
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Advances in Applied Mathematics 41 (2008) 307–328

www.elsevier.com/locate/yaama

Meinardus’ theorem on weighted partitions:
Extensions and a probabilistic proof

Boris L. Granovsky a, Dudley Stark b,∗, Michael Erlihson a

a Department of Mathematics, Technion–Israel Institute of Technology, Haifa 32000, Israel
b School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom

Received 26 February 2007; accepted 16 November 2007

Available online 19 March 2008

Abstract

The number cn of weighted partitions of an integer n, with parameters (weights) bk , k � 1, is given by
the generating function relationship

∑∞
n=0 cnzn = ∏∞

k=1(1 − zk)−bk . Meinardus (1954) established his
famous asymptotic formula for cn, as n → ∞, under three conditions on power and Dirichlet generating
functions for the sequence bk . We give a probabilistic proof of Meinardus’ theorem with weakened third
condition and extend the resulting version of the theorem from weighted partitions to other two classic types
of decomposable combinatorial structures, which are called assemblies and selections.
© 2008 Elsevier Inc. All rights reserved.
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1. Summary

In this paper, we combine Meinardus’ approach for deriving the asymptotic formula for the
number of weighted partitions with the probabilistic method of Khintchine to develop a unified
method of asymptotic enumeration of three basic types of decomposable combinatorial struc-
tures: multisets, selections and assemblies. As a byproduct of our approach we weaken one of
the three Meinardus conditions. In accordance with these two objectives, the structure of the
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paper is as follows. Section 2 presents Meinardus’ asymptotic formula, the presentation being
accompanied by remarks clarifying the context of the three conditions of Meinardus’ theorem.
In Section 3 we state our main result which consists of asymptotic formulae for numbers of
multisets, selections and assemblies. Sections 4, 5 and 6 are devoted to the proof of the main
theorem, including the unified representation of basic decomposable random structures, which is
the core of the probabilistic method considered. In Section 7 we discuss the striking similarity
between the derived asymptotic formulae.

2. Meinardus’ theorem

The Euler type generating function f (1) for the numbers c
(1)
n , n � 1, of weighted partitions of

an integer n, with parameters bk � 0, k � 1, is

f (1)(z) :=
∞∑

n=0

c(1)
n zn =

∞∏
k=1

(
1 − zk

)−bk , |z| < 1. (1)

In this setting, bk is interpreted as a number of types of summands of size k. (For example,
one can imagine that coins of a value k are distinguished by bk years of their production.) It is
also assumed that in a partition, each summand of size k belongs to one of the bk types. In the
case bk = 1 for all k � 1, c

(1)
n is the number of standard (non-weighted) partitions of n (with

c0 = 1), while the case bk = k, k � 1, conforms to planar partitions, studied by Wright, see [1],
and the recent paper [17] by Mutafchiev. The study of the asymptotics of the general generating
function (1) was apparently initiated by Brigham who obtained in [6] the asymptotic formula,
as n → ∞ for the logarithm of the function, using the Hardy–Ramanujan asymptotic technique.
Meinardus’ approach [16] to the asymptotics of c

(1)
n is based on considering two generating series

for the sequence bk � 0, k � 1: the Dirichlet series D(s) and the power series G(z), defined by

D(s) =
∞∑

k=1

bkk
−s , s = σ + it, (2)

G(z) =
∞∑

k=1

bkz
k, |z| < 1. (3)

We note that the function f (1)(z) converges at the point |z| < 1 if and only if the same is true for
the function G(z) (see e.g. [7, Lemma 1.15]).

Meinardus [16] established the following seminal asymptotic formula for c
(1)
n , which is pre-

sented in [1]. We denote by �(•) and �(•) the real and imaginary parts of a number.

Theorem 1 (Meinardus). Suppose that the parameters bk � 0, k � 1 of weighted partitions meet
the following three conditions:

(i) The Dirichlet series (2) converges in the half-plane σ > r > 0 and there is a constant 0 <

C0 � 1, such that the function D(s), s = σ + it , has an analytic continuation to the half-
plane

H = {s: σ � −C0} (4)

on which it is analytic except for a simple pole at s = r with residue A > 0.
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(ii) There is a constant C1 > 0 such that

D(s) = O
(|t |C1

)
, t → ∞, (5)

uniformly in σ � −C0.
(iii) There are constants C2 > 0, ε > 0 such that the function

g(τ) := G
(
exp(−τ)

)
, τ = δ + 2πiα, δ > 0, α ∈ R, (6)

satisfies

�(
g(τ)

) − g(δ) � −C2δ
−ε, |arg τ | > π

4
, 0 �= |α| � 1/2, (7)

for δ > 0 small enough.

Then, as n → ∞,

c(1)
n ∼ C(1)nκ1 exp

(
nr/(r+1)

(
1 + 1

r

)(
A	(r + 1)ζ(r + 1)

)1/(r+1)
)

, (8)

where

κ1 = 2D(0) − 2 − r

2(1 + r)

and

C(1) = eD′(0)
(
2π(1 + r)

)−1/2(
A	(r + 1)ζ(r + 1)

)κ2 ,

where

κ2 = 1 − 2D(0)

2(1 + r)
.

Meinardus also gave a bound on the rate of convergence which we have omitted in the state-
ment of Theorem 1.

At this point we wish to make a few clarifying comments on the three Meinardus conditions
(i)–(iii).

• The Ikehara–Wiener Tauberian theorem on Dirichlet series cited below tells us that condi-
tion (i) implies a bound on the rate of growth, as k → ∞ of the coefficients bk of the Dirichlet
series D(s) in (2).

