t \geqslant 0} u_{i}(t), u_{i}(t)$ is the solution of $(4.1), i=1,2,3$.
Next study the constant equilibrium solutions of (1.1), (1.2), and (1.4), i.e., solutions of

$$
\begin{align*}
\alpha u_{1}\left[1-\frac{u_{1}}{K_{1}}-\frac{\beta u_{2}}{1+m u_{3}}\right] & =0 \\
u_{2}\left[\delta\left(1-\frac{u_{2}}{K_{2}}\right)-\eta u_{1}\right] & =0 \tag{4.2}\\
\gamma u_{3}\left[1-\frac{u_{3}}{L_{0}+l u_{1}}\right] & =0 .
\end{align*}
$$

The all possible solutions of (4.2) (see [9]) have the forms of

$$
\begin{array}{ll}
E_{0}=(0,0,0), & E_{1}=\left(K_{1}, 0,0\right), \\
E_{2}=\left(0, K_{2}, 0\right), & E_{3}=\left(0,0, L_{0}\right), \\
E_{4}=\left(0, K_{2}, L_{0}\right), & E_{5}=\left(\frac{\delta K_{1}\left(\beta K_{2}-1\right)}{K_{1} K_{2} \beta \eta-\delta}, \frac{K_{2}\left(\eta K_{1}-\delta\right)}{K_{1} K_{2} \beta \eta-\delta}, 0\right), \\
E_{6}=\left(K_{1}, 0, L_{0}+l K_{1}\right), & E_{7}=\left(\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}\right), \\
\tilde{u}_{i}>0, i=1,2,3,
\end{array}
$$

where $E_{0}, \ldots, E_{4}, E_{6}$ always exist. E_{5} exists if

$$
\begin{array}{r}
\left(\beta K_{2}-1\right)\left(\eta K_{1}-\delta\right)>0 \\
\left(\beta K_{2}-1\right)\left(K_{1} K_{2} \beta \eta-\delta\right)>0 \tag{4.4}
\end{array}
$$

While the condition under which E_{7} exists will be given later.
Now analyze the stabilities of these equilibrium solutions. Let us rewrite (1.1), (1.2), and (1.4) into an envolution equation in Banach space $Y=\oplus_{1}^{3} C^{2}(\Omega) \cap L^{2}(\Omega)$;

$$
\begin{equation*}
\frac{d U}{d t}=A U+F(U) \tag{4.5}
\end{equation*}
$$

where A and F are defined by (3.9) and (3.10),

$$
D(A)=\left\{U \in Y:\left.\frac{\partial U}{\partial n}\right|_{\partial \Omega}=0\right\}
$$

Linearizing the right side of (4.5) at $E_{i}, i=0,1, \ldots, 6$, respectively, we get

