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In this paper, we discuss a stochastic density dependent predator–prey system with
Beddington–DeAngelis functional response. First, we show that this system has a unique
positive solution as this is essential in any population dynamics model. Then, we
investigate the asymptotic behavior of this system. When the white noise is small,
the stochastic system imitates the corresponding deterministic system. Either there is a
stationary distribution, or the predator population will die out. While if the white noise is
large, besides the extinction of the predator population, both species in the system may
also die out, which does not happen in the deterministic system. Finally, simulations are
carried out to conform to our results.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The dynamical relationship between prey and their predators has long been and will continue to be one of the dominant
themes in ecology due to its universal existence and importance [5,6]. The earliest predator–prey system is the Lotka–
Volterra model [19,27], governed by the following differential equations

ẋ(t) = x(t)
(
a − by(t)

)
,

ẏ(t) = y(t)
(−c + f x(t)

)
.

Since then some improvements to the original model have been suggested, such as adding a prey self-competition term [21],
predator saturation term [22] and predator competition term [3], considering different functional response types: Holling
types I–III [13], Hassel–Varley type [11], Beddington–DeAngelis type [4,8] and ratio-dependence type [1], etc.

Recently, Li et al. in [18] studied the dynamics of the density dependent predator–prey system with Beddington–
DeAngelis functional response. The model is⎧⎪⎪⎨

⎪⎪⎩
ẋ(t) = x(t)

(
a1 − b1x(t) − c1 y(t)

m1 + m2x(t) + m3 y(t)

)
,

ẏ(t) = y(t)

(
−a2 − b2 y(t) + c2x(t)

m1 + m2x(t) + m3 y(t)

)
,

(1.1)
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where x(t) and y(t) represent the densities of the prey and the predator, respectively, all the parameters in (1.1) are positive
and b2 is the predator density dependence rate. Assume

(H0) (c2 − a2m2)
a1

b1
> a2m1;

(H1) c2 > a2m2 and (c2 − a2m2)

(
a1

b1
− c1

b1m3
− a2m3

b2m2

)
> a2m1, or

a1m3 > c1 + b1a2m2
3

b2m2
and (c2 − a2m2)

(
a1

b1
− c1

b1m3
− a2m3

b2m2

)
> a2m1.

According to the theory in [18], system (1.1) has a positive equilibrium E∗(x∗, y∗) if (H0) is satisfied, and it is globally
asymptotically stable if (H1) holds and b1 > c1m2 y∗/�(x, y), where �(x, y) = (m1 + m2x∗ + m3 y∗)(m1 + m2x + m3 y), x =
(a1 − c1/m3)/b1, y = [c2x/(m1 + m2x + m3 y) − a2]/b2, y = (c2/m2 − a2)/b2. In addition, if c2 < a2m2, then (a1/b1,0) is
globally asymptotically stable.

However, the model is deterministic, and does not incorporate the effect of environmental noise, which is always present.
In reality, parameters involved with the system are not absolute constants, and they always fluctuate around some average
values due to continuous fluctuation in the environment. May [21] pointed out that due to continuous fluctuation in the
environment, the birth rates, death rates, carrying capacity, competition coefficients and all other parameters involved with
the model exhibit random fluctuation to a great lesser extent, and as a result the equilibrium population distribution never
attains a steady value, but fluctuates randomly around some average value. There are many authors who have studied the
dynamics of predator–prey models with stochastic perturbations [2,7,14–16,25]. Among these, they introduced stochastic
perturbations into the birth rate of the prey and the death rate of the predator in different forms of prey–predator systems.
For example, Khasminskiĭ and Klebaner gave a precise analysis of Lotka–Volterra system with stochastic perturbations [16].
Cai et al. [7] also investigated the prey–predator system with the perturbation in the Stratonovich sense, and showed
the probability distribution of the system state variables. A ratio-dependent prey–predator model with the environmental
fluctuations was considered in [25]. They calculated population fluctuation intensity (variance) for the prey and the predator
by Laplace transform methods for the stochastic differential equation model.

In this paper, considering the effect of environmental noise, we also introduce stochastic perturbation into the death
rate of the prey and the death rate of the predator in system (1.1), and assume that parameters a1, a2 are disturbed to
a1 + α Ḃ1(t), a2 + β Ḃ2(t), respectively. Then we obtain the following stochastic system:⎧⎪⎪⎨

⎪⎪⎩
dx(t) = x(t)

(
a1 − b1x(t) − c1 y(t)

m1 + m2x(t) + m3 y(t)

)
dt + αx(t)dB1(t),

dy(t) = y(t)

(
−a2 − b2 y(t) + c2x(t)

m1 + m2x(t) + m3 y(t)

)
dt − β y(t)dB2(t).

(1.2)

The aim of this paper is to discuss the long-time behavior of system (1.2). We have mentioned that E∗(x∗, y∗) of system
(1.1) is globally asymptotically stable under some conditions, which means that the properties of the solution will not be
changed under small deterministic perturbation. When it is suffered stochastic perturbations, whether there also exists
some structurally stable. But, in this situation, there is no positive equilibrium. Hence, it is impossible that the solution
of system (1.2) will tend to a fixed point. In this paper, we show that there is a stationary distribution of system (1.2)
mainly according to the theory of Has’minskii [10], if the white noise is small. While if the white noise is large, based on
the techniques developed in [23,24], we prove the predator population will die out a.s. and the prey population will either
extinct or its distribution converges to a probability measure. It does not happen that both the prey population