Theorem 2 (Wiener–Ikehara). (See [15, Theorem 2.2, p. 122].) Suppose that the Dirichlet series
D(s) = ∑∞

k=1 akk
−s is such that the function D(s) − A

s−1 has an analytic continuation to the
closed half-plane �(s) � 1. Then,

n∑
k=1

ak ∼ An, n → ∞. (9)
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We will use the fact that (9) implies

ak = o(k), k → ∞. (10)

To prove this, we rewrite (9) as

1

n

n∑
k=1

ak = 1

n
an + 1

n

n−1∑
k=1

ak = A + εn, εn → 0, n → ∞,

which gives

1

n
an + n − 1

n
(A + εn−1) = A + εn.

Consequently, limn→∞ an/n = 0.
Now set ak = k−r+1bk , k � 1, where bk , k � 1 satisfy Meinardus’ conditions (i) and (ii). Since

C0, r > 0, the sequence ak obeys the conditions of the Wiener–Ikehara theorem, so that we get
from (10) the bound:

bk = o
(
kr

)
, k → ∞. (11)

• Functions satisfying Meinardus’ condition (ii) are called of finite order in the corresponding
domain. It is known (see e.g. [20, p. 298]) that the sum D of a Dirichlet series is a function of
a finite order in the half-plane of the convergence of the series. Thus, condition (ii) requires that
the same holds also for the analytic continuation of D in the domain H.

• We show below that the condition (iii) is associated with bounding the so-called zeta sum
known from the theory of the Riemann zeta function. In fact,

�(
g(τ)

) − g(δ) = −2
∞∑

k=1

bke
−kδ sin2(πkα), δ > 0, α ∈ R,

which allows us to reformulate (7) as

2
∞∑

k=1

bke
−kδ sin2(πkα) � C2δ

−ε, 0 <
δ

2π
< |α| � 1/2, (12)

for δ > 0 small enough and some ε > 0.
The verification of condition (iii) in the forthcoming Lemma 1 relies on the lower bound (14)

below, for the sum
∑P

k=1 sin2(πkα), α ∈ R. This bound can be derived from the following bound
on the zeta sum in the left-hand side of (13) (see [12, Lemma 1, p. 112]):

∣∣∣∣∣
P∑

e2πikα

∣∣∣∣∣ � min

{
P,

1

2‖α‖
}
, P > 1, α ∈ R, (13)
k=1
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where ‖α‖ denotes the distance from α to the nearest integer. It follows from (13) that for all
α ∈ R

2
P∑

k=1

sin2(πkα) � P −
∣∣∣∣∣

P∑
k=1

e2πikα

∣∣∣∣∣ � P − min

{
P,

1

2‖α‖
}
,

which is convenient to rewrite as

2
P∑

k=1

sin2(πkα) � P

(
1 − min

{
1,

1

2P ‖α‖
})

. (14)

Under the assumptions in Meinardus’ condition (iii),

0 �= ‖α‖ = |α| � 1/2, |α|δ−1 >
1

2π
. (15)

Setting in (14)

P = P(α, δ) =
[

1 + |α|δ−1

2|α|
]

� 1, (16)

where [x] denotes the integer part of x and δ > 0 is small enough, we get the desired bound,

2
P∑

k=1

sin2(πkα) � δ−1

2
, (17)

provided (15) holds. It follows from the above that for any fixed k0 � 1, and any 0 < ε =
ε(δ; k0) < 1/2,

2
P∑

k=k0

sin2(πkα) �
(

1

2
− ε

)
δ−1 := cδ−1, (18)

if δ > 0 is small enough and (15) holds.
In the proof of Lemma 1 below we will also use the fact that under the condition (15), the

choice (16) of P provides

Pδ � 1

2

(
1 + 1

|α|δ−1

)
<

1

2
(1 + 2π) := d. (19)

It seems not to have been noticed that Meinardus’ condition (iii) is rather easily satisfied, as
is shown in the following lemma.

Lemma 1. Let the sequence {bk} be such that bk � ρkr−1, k � k0 for some k0 � 1 and some
constants ρ, r > 0. Then (12) is satisfied.
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Proof. Because of (16), P � 1
2δ−1 and therefore P > k0 for δ > 0 small enough. We have

2
∞∑

k=1

bke
−kδ sin2(πkα) � 2

P∑
k=k0

ρkr−1e−kδ sin2(πkα)

� 2ρe−Pδ
P∑

k=k0

kr−1 sin2(πkα) := Q.

In order to get the needed lower bound on Q implied by (12), we need to distinguish between
the following two cases: (i) 0 < r < 1 and (ii) r � 1. Applying (18) and (19) we have in case (i),

Q � ρe−PδP r−1cδ−1 � ρe−d(P δ)r−1cδ−r � ρe−ddr−1cδ−r

and in case (ii),

Q � ρe−dkr−1
0 cδ−1.

Therefore, (12) is satisfied with ε = r in case (i) and with ε = 1 in case (ii). �
We note that in [17] the validity of condition (iii) was verified in the particular case of pla-

nar partitions (bk = k, k � 1), via a complicated analysis of the power series expansion of the
function �(g(τ )) − g(δ).

Example 1. Let bk = ρkr−1, ρ, r > 0, k � 1. Such weighted partitions are associated with the
generalized Bose–Einstein model of ideal gas (see [21]). In this case, D(s) = ρζ(s − r + 1),
where ζ is the Riemann zeta function. Thus, D(s) has only one simple pole at s = r > 0 with
the residue A = ρ and it has a meromorphic analytic continuation to the whole complex plane C.
These facts together with Lemma 1 show that all three of Meinardus’ conditions (i)–(iii) hold.
In the case considered the values D(0) = ρζ(1 − r) and D′(0) = ρζ ′(1 − r) in the asymptotic
formula (8) can be found explicitly from the functional relation for the function ζ, as is explained
in [17]. In particular, for standard partitions (ρ = r = 1),

D(0) = ζ(0) = −1

2
, D′(0) = ζ ′(0) = −1

2
log 2π,

while for planar partitions (ρ = 1, r = 2),

D(0) = ζ(−1) = − 1

12
, D′(0) = ζ ′(−1) = 2

∞∫
0

w logw

e2πw − 1
dw.