$$
\begin{aligned}
& M_{0}\left(E_{0}\right)=\left[\begin{array}{ccc}
d_{1} \Delta+\alpha & 0 & 0 \\
0 & d_{2} \Delta+\delta & 0 \\
0 & 0 & d_{3} \Delta+\gamma
\end{array}\right], \\
& M_{1}\left(E_{1}\right)=\left[\begin{array}{ccc}
d_{1} \Delta-\alpha & -\alpha \beta K_{1} & 0 \\
0 & d_{2} \Delta+\delta-\eta K_{1} & 0 \\
0 & 0 & d_{3} \Delta+\gamma
\end{array}\right] \text {, } \\
& M_{2}\left(E_{2}\right)=\left[\begin{array}{ccc}
d_{1} \Delta+\bar{\alpha}-\alpha \beta K_{2} & 0 & 0 \\
-\eta K_{2} & d_{2} \Delta-\delta & 0 \\
0 & 0 & d_{3} \Delta+\gamma
\end{array}\right] \text {, } \\
& M_{3}\left(E_{3}\right)=\left[\begin{array}{ccc}
d_{1} \Delta+\alpha & 0 & 0 \\
0 & d_{2} \Delta+\delta & 0 \\
\gamma l & 0 & d_{3} \Delta-\gamma
\end{array}\right] \text {, } \\
& M_{4}\left(E_{4}\right)=\left[\begin{array}{ccc}
d_{1} \Delta+\alpha-\frac{\alpha \beta K_{2}}{1+m L_{0}} & 0 & 0 \\
-\eta K_{2} & d_{2} \Delta-\delta & 0 \\
\gamma l & 0 & d_{3} \Delta-\gamma
\end{array}\right], \\
& M_{5}\left(E_{5}\right)=\left[\begin{array}{ccc}
d_{1} \Delta-\frac{\alpha u_{1}^{*}}{K_{1}} & -\alpha \beta u_{1}^{*} & \alpha \beta m u_{1}^{*} u_{2}^{*} \\
-\eta u_{2}^{*} & d_{2} \Delta-\frac{\delta}{K_{2}} u_{2}^{*} & 0 \\
0 & 0 & d_{3} \Delta+\gamma
\end{array}\right] \text {, } \\
& u_{1}^{*}=\frac{\delta K_{1}\left(\beta K_{2}-1\right)}{K_{1} K_{2} \beta \eta-\delta}, \quad u_{2}^{*}=\frac{K_{2}\left(\eta K_{1}-\delta\right)}{K_{1} K_{2} \beta \eta-\delta}, \\
& M_{6}\left(E_{6}\right)=\left[\begin{array}{ccc}
d_{1} \Delta-\alpha & -\frac{\alpha \beta K_{1}}{1+m\left(L_{0}+l K_{1}\right)} & 0 \\
0 & d_{2} \Delta+\delta-\eta K_{1} & 0 \\
\gamma l & 0 & d_{3} \Delta-\gamma
\end{array}\right] .
\end{aligned}
$$

Denote

$$
\begin{gathered}
P_{i}(\lambda, \Delta)=\operatorname{det}\left(\lambda I-M_{i}\right), \\
A_{i}=\left\{\lambda: P_{i}(\lambda, \mu)=0, \text { for some } \mu \in \sigma(\Delta)\right\}, \quad i=0,1, \ldots, 7,
\end{gathered}
$$

where $\sigma(\Delta)$ is the point spectrum of Δ with homogeneous Neumann boundary condition. It can be shown that [2]

$$
\sigma\left(M_{i}\right) \subset \Lambda_{i}, \quad i=0,1, \ldots, 7 .
$$

Recall that $\sigma(4)$ is an infinite but discrete set of simple real eigenvalues bounded from above, i.e.,

$$
0=\mu_{0}>\mu_{1}>\mu_{2}>\cdots>\mu_{n}>\cdots .
$$

Clearly, $E_{0}, E_{1}, E_{2}, E_{3}$, and E_{5} are unstable since the corresponding $P_{i}(\eta, \mu), i=0,1,2,3,5$, has at least one positive root for $\mu_{0}=0 \in \sigma(4)$.
E_{4} is linearly stable if

$$
\begin{equation*}
1-\frac{\beta K_{2}}{1+m L_{0}}<0 \tag{4.6}
\end{equation*}
$$

and is unstable if

$$
\begin{equation*}
1-\frac{\beta K_{2}}{1+m L_{0}}>0 . \tag{4.7}
\end{equation*}
$$

E_{6} is linearly stable if

$$
\begin{equation*}
\delta-\eta K_{1}<0 \tag{4.8}
\end{equation*}
$$

and is unstable if

$$
\begin{equation*}
\delta-\eta K_{1}>0 . \tag{4.9}
\end{equation*}
$$

We have proved
Theorem 4.3. (i) Nonnegative equilibrium solution E_{5} exists if (4.3) and (4.4) hold.
(ii) Neither of $E_{0}, E_{1}, E_{2}, E_{3}$, and E_{5} is stable.
(iii) E_{4} is linearly stable under (4.6) and is unstable under (4.7).
(iv) E_{6} is linearly stable under (4.8) and is unstahle under (4.9).

Finally, discuss the conditions of the existence and the stability for $E_{7}=\left(\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}\right), \tilde{u}_{i}>0, i=1,2,3$.

