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1. INTRODUCTION 

The term “quadrature," as ordinarily used, applies to the approximate 

evaluation of an integral 

In Refs. [I and 21 it was shown that this technique could be utilized in a 
simple and systematic fashion to obtain the computational solution of non- 
linear differential-integral equations derived from applications of the theory 
of invariant imbedding to transport processes. The foregoing approximation 
technique, however, can be extended to far more general linear functionals. 
Thus, we can write 

f’(4 z 2 %f(%), i = 1, 2 ,..., N, 
i=l 

with the coefficient matrix (Q) determined in various fashions. We call this 
procedure “differential quadrature.” In Ref. [3] we indicated how this 
provided a new approach to the identification of parameters in systems de- 
scribed by various types of functional equations, a method quite different 
from the procedure based on the use of quanlinearization. 

In general, we can contemplate the systematic use of various approximation 
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techniques to eliminate transcendental operations. This is part of a general 
theory of closure of operations, a theory which has become increasingly 
significant with the introduction of the hybrid computer [5]. In this paper we 
wish to indicate how these ideas offer a new technique for the numerical 
solution of initial value problems for ordinary and partial differential equa- 
tions with particular relevance to certain difficult questions arising from long- 
term integration. 

2. LONG-TERM INTEGRATION 

Consider the vector equation 

Y’ = g(Y)> Y(O) = c, (1) 

where y is an N-dimensional vector, and suppose that it is desired to cal- 
culate y( 7’). A finite difference approximation (crude version), 

w(t + A) - w(t) = g@(t)) A, w(0) = c, (4 

t = 0, A, 24 ,..., leads to an algorithm well-suited to the nature of the con- 
temporary digital computer. Starting with the initial value w(O) = c, we can 
use (2) in an interative fashion to calculate in turn w(d), w(2A),..., and so on. 
We expect that w(nA) E y(nA). 

If T, the point in time at which the value of y is desired, is large, the fore- 
going procedure has several drawbacks. In the first place, we encounter the 
problem of numerical stability, An accumulation of evaluation and round-off 
errors may seriously contaminate w(T), and even obscure the actual value. 

Secondly, if T > 1 and A < 1, the fact that [T/A] steps are required may 
create an exorbitant execution time. This can be a serious consideration in 
connection with various “on-line” decision processes of the type that occur 
in weather prediction and medical diagnosis. 

Thirdly, even if the stability problem is resolved and the time requirements 
are acceptable, the procedure nevertheless still possesses some esthetic 
handicaps. Often, the mathematical model of the original physical process is 
known to be rather “rough and ready.” What is desired from the equation 
then, is a reasonable estimate of the functional values at a few grid points 
rather than any highly accurate determination of the entire set of values 

@@A)). 
In Ref. [4] we discussed the use of the Laplace transform to meet the fore- 

going objections, considering both linear and nonlinear equations. In Ref. [5] 
we presented a use of nonlinear extrapolation. Here we wish to examine the 
general application of differential quadrature. 
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3. DIFFERENTIAL QUADRATURE 

Let the points 0 = t, < t, < ta < ... < t, be selected and the coefficient 

matrix A = (Q) be chosen so that 

(1) 

There are several ways of doing this based upon the method of least squares, 
methods akin to Gaussian quadrature, and the emerging theory of splines. 

The equation of (2.1) then becomes 

N 

c %YW = ldYVi)h i = 1, 2 )..., N. 
i=l 

We can now proceed in several ways. To begin with, we can consider the 
system of equations 

il adAG) = dY(h)), i = 1, 2 )...) N, (3) 

as a method of determining y(tJ. Secondly, we can use a least squares tech- 
nique. Thirdly, we can use a Chebyshev norm and apply linear and nonlinear 
programming techniques. 

4. g(y) LINEAR 

If g(y) = By, an application of the least squares technique leads to the 
problem of the solution of a linear system of equations. In a number of cases 
we can employ intrinsic properties of the physical process to determine a 
regularization, or “penalty,” function to ensure a well-conditioned system; 
cf. Ref. [4]. 

If a Chebyshev norm is employed, linear programming techniques can be 
used. 

5. g(y) NONLINEAR 

If g(y) is nonlinear, the minimization problem associated with a least 
squares procedure requires some use of successive approximations. One way 
to obtain a good initial approximation is to use a low-order differential 
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quadrature, where the minimization process is easy to carry out, plus inter- 
polation. This is a method proposed in Ref. [4] in another connection. 

6. PARTIAL DIFFERENTIAL EQUATIONS 

The method can be applied to various classes of partial differential equa- 
tions reducing them to ordinary differential equations and then to finite- 
dimensional systems. Consider, for example, the equation 

Write 
Ut = &, %), 24(x, 0) = h(x). (1) 

u, /~~~,=g%iu(r,,t), i=1,2 ,..., A? (2) 
I 

where xr < xa < ... < xN , and consider the associated system of ordinary 
differential equations 

where 
fJi E U(Xi , q, i = 1, 2 )...) Iv. 

We can eliminate the t derivative if desired with a repeated application of 
this procedure. Alternatively, a Buvnov-Galerkin technique can be used to 
find an approximate solution of (3) [5]. 

Numerical examples illustrating the different possibilities will be presented 
subsequently. 
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