For an arbitrary r > 0, the expressions for D(0), D′(0) include the integral

∞∫
0

wr−1 logw

e2πw − 1
dw.
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Example 2. The purpose of this example is to show that conditions (i) and (ii) of Theorem 1 do
not imply condition (iii) in the same theorem. Let

bk =
{

1, if 4 | k,

0, if 4 � k.

Let α = 1/4 in the sum
∑∞

k=1 bke
−δk sin2(πkα). Then, because for all k either bk = 0 or

sin2(πk/4) = 0,

∞∑
k=1

bke
−δk sin2(πk/4) = 0

and therefore (12) is not satisfied. However,

D(s) =
∞∑

j=1

(4j)−s = 4−sζ(s),

which clearly satisfies the first two of Meinardus’ conditions because the function 4−s is entire
and |4−s | = 4−σ � 4C0 for s ∈H, where H is given by (4).

3. Statement of the main result

Our main result, Theorem 3 below, achieves two objectives: weakening the Meinardus condi-
tion (iii) and extending the resulting version of the Meinardus theorem from weighted partitions
to other two types of classic decomposable combinatorial structures.

We first recall that a decomposable structure is defined as a union of indecomposable compo-
nents of various sizes. It is known (see [2,3]) that the three types of decomposable combinatorial
structures: multisets, which are also called weighted partitions, selections and assemblies, en-
compass the variety of classic combinatorial objects. Weighted partitions are defined as in the
previous section, selections are defined as weighted partitions in which no component type ap-
pears more than once and assemblies are combinatorial objects composed of indecomposable
components which are formed from labelled elements. Each decomposable structure is essen-
tially determined by the number of types of its indecomposable components having a given
size k. We denote this number by bk for weighted partitions and selections and by mk for as-
semblies. In the case of assemblies we denote bk = mk/k!, so that in all three cases bk , k � 1,
are parameters defining a structure. In what follows we will use the notation •(i), i = 1,2,3,
for quantities related to weighted partitions, selections and assemblies, respectively. Given a se-
quence bk , k � 1, we define c

(i)
n = s

(i)
n for i = 1,2 and define c

(3)
n = s

(3)
n /n!, where s

(i)
n denotes

in all three cases the number of combinatorial structures of type i having size n.

Theorem 3. Suppose that the parameters bk , k � 1 meet Meinardus’ conditions (i) and (ii) as
well as the condition

(iii′) For δ > 0 small enough and any ε > 0,
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2
∞∑

k=1

bke
−kδ sin2(πkα) �

(
1 + r

2
+ ε

)
M(i)|log δ|,

√
δ � |α| � 1/2, i = 1,2,3,

where the constants M(i) are defined by

M(i) =
⎧⎨
⎩

4
log 5 , if i = 1,

4, if i = 2,

1, if i = 3.

Then the asymptotics for c
(i)
n , i = 1,2,3, as n → ∞, are given respectively by Meinardus’

formula (8), and by the formulae (20), (21) below:

c(2)
n ∼ C(2)n− r+2

2r+2 exp

(
n

r
r+1

(
1 + 1

r

)(
A

(
1 − 2−r

)
ζ(r + 1)	(r + 1)

) 1
r+1

)
, (20)

where

C(2) = 2D(0)
(
2π(1 + r)

)−1/2(
A	(r + 1)

(
1 − 2−r

)
ζ(r + 1)

) 1
2r+2 ,

and

c(3)
n ∼ C(3)n− r+2

2r+2 exp

(
n

r
r+1

(
1 + 1

r

)(
A	(r + 1)

) 1
r+1

)
, (21)

where

C(3) = eD(0)
(
2π(1 + r)

)−1/2(
A	(r + 1)

) 1
2r+2 .

Remark. H.-K. Hwang [11, p.109] applied the approach of Meinardus to the study of the as-
ymptotics of the number of summands, say ωn, in weighted partitions and selections, which he
called unrestricted and restricted partitions, respectively. In the first case a local limit theorem
for a properly scaled ωn was obtained in [11] under the three conditions of Meinardus. Regard-
ing restricted partitions, the author claimed the same under Meinardus’ conditions (i), (ii) and a
condition similar to our (iii′), but the proof contains an error in bounding the function Gθ(r) on
p. 109.

Example 3. This example satisfies all three conditions of Theorem 3, but does not satisfy condi-
tion (iii) of Theorem 1. Let bk , k � 1, be defined by

bk =

⎧⎪⎨
⎪⎩

12e7(
log k

k
), if 4 � k,

12e7(50 + log k
k

− 2 log(k/4)
k/4 ), if 4 | k and 16 � k,

12e7(50 + log k − 2 log(k/4) + log(k/16)
), if 16 | k.
k k/4 k/16
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Note that because 0 � logx
x

� e−1 for x � 1, it follows that bk � 12e7(
log k

k
), for all k � 1. The

Dirichlet series D(s), s = σ + it , for this choice of bk converges absolutely for σ > 1 and in this
domain

D(s) = 12e7(−(
1 − 4−s

)2
ζ ′(s + 1) + 50 · 4−sζ(s)

)
, (22)

where we have used the fact that ζ ′(s + 1) = −∑∞
k=1

log k
k

k−s . It is well known that the function
ζ(s) has a simple pole at s = 1 and that the Laurent expansion of ζ(s + 1) around s = 0 is

ζ(s + 1) = 1

s
+ γ + · · · , (23)

where γ is Euler’s constant. It follows from (23) that the function ζ ′(s + 1) has a unique pole at
s = 0 of order 2. As a result, we derive that in (22) the first term in the parentheses is analytic in
the whole complex plane C, while the function D in (22) is analytic in C except a simple pole
at s = 1. It is also a known fact that the functions ζ, ζ ′ satisfy (5) in C, from which we conclude
that the same is true for the function D given by (22). To show that condition (iii′) of Theorem 3
is satisfied, we note that, if δ > 0 and ε > 0 are small enough then