Theorem 4.4. (Rai et al. [9]).
(i) If $1+m L_{0}=\beta K_{2}$ and $\eta K_{1} \geqslant \delta$, then E_{7} does not exist.
(ii) If $1+m L_{0}=\beta K_{2}$ and $\eta K_{1}<\delta$, then E_{7} exists uniquely and is given by

$$
\tilde{u}_{1}=K_{1}-\left(\delta-\eta K_{1}\right) \beta K_{2} / m l \delta, \tilde{u}_{2}=K_{2}\left(\delta-\eta \tilde{u}_{1}\right) / \delta, \tilde{u}_{3}=L_{0}+l \tilde{u}_{1} .
$$

(iii) If $1+m L_{0}-\beta K_{2}>0$, then E_{7} is given uniquely by the positive value of $\tilde{u}_{1}=\left\{\tau \pm\left[\tau^{2} \pm 4 m l \delta^{2} K_{1}\left(1+m L_{0}-\beta K_{2}\right)\right]^{1 / 2}\right\} / 2 m l \delta, \quad \tilde{u}_{2}=$ $K_{2} \delta^{-1}\left(\delta-\eta \tilde{u}_{1}\right), \tilde{u}_{3}=L_{0}+l \tilde{u}_{1}$, where

$$
\begin{equation*}
\tau=m l \delta K_{1}+\beta \eta K_{1} K_{2}-\delta\left(1+m L_{0}\right) \tag{4.10}
\end{equation*}
$$

provided $\tilde{u}_{1}<\delta / \eta$.
(iv) If $1+m L_{0}-\beta K_{2}<0$ and $\tau \leqslant 0$, then E_{7} does not exist.
(v) If $1+m L_{0}-\beta K_{2}<0$ and $\tau>0$, then E_{7} does not exist, exists uniquely, or has two possible values according as $\tau^{2}+4 m l \delta^{2} K_{1}\left(1+m L_{0}-\beta K_{2}\right)$ is negative, zero, or positive, and in the latter two cases $\tilde{u}_{1}<\delta / \eta$, where \tilde{u}, \tilde{u}_{2}, \tilde{u}_{3} are given as in (iii).

Suppose there exists $E_{7}=\left(\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}\right)$ with $\tilde{u}_{i}>0, i=1,2,3$. Linearizing at E_{7} we get

$$
M_{7}\left(E_{7}\right)=\left[\begin{array}{ccc}
d_{1} \Delta-\frac{\alpha \tilde{u}_{1}}{K_{1}} & -\frac{\alpha \beta \tilde{u}_{1}}{1+m \tilde{u}_{3}} & \frac{\alpha \beta m \tilde{u}_{1} \tilde{u}_{2}}{\left(1+m \tilde{u}_{3}\right)^{2}} \\
-\eta \tilde{u}_{2} & d_{2} \Delta-\frac{d \tilde{u}_{2}}{K_{2}} & 0 \\
\gamma l & 0 & d_{3} \Delta-\gamma
\end{array}\right]
$$

Now, let us analyze the spectrum of $M_{7}\left(E_{7}\right)$. Put

$$
P_{7}=\lambda^{3}+a_{1} \lambda^{2}+a_{2} \lambda+a_{3} \quad \text { for some } \mu \in \sigma(\Delta)
$$

Then

$$
\begin{aligned}
a_{1}= & \frac{\alpha \tilde{u}_{1}}{K_{1}}+\frac{\delta \tilde{u}_{2}}{K_{2}}+\gamma-\mu\left(d_{1}+d_{2}+d_{3}\right)>0 \\
a_{2}= & \frac{\tilde{u}_{1} \tilde{u}_{2}}{K_{1} K_{2}}\left(\alpha \delta+\frac{\alpha \gamma K_{2}}{\tilde{u}_{2}}+\frac{\gamma \delta K_{1}}{\tilde{u}_{1}}\right)-\frac{\alpha \beta l \gamma m \tilde{u}_{1} \tilde{u}_{2}}{\left(1+m \tilde{u}_{3}\right)^{2}}-\frac{\alpha \beta \eta \tilde{u}_{1} \tilde{u}_{2}}{1+m \tilde{u}_{3}} \\
& +\mu^{2}\left(d_{1} d_{2}+d_{1} d_{3}+d_{2} d_{3}\right)-\mu\left[\gamma\left(d_{1}+d_{2}\right)+\frac{\alpha \tilde{u}_{1}}{K_{1}}\left(d_{2}+d_{3}\right)\right. \\
& \left.+\frac{\delta \tilde{u}_{2}}{K_{2}}\left(d_{1}+d_{3}\right)\right] \\
a_{3}= & b_{1}+b_{2}
\end{aligned}
$$