∞∑
k=1

bke
−kδ sin2(πkα) �

P∑
k=1

bke
−kδ sin2(πkα)

� 12e7e−d
P∑

k=1

logk

k
sin2(πkα)

� 12e7e−d logP

P

P∑
k=3

sin2(πkα)

� 12e7−d log(dδ−1)

dδ−1

(
1

4
− ε

)
δ−1 (24)

> 6 log
(
δ−1), (2π)−1δ < |α| � 1/2, (25)

where we have used (18) and (19) at (24) and the fact that 3.5 < d < 4 in the last step. Since
in the case considered r = 1, the condition (iii′) is indeed satisfied for all three types of random
structures. Finally, to show that condition (iii) of Theorem 1 in the form (12) is not satisfied, we
set α = 1/4 in the left-hand side of (12) to obtain for δ → 0,

∞∑
k=1

bke
−kδ sin2

(
π

k

4

)
� 12e7

∞∑
k=1

logk

k
e−kδ ∼ 12e7

∞∫
1

logx

x
e−xδ dx

= 12e7

1∫
δ

log(δ−1x)

x
e−x dx + 12e7

∞∫
1

log(δ−1x)

x
e−x dx

= O
(
log2(δ−1)).
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Example 4. Consider the assembly of forests, for which components consist of labelled linear
trees. The number of such components on k vertices is mk = k! and so bk = 1, just as for integer
partitions. The asymptotic number of labelled linear forests is thereby given by (21) in Theorem 3
with r = 1, A = 1. We note that the number of labelled linear forests on n vertices equals the
number of path coverings of a complete graph on n vertices.

4. A unified probabilistic representation for decomposable combinatorial structures

It has been recently understood (see [8,21]) that the three main types of decomposable random
structures: assemblies, multisets and selections, are induced by a class of probability measures
on the set of integer partitions, having a multiplicative form. Vershik [21] calls the measures mul-
tiplicative, while Pitman [5,18] refers to them as Gibbs partitions. Equivalently, in combinatorics
it is common to view the structures above as the ones generated by the conditioning relation
(see [2,3]) or by the Kolchin generalized allocation scheme [14]. Our asymptotic analysis is
based on the unified Khintchine type probabilistic representation of the number of decomposable
structures of size n. Recall that we agree that the number of non-labelled structures (weighted
partitions and selections) is denoted by c

(1)
n and c

(2)
n , respectively, and the number of labelled

structures (assemblies) by n!c(3)
n . In all three cases the probabilistic representation of cn is con-

structed as follows. Let f be a generating function of a sequence {cn} associated with some
decomposable structure:

f (z) =
∑
n�1

cnz
n.

A specific feature of decomposable structures is that the generating function f has the following
multiplicative form:

f =
∏
k�1

Sk,

where Sk is a generating function for some non-negative sequence {dk(j), j � 0, k � 1}, i.e.

Sk(z) =
∑
j�0

dk(j)zkj , k � 1. (26)

We now set z = e−δ+2πiα , α ∈ [0,1], and use the orthogonality property of the functions e−2πiαn,
n � 1, on the set α ∈ [0,1], to get

cn = enδ

1∫
0

f
(
e−δ+2πiα

)
e−2πiαn dα

= enδ

1∫ n∏
k=1

(
Sk

(
e−δ+2πiα

))
e−2πiαn dα, n � 1, (27)
0
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where δ is a free parameter. We denote by

fn :=
n∏

k=1

Sk, n � 1,

the truncated generating function. Next, we attribute a probabilistic meaning to the expression
in the right-hand side of (27) by defining the independent integer-valued random variables Yk ,
k � 1:

P(Yk = jk) = dk(j)e−δkj

Sk(e−δ)
, j � 0, k � 1, (28)

and observing that

φn(α) :=
n∏

k=1

Sk(e
−δ+2πiα)

Sk(e−δ)
= fn(e

−δ+2πiα)

fn(e−δ)
= E

(
e2πiαZn

)
, α ∈ R, (29)

is the characteristic function of the random variable

Zn :=
n∑

k=1

Yk. (30)

We have arrived at the desired representation:

cn = enδfn

(
e−δ

)
P(Zn = n), n � 1. (31)

In accordance with the principle of the probabilistic method considered, we will choose in (31)
the free parameter δ = δn to be the solution of the equation

EZn = n, n � 1, (32)

after we show in the next section that for the three classic combinatorial structures the solution
to (32) exists and is unique.

It can be easily seen from (26)–(28) that

EZn = (EZn)(δ) = −(
logfn

(
e−δ

))′
, δ > 0. (33)

It is interesting to note that in the context of thermodynamics, the quantity logfn(e
−δ) has a

meaning of the entropy of a system. This important fact that clarifies the choice of the free
parameter was observed already by Khintchine [13, Chapter VI], in the course of his study of
classic models of thermodynamics.

From this point on, our study will be restricted to the three above mentioned classic combina-
torial structures: multisets (weighted partitions), selections and assemblies. Recalling the forms
of their generating functions f (i), i = 1,2,3 (see [2]), and denoting F (i)(δ) = f (i)(e−δ), δ > 0,
i = 1,2,3, we obtain
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F (1)(δ) =
∏
k�1

(
1 − e−kδ

)−bk ,

F (2)(δ) =
∏
k�1

(
1 + e−kδ

)bk ,

F (3)(δ) = exp

(∑
k�1

bke
−kδ

)
. (34)

Now it is easy to derive from (28) and (34) that the following three types of distributions

for the random variables 1
k
Yk in (28): negative binomial (bk; e−δk), binomial (bk; e−δk

1+e−δk ) and

Poisson (bke
−δk), produce respectively c

(i)
n , i = 1,2,3, in the representation (31).

The representation (31) for assemblies was obtained in [9], while the one for general multisets
and selections was obtained in [10]. The corresponding truncated generating functions f

(i)
n (z)

are:

f (1)
n (z) =

n∏
k=1

(1 − zk)−bk ,

f (2)
n (z) =

n∏
k=1

(1 + zk)bk ,

f (3)
n (z) = exp

(
n∑

k=1

bkz
k

)
. (35)

Consequently, in the three cases considered Eq. (32) takes the forms (36)–(38) derived
from (33):

n∑
k=1

kbke
−kδ

(1)
n

1 − e−kδ
(1)
n

= n, (36)

n∑
k=1

kbke
−δ

(2)
n k

1 + e−δ
(2)
n k

= n, (37)

n∑
k=1

kbke
−δ

(3)
n k = n. (38)

5. Preliminary asymptotic results

In this section we find asymptotics for solutions to (36)–(38).

Lemma 2. Suppose that the sequence bk � 0, k � 1, is such that the associated Dirichlet gener-
ating function D satisfies the conditions (i) and (ii) of Theorem 1. Then:
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(i) As δ → 0+,

F (1)(δ) = exp
(
A	(r)ζ(r + 1)δ−r − D(0) log δ + D′(0) + O

(
δC0

))
, (39)

F (2)(δ) = exp
(
A	(r)

(
1 − 2−r

)
ζ(r + 1)δ−r + D(0) log 2 + O

(
δC0

))
, (40)

F (3)(δ) = exp
(
A	(r)δ−r + D(0) + O

(
δC0

))
, (41)

whereas asymptotic expressions for the derivatives

(
logF (i)(δ)

)(k)
, i = 1,2,3, k = 1,2,3,

are given by the formal differentiation of the logarithms of (39)–(41):

(
logF (1)(δ)

)(k) = (−1)kA	(r + k)ζ(r + 1)δ−r−k + (−1)k(k − 1)!D(0)δ−k + O
(
δC0−k

)
,(

logF (2)(δ)
)(k) = (−1)kA	(r + k)

(
1 − 2−r

)
ζ(r + 1)δ−r−k + O

(
δC0−k

)
,(

logF (3)(δ)
)(k) = (−1)kA	(r + k)δ−r−k + O

(
δC0−k

)
. (42)

(ii) Each of Eqs. (36)–(38) has a unique solution δ
(i)
n such that δ

(i)
n → 0, n → ∞, i = 1,2,3.

Moreover,
(iii) As n → ∞,

δ(1)
n = (

A	(r + 1)ζ(r + 1)
) 1

r+1 n− 1
r+1 + D(0)

r + 1
n−1 + O

(
n−1−β

)
,

where β =
{

C0
r+1 , if r � C0,
r

r+1 , otherwise; (43)

δ(2)
n = (

A	(r + 1)
(
1 − 2−r

)
ζ(r + 1)

) 1
r+1 n− 1

r+1 + O
(
n−1−β

)
,

where β = C0

r + 1
; (44)

δ(3)
n = (

A	(r + 1)
) 1

r+1 n− 1
r+1 + O

(
n−1−β

)
,

where β = C0

r + 1
. (45)

(iv) As n → ∞, the derivatives f
(i)
n (e−δ

(i)
n ), i = 1,2,3, have the asymptotic expansions of the

right-hand sides of (39)–(42), respectively, with δ = δ
(i)
n .

Proof. (i) First consider the case of weighted partitions. Following the Meinardus approach, we
will use the fact that e−u, u > 0, is the Mellin transform of the Gamma function:

e−u = 1

2πi

v+i∞∫
u−s	(s) ds, u > 0, v > 0. (46)
v−i∞
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Expanding logF (1)(δ) in (34) as

logF (1)(δ) = −
∑
k�1

bk log
(
1 − e−δk

) =
∑
j�1

1

j

∑
k�1

bke
−δkj

and substituting (46) with v = 1 + r gives

logF (1)(δ) = 1

2πi

1+r+i∞∫
1+r−i∞

δ−s	(s)ζ(s + 1)D(s) ds. (47)

By Meinardus’ condition (i), the function D has a simple pole at r > 0 with residue A, which
says that the integrand in (47) has a simple pole at s = r with residue Aδ−r	(r)ζ(r + 1). Next,
from the Laurent expansions at s = 0 of the Riemann zeta function ζ(s + 1) = 1

s
+ γ + · · · and

the Gamma function 	(s) = 1
s

− γ + · · · , where γ is Euler’s constant, and the Taylor series
expansions at s = 0 of the two remaining factors of the integrand in (47), one concludes that
the integrand has also a pole of a second order at s = 0 with residue D′(0) − D(0) log δ. We
also recall that the only poles of 	(s) are at s = −k, k = 0,1, . . . . Hence, in the complex domain
−C0 � �(s) � 1+ r , with 0 < C0 < 1, the integrand has only two poles at 0 and r with the above
residuals. We now apply the residue theorem for the integrand in (47), over the above domain.
The assumption (5) and the following two properties of zeta and Gamma functions:

ζ(σ + 1 + it) = O
(|t |C2

)
, t → ∞, C2 > 0,

	(σ + it) = O

(
|t |C3 exp

(
−π

2
|t |

))
, t → ∞, C3 > 0,

uniformly in σ , allow us to conclude that the integral of the integrand considered, over the hor-
izontal contour −C0 � �(s) � 1 + r , �(s) = t , tends to zero, as t → ∞, for any fixed δ. Thus,
we are able to rewrite (47) as

logF (1)(δ) = Aδ−r	(r)ζ(r + 1) − D(0) log δ + D′(0)