where

$$
\begin{align*}
b_{1}= & \frac{\alpha \gamma \tilde{u}_{1} \tilde{u}_{2}}{K_{1} K_{2}\left(1+m \tilde{u}_{3}\right)^{2}}\left\{\delta m^{2} l^{2} \tilde{u}_{1}^{2}+\left(1+m L_{0}\right)\left[2 m l \delta \tilde{u}_{1}+\delta\left(1+m L_{0}\right)\right.\right. \\
& \left.\left.-\beta \eta K_{1} K_{2}\right]-m l \beta \delta K_{1} K_{2}\right\} \tag{B1}\\
b_{2}= & -\mu^{3} d_{1} d_{2} d_{3}+\mu^{2}\left(\gamma d_{1} d_{2}+\frac{\alpha \tilde{u}_{1}}{K_{1}} d_{2} d_{3}+\frac{\delta \tilde{u}_{2}}{K_{2}} d_{1} d_{3}\right) \\
& -\mu\left[d_{1} \gamma \frac{\delta \tilde{u}_{2}}{K_{2}}+d_{2} \gamma \frac{\alpha \tilde{u}_{1}}{K_{1}}+d_{3} \frac{\alpha \delta \tilde{u}_{1} \tilde{u}_{2}}{K_{1} K_{2}}-d_{3} \frac{\alpha \beta \eta \tilde{u}_{1} \tilde{u}_{2}}{1+m \tilde{u}_{3}}\right. \\
& \left.-d_{2} \frac{l \gamma \alpha \beta m \tilde{u}_{1} \tilde{u}_{2}}{\left(1+m \tilde{u}_{3}\right)^{2}}\right] \tag{B2}
\end{align*}
$$

Here, the fact that $\mu \leqslant 0$ for $\mu \in \sigma(\Delta)$ and that

$$
\begin{align*}
\left(1-\frac{\tilde{u}_{1}}{K_{1}}\right)-\frac{\beta \tilde{u}_{2}}{1+m \tilde{u}_{3}} & =0, \\
\delta\left(1-\frac{\tilde{u}_{2}}{K_{2}}\right)-\eta \tilde{u}_{1} & =0, \tag{4.11}\\
1-\frac{\tilde{u}_{3}}{L_{0}+l \tilde{u}_{1}} & =0, \quad x \in \Omega
\end{align*}
$$

are used.
Assume

$$
\begin{align*}
& \beta K_{2} \leqslant 1+m L_{0} \tag{4.12}\\
& \eta K_{1}<\delta \tag{4.13}
\end{align*}
$$

Then

$$
\begin{gathered}
\tau^{2}+4 m l \delta^{2} K_{1}\left(1+m L_{0}-\beta K_{2}\right)>0, \quad \tilde{u}_{1}<K_{1}<\delta / \eta \\
m l \delta \tilde{u}_{1} \geqslant \tau
\end{gathered}
$$

thus

$$
\begin{aligned}
(1+ & \left.m L_{0}\right)\left[2 m l \delta \tilde{u}_{1}+\delta\left(1+m L_{0}\right)-\beta \eta K_{1} K_{2}\right]-m l \beta K_{1} K_{2} \\
& \geqslant\left(1+m L_{0}\right)\left[\tau+\delta\left(1+m L_{0}\right)-\beta \eta K_{1} K_{2}\right]-m l \beta K_{1} K_{2} \\
& =\left(1+m L_{0}\right) m l \delta K_{1}-m l \beta \delta K_{1} K_{2} \geqslant m^{2} l \delta K_{1} L_{0}>0
\end{aligned}
$$

and hence $b_{1}>0$.