+ 1

2πi

−C0+i∞∫
−C0−i∞

δ−s	(s)ζ(s + 1)D(s) ds. (48)

Moreover, the previous two bounds and the bound (5) in Meinardus’ condition (ii) imply that the
integral in (48) is bounded by

∣∣∣∣∣ 1

2πi

−C0+i∞∫
−C0−i∞

δ−s	(s)ζ(s + 1)D(s) ds

∣∣∣∣∣

= O

(
δC0

∞∫
−∞

exp

(
−π

2
|t |

)
|t |C1+C2+C3 dt

)

= O
(
δC0

)
, δ → 0.
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This proves (39).
To prove the asymptotic formula for the first derivative (logF (1)(δ))(1), one has to differen-

tiate (48) with respect to δ and then to estimate the resulting integral in the same way as above.
Subsequent differentiations produce the asymptotic formulae for (logF (1)(δ))(k), k = 2,3.

The proof of part (i) of the theorem for selections and assemblies is done in a similar way we
now briefly describe. Following (34), the representation (47) conforms to

logF (2)(δ) = 1

2πi

1+r+i∞∫
1+r−i∞

δ−s	(s)
(
1 − 2−s

)
ζ(s + 1)D(s) ds (49)

and

logF (3)(δ) = 1

2πi

1+r+i∞∫
1+r−i∞

δ−s	(s)D(s) ds, (50)

for all δ > 0. Accordingly, the integrand in (49) has a simple pole at s = r > 0 with residue
Aδ−r	(r)(1 − 2−r )ζ(r + 1), and a simple pole at s = 0 with residue D(0) log 2, while the in-
tegrand in (50) has two simple poles at s = r > 0 and s = 0 with residues Aδ−r	(r) and D(0),
respectively. As a result, we obtain (40) and (41).

(ii) We see that the left-hand sides of the Eqs. (36)–(38) are decreasing as δ � 0 in such a
way that for a fixed n, in all the three cases the left-hand sides tend to 0 as δ → +∞, while as
δ → 0 the left-hand sides tend to +∞, 1

2

∑n
k=1 kbk and

∑n
k=1 kbk , respectively. We now make

use of Theorem 2 to get a lower bound (51) below on the sum
∑n

k=1 kbk when the sequence {bk}
obeys Meinardus’ conditions (i) and (ii). We set ak := k−r+1bk , k � 1, and let D̃(s) denote the
Dirichlet series D̃(s) = ∑

k�1 akk
−s . Since C0, r > 0, the function D̃ satisfies the conditions of

Wiener–Ikehara theorem, with the constant A as in Meinardus’ condition (i). Consequently,

n∑
k=1

k−r+1bk =
n∑

k=1

kbk

kr
∼ An, n → ∞,

from which it follows that for sufficiently large n,

n∑
k=1

kbk � Bn, (51)

for some B > 1. This can be easily seen from the bound

n∑
k=1

kbk

kr
�

L−1∑
k=1

kbk

kr
+ 1

Lr

n∑
k=L

kbk

with L < n such that LrA > 1. Moreover, (11) implies that the series limn→∞ EZ
(i)
n , i = 1,2,3,

converge for any positive δ.
Combining the above facts, we conclude that each of Eqs. (36)–(38) has a unique solution for

sufficiently large n and that the solutions δ
(i)
n → 0, n → ∞, i = 1,2,3.
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(iii) We firstly show that in all three cases,

EZn

(
δ(i)
n

) = (− logF (i)
(
e−δ

))′∣∣
δ=δ

(i)
n

+ ε(i)(n),

ε(i)(n) → 0, n → ∞, i = 1,2,3. (52)

In the case of weighted partitions, setting δ̂n = n
− r+2

2(r+1) gives for sufficiently large n

∞∑
k=n+1

kbke
−kδ̂n

1 − e−kδ̂n

= O

( ∞∑
k=n+1

kbke
−kδ̂n

)
= O

( ∞∑
k=n+1

kr+1e−kδ̂n

)

= O

( ∞∫
n+1

xr+1e−xδ̂n dx

)
→ 0, n → ∞, (53)

where we have employed (11) and the fact that nδ̂n → ∞, n → ∞. From (43) with k = 1 we
deduce that δ

(1)
n > δ̂n for large enough n, which implies that (53) is valid with δ̂n replaced by δ

(1)
n .

This proves (52) for the case considered. Consequently, Eq. (36) can be rewritten as

A	(r + 1)ζ(r + 1)
(
δ(1)
n

)−r−1 + D(0)
(
δ(1)
n

)−1 + O
((

δ(1)
n

)C0−1) + ε(1)(n) = n,

ε(1)(n) → 0, n → ∞. (54)

We outline here the method of solution for asymptotic equations of the form (54) common in
applications of Khintchine’s method. Denoting the constant coefficient h := A	(r + 1)ζ(r + 1),
(54) implies

h + D(0)
(
δ(1)
n

)r + O
((

δ(1)
n

)r+C0
) + o

((
δ(1)
n

)r+1) = n
(
δ(1)
n

)r+1
. (55)

Since δ
(1)
n → 0, n → ∞, we obtain from (55) that δ

(1)
n ∼ h

1
r+1 n− 1

r+1 , n → ∞. Based on this fact
and the fact that 0 < C0 < 1, we get

δ(1)
n = h

1
r+1 n− 1

r+1 + D(0)

r + 1
n−1 + O

((
δ(1)
n

)r
n−1) + O

((
δ(1)
n

)C0n−1)
= h

1
r+1 n− 1

r+1 + D(0)

r + 1
n−1 + O

(
n−1−β

)
,

where β is as in (43). For selections and assemblies the analogs of (55) will be, respectively

h + O
((

δ(2)
n

)C0+r) + o
((

δ(2)
n

)r+1) = n
(
δ(2)
n

)r+1
,

h = A	(r + 1)
(
1 − 2−r

)
ζ(r + 1)

and

h + O
((

δ(3)
n

)C0+r) + o
((

δ(3)
n

)r+1) = n
(
δ(3)
n

)r+1
,

h = A	(r + 1).
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Now the same reasoning as for weighted partitions leads to the solutions (44), (45).
(iv) In the case of weighted partitions, we have

logf (1)
n

(
e−δ

(1)
n

) = logF1
(
δ(1)
n

) +
∑

k�n+1

bk log
(
1 − e−kδ

(1)
n

)
,

where ∣∣∣∣ ∑
k�n+1

bk log
(
1 − e−kδ

(1)
n

)∣∣∣∣ = O

( ∑
k�n+1

bke
−kδ

(1)
n

)
= o(1), n → ∞,

by the argument giving (53). The proof of the remaining parts of the assertion (iv) is similar. �
Remark. As we mentioned before, Meinardus’ proof (see [1]) of Theorem 1 relies on application
of the saddle point method. In accordance with the principle of the method, the value in question
c
(1)
n is expressed as

c(1)
n = 1

2πi

1/2∫
−1/2

F (1)(τ )enδ+2πinα dα, τ = δ + 2πiα, (56)

by virtue of the Cauchy integral theorem. Here the free parameter δ is chosen as the minimal
value of the function exp(A	(r)ζ(r + 1)δ−r + nδ) viewed as an approximation of the absolute

value of the integrand in (56) at α = 0. This gives δ = h
1

r+1 n− 1
r+1 , h = A	(r + 1)ζ(r + 1) which

is the principal term of the solution δ
(1)
n of (36). It can be seen that, stemming from this choice of

the free parameter, the subsequent steps of Meinardus’ proof are considerably more complicated
compared with ours. Also note that our choice of the free parameter is in the core of our ability
to weaken Meinardus’ condition (iii).

Our next assertion reveals that the function �(g(τ ))−g(δ) in the left-hand side of the Meinar-
dus’ condition (iii) is inherent in the employed probabilistic method: the function provides an
upper bound for the rate of exponential decay of the absolute value of the characteristic func-
tion φn in (29), as n → ∞, for all three types of random structures considered. The bounds
obtained in the forthcoming lemma are used in the proof of our local limit theorem, Theorem 4.

Recall that the function g(τ) is defined by (3) and (6).

Lemma 3. Denote

V (α) = V (α; δ) = �(
g(τ)

) − g(δ) = −2
∞∑

k=1

bke
−kδ sin2(παk),

τ = δ + 2πiα, δ > 0, α ∈ R,

and let δ = δ
(i)
n , i = 1,2,3, be the unique solutions of Eqs. (36)–(38), respectively. Then, for all

α ∈ R,

∣∣φ(i)
n (α)

∣∣ �
(
1 + ε(i)

n

)
exp

(
V (i)(α)

(i)

)
, ε(i)

n = ε(i)
n (α) → 0, n → ∞, i = 1,2,3,
M
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where V (i)(α) = V (α; δ(i)
n ) and the constants M(i), i = 1,2,3, are as in condition (iii′) of Theo-

rem 3.

Proof. From (29) we have for n � 1 and δ > 0 fixed,

∣∣φ(i)
n (α)

∣∣ = exp
(�(

logf (i)
n

(
e−τ

)) − logf (i)
n

(
e−δ

)) := eV
(i)
n (α;δ),

τ = δ + 2πiα. (57)

Using (35) we now find bounds for V
(i)
n (α; δ) expressed via V (i)(α; δ) in the three cases consid-

ered. By the definition of V
(i)
n (α; δ) as given in (57), we have for weighted partitions,

V (1)
n (α; δ) = �

(
−

n∑
k=1

bk log

(
1 − e−τk

1 − e−δk

))

= −1

2

n∑
k=1

bk log

(
1 − 2e−kδ cos(2παk) + e−2kδ

(1 − e−δk)2

)

= −1

2

n∑
k=1

bk log

(
1 + 4e−δk sin2(παk)

(1 − e−δk)2

)

� −1

2

n∑
k=1

bk log
(
1 + 4e−δk sin2(παk)

)

� − log 5

2

n∑
k=1

bke
−δk sin2(παk), δ > 0, α ∈ R,

where the last inequality is due to the fact that log(1 + x) � (
log 5

4 )x, 0 � x � 4.
For selections, in a similar manner,

V (2)
n (α; δ) = �

(
n∑

k=1

bk log

(
1 + e−τk

1 + e−δk

))

= 1

2

n∑
k=1

bk log

(
1 + 2e−kδ cos(2παk) + e−2kδ

(1 + e−δk)2

)

= 1

2

n∑
k=1

bk log

(
1 − 4e−kδ sin2(παk)

(1 + e−δk)2

)

� −1

2

n∑
k=1

bk

4e−kδ sin2(παk)

(1 + e−δk)2

� −1

2

n∑
bke

−kδ sin2(παk), δ > 0, α ∈ R.
k=1
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Here the first inequality is due to the fact that − log(1 − x) � x, 0 � x � 1. For assemblies,
we get straightforwardly

V (3)
n (α; δ) = −2

n∑
k=1

bke
−kδ sin2(παk), δ > 0, α ∈ R.

Finally, setting δ = δ
(i)
n in the above three expressions, the argument resulting in (53) implies

that in all three cases,

V (i)
n (α; δ(i)

n ) � V (i)(α)

M(i)
+ ε(i)

n , ε(i)
n = ε(i)

n (α) → 0, n → ∞, (58)

uniformly for all α ∈ R. This completes the proof. �
6. The local limit theorem and completion of the proof

Local limit theorems are viewed as the main ingredient of the Khintchine method. Theorem 4
below says that a local limit theorem holds for all three types of structures obeying the conditions
of our Theorem 3.