On the other hand, due to (4.11) we have that the last term of (B2) equals

$$
\begin{aligned}
& -\mu\left\{d_{1} \gamma\left(\delta-\eta \tilde{u}_{1}\right)+\frac{d_{2} \gamma d \tilde{u}_{1}\left(1+m L_{0}+2 m l \tilde{u}_{1}-\operatorname{lm} K_{1}\right)}{K_{1}\left(1+m L_{0}+m l \tilde{u}_{1}\right)}\right. \\
& \left.\quad+d_{3} \alpha \tilde{u}_{1}\left(\frac{\delta}{K_{1}}-\eta\right)\right\} .
\end{aligned}
$$

It can be shown that $b_{2} \geqslant 0$ if

$$
\begin{equation*}
1+m L_{0}+2 m l \tilde{u}_{1}-l m K_{1} \geqslant 0 . \tag{4.14}
\end{equation*}
$$

Note

$$
\begin{aligned}
& 1+m L_{0}+2 m l \tilde{u}_{1}-l m K_{1} \geqslant 1+m L_{0}+\frac{\tau}{\delta}-l m K_{1} \\
&=1+m L_{0}+m l K_{1}+\frac{\beta \eta}{\delta} K_{1} K_{2}-\left(1+m L_{0}\right)-l m K_{1} \\
&=\frac{\beta \eta}{\delta} K_{1} K_{2}>0 .
\end{aligned}
$$

This means (4.14) is true. So, $a_{3}>0$ under assumptions (4.12) and (4.13). By a computation we know [9]

$$
a_{1} a_{2}-a_{3}=c_{1}+c_{2}
$$

where

$$
\begin{aligned}
c_{1}= & \frac{m^{2} l^{2} \alpha \gamma \tilde{u}_{1}^{3}}{K_{1}^{2}+\left(1+m \tilde{u}_{3}\right)^{2}}\left(\alpha u_{1}^{2}+\gamma K_{2}\right)+\frac{\alpha \gamma \tilde{u}_{1}}{\delta K_{1}\left(1+m \tilde{u}_{3}\right)} \\
& \times\left\{\left[\left(1+m L_{0}\right)\left(2 m l \delta \tilde{u}_{1}+\delta\left(1+m L_{0}\right)\right)-m l \beta \delta K_{1} K_{2}\left(\frac{\alpha \tilde{u}_{1}}{K_{1}}+\gamma\right)\right.\right. \\
& \left.\left.+m l \beta \eta K_{1} K_{2} \tilde{u}_{1}\left(\frac{\alpha \tilde{u}_{1}}{K_{1}}+\frac{\delta \tilde{u}_{2}}{K_{2}}+\gamma\right)+\beta \delta \eta K_{1} \tilde{u}_{2}\left(1+m L_{0}\right)\right]\right\} \\
c_{2}= & -\mu^{3}\left(d_{1}+d_{2}+d_{3}\right)\left(d_{1} d_{2}+d_{1} d_{3}+d_{2} d_{3}\right) \\
& +\mu^{2}\left\{\left(d_{1}+d_{2}+d_{3}\right)\left[\gamma\left(d_{1}+d_{2}\right)+\frac{\delta \tilde{u}_{2}}{K_{2}}\left(d_{1}+d_{3}\right)+\frac{\alpha \tilde{u}_{1}}{K_{1}}\left(d_{2}+d_{3}\right)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\frac{\alpha \tilde{u}_{1}}{K_{1}}+\frac{\delta \tilde{u}_{2}}{K_{2}}+\gamma\right)\left(d_{1} d_{2}+d_{1} d_{3}+d_{2} d_{3}\right)-\mu\left\{\left(\frac{\alpha \tilde{u}_{1}}{K_{1}}+\frac{\delta \tilde{u}_{2}}{K_{2}}+\gamma\right)\right. \\
& \times\left[\gamma\left(d_{1}+d_{2}\right)+\frac{\alpha \tilde{u}_{1}}{K_{1}}\left(d_{2}+d_{3}\right)+\frac{\delta \tilde{u}_{2}}{K_{2}}\left(d_{1}+d_{3}\right)\right]+\left(d_{1}+d_{2}+d_{3}\right) \\
& \left.\times\left[\frac{\tilde{u}_{1} \tilde{u}_{2}}{K_{1} K_{2}}\left(\alpha \delta+\frac{\alpha \gamma K_{2}}{\tilde{u}_{2}}+\frac{\delta \gamma K_{1}}{\tilde{u}_{1}}\right)-\frac{\alpha \beta \gamma \tilde{u}_{1} \tilde{u}_{2}}{\left(1+m \tilde{u}_{3}\right)^{2}}-\frac{\alpha \beta \eta \tilde{u}_{1} \tilde{u}_{2}}{1+m \tilde{u}_{3}}\right]\right\} \\
& +\mu^{3} d_{1} d_{2} d_{3}-\mu^{2}\left(\gamma d_{1} d_{2}+\frac{\alpha \tilde{u}_{1}}{K_{1}} d_{2} d_{3}+\frac{\delta \tilde{u}_{2}}{K_{2}} d_{1} d_{3}\right) \\
& +\mu\left\{d_{1} \gamma \frac{\delta \tilde{u}_{2}}{K_{2}}+d_{3} \frac{\alpha \delta \tilde{u}_{1} \tilde{u}_{2}}{K_{1} K_{2}}-d_{3} \frac{\eta \alpha \beta \tilde{u}_{1} \tilde{u}_{2}}{1+m \tilde{u}_{3}}+d_{2} \gamma \frac{\alpha \tilde{u}_{1}}{K_{1}}-d_{2} \frac{l \gamma \alpha \beta m \tilde{u}_{1} \tilde{u}_{2}}{\left(1+m \tilde{u}_{3}\right)^{2}}\right\} .
\end{aligned}
$$