Theorem 4 (Local limit theorem). Let δ
(i)
n , i = 1,2,3, denote the solutions to Eqs. (36)–(38),

respectively, and let the random variables Z
(i)
n , n � 1, be defined as in (30), where the random

variables Yk have distributions given in the paragraph following (34). Assume that condition (iii′)
of Theorem 3 holds for i = 1,2,3. Then,

P
(
Z(i)

n = n
) ∼ 1√

2π Var(Z(i)
n )

∼ 1√
2πK

(i)
2

(
δ(i)
n

)1+r/2
, n → ∞, i = 1,2,3,

with constants K
(i)
2 defined by

K
(1)
2 = A	(r + 2)ζ(r + 1),

K
(2)
2 = A

(
1 − 2−r

)
	(r + 2)ζ(r + 1) and

K
(3)
2 = A	(r + 2).

Proof. We will find asymptotics for P(Zn = n) as n → ∞ for the three types of random struc-
tures. Following the pattern of the Khintchine method (see e.g. [9,10]), we set δ = δn in (28)
and (29) and define α0 = α0(n) to be

α0 = δ
r+2

2(r+1)
n log2 n. (59)

Then we have

P(Zn = n) =
1/2∫

φn(α)e−2πinα dα = I1 + I2, (60)
−1/2
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where I1 = I1(n) and I2 = I2(n) are defined to be

I1 =
α0∫

−α0

φn(α)e−2πinα dα (61)

and

I2 =
−α0∫

−1/2

φn(α)e−2πinα dα +
1/2∫

α0

φn(α)e−2πinα dα. (62)

Defining Bn and Tn by

B2
n = d2

dδ2

(
logfn

(
e−δn

))
, Tn = − d3

dδ3

(
logfn

(
e−δn

))
, (63)

for n fixed we have the expansion

φn(α)e−2πinα = exp
(
2πiα(EZn − n) − 2π2α2B2

n + O
(
α3)Tn

)
= exp

(−2π2α2B2
n + O

(
α3)Tn

)
, α → 0. (64)

It can be checked that B2
n = Var(Zn) and Tn = ∑n

j=1 E(Yj − EYj )
3, by the argument leading

to (33).
Now (42) in Lemma 2 and (63) tell us that for all structures considered

(
B2

n

)(i) ∼ K
(i)
2

(
δ(i)
n

)−r−2
, (65)

and

T (i)
n ∼ K

(i)
3

(
δ(i)
n

)−r−3
,

where K
(i)
2 ,K

(i)
3 > 0, i = 1,2,3 are constants depending on the type of the structure, while K

(i)
2 ,

i = 1,2,3 are as in the statement of the theorem.
Therefore, considering (59), we find that in all three cases,

lim
n→∞B2

nα2
0 = ∞ and lim

n→∞Tnα
3
0 = 0. (66)

Combining (64) with (66), we deduce that

φn(α)e−2πinα ∼ exp
(−2π2α2B2

n

)
, n → ∞, |α| � α0. (67)

Finally, using (61), (66) and (67) gives us

I1 ∼
α0∫

exp
(−2π2α2B2

n

)
dα ∼ (2πBn)

−1

∞∫
e− 1

2 α2
dα = 1√

2πB2
n

, n → ∞. (68)
−α0 −∞
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The next step of the proof is to show that I2 = o(I1), n → ∞. At this step condition (iii′) of

Theorem 3 plays a key role. Because of the asymptotic
√

δ
(i)
n = o(α

(i)
0 ), n → ∞, i = 1,2,3, we

can use condition (iii′) to bound the quantity V (i)(α) defined in Lemma 3 by

V (i)(α) �
(

1 + r

2
+ ε

)
M(i) log δ(i)

n , α0 � |α| � 1/2, i = 1,2,3.

Hence, Lemma 3 and the fact that in condition (iii′) ε > 0, give

∣∣φ(i)
n (α)

∣∣ = o
((

δ(i)
n

)1+ r
2
)(

1 + ε(i)
n

)
, α0 � |α| � 1/2, n → ∞, i = 1,2,3.

From the definition (62) and the asymptotic (65) we have

I2 = o
((

δ(i)
n

)1+r/2) = o(I1). (69)

Lastly from (60), (65), (69) and (68), we derive the following asymptotic expression for
P(Z

(i)
n = n), i = 1,2,3:

P
(
Z(i)

n = n
) ∼ 1√

2π(B2
n)(i)

∼ 1√
2πK

(i)
2

(
δ(i)
n

)1+r/2
, n → ∞. �

To complete the proof of Theorem 3 it is left to substitute the asymptotic expressions implied
by our results for the three factors in the representation (31) when δ = δ

(i)
n .

7. Concluding remarks

(i) Under the stated conditions on parameters bk , the asymptotic formulae (8), (20), (21), for
c
(i)
n , i = 1,2,3, have a striking similarity, all of them being of the form

cn ∼ χ1n
χ2 exp

(
χ3n

r
r+1

)
, n → ∞,

where we have denoted by χ1, χ2, χ3 the constants that depend on the type of a structure and it
parameters. A simple analysis that takes into account that ζ(r + 1) > 1 reveals that, asymptoti-
cally in n, c

(1)
n > c

(2)
n and c

(1)
n > c

(3)
n , where the first fact follows obviously from the definition

of selections.
(ii) The following observation is also in order. It turns out that each one of the three combi-

natorial structures obeying the above conditions behave very much like the one with parameters
bk = kr−1, r > 0. According to the classification suggested in [4] the latter structures are called
expansive. In this respect, combinatorial structures obeying Meinardus’ conditions (as well as
their extensions as defined in the present paper) can be viewed as quasi-expansive.

(iii) We hope that the approach of this paper can be applied as well to other enumeration
problems, in particular to enumeration of structures with constraints on the number of summands
(components) (see e.g. [8,19]).
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