In [9], it had been shown that $c_{1}>0$. Due to $\mu \leqslant 0$ for $\mu \in \sigma(A)$, it is not difficult to check that $c_{2} \geqslant 0$. Hence

$$
a_{1} a_{2}-a_{3}=c_{1}+c_{2}>0
$$

By using the Routh-Hurwitz criteria and Theorem 4.4, we obtain our last theorem

Theorem 4.5. If (4.12) and (4.13) hold, then E_{7} exists uniquely. Moreover, it is linearly stable. Particularly, if $\beta K_{2} \leqslant 1$, then E_{7} is linearly stable for all mutualism constant $m \geqslant 0$.

References

1. J. P. G. Ewer and L. A. Peletier, On the asymptotic behavior of solutions of semilinear parabolic equations, SIAM J. Appl. Math. 28 (1975), 43-53.
2. P. Fife, "Mathematical Aspects of Reacting and Diffusing Systems," Springer-Verlag, Berlin/Heidelberg/New York, 1979.
3. D. Henry, "Geometric Theory of Semilinear Parabolic Equations", Springer-Verlag, New York, 1980.
4. L. HSIaO, Y. SU, and Z. P. Xin, On the asymptotic behavior of solution of a reactiondiffusion system: A two pedator-one prey model, to appear
5. A. Leung, A study of three species prey-predator reaction-diffusions by monotone schemes, J. Math. Anal. Appl. 100 (1984), 583-604.
6. P. de Mottoni and A. Tesei, Asymptotic stability results for a system of quasilinear parabolic equations, Appl. Anal. 9 (1979), 7-21.
7. C. V. Pao, Coexistence and stability of a competition-diffusion system in population dynamics, J. Math. Anal. Appl. 83 (1981), 54-76.
8. C. V. PaO, On nonlinear reaction-diffusion system, J. Math. Anal. Appl. 87 (1982), 165-198.
9. B. Rai, H. I. Freedman, and J. F. Addicott, Analysis of three species models of mutualism in predator-prey and competitive systems, Math. Biosc. 65 (1983), 13-50.
10. D. Sattinger, Monotone methods in nonlinear elliptic and parabolic equations, Indiana U. Math. J. (1972), 979-1000.
11. Serrin, A remark on the preceding paper of Amann, Arch. Rational Mech. Anal. 44 (1972), 182-186.
12. J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Springer-Verlag, Berlin/Heidelberg/New York, 1983.
13. S. N. Zheng, A reaction-diffusion system of a predator-prey-mutualist model, Math. Biosc. 78 (1986), 217-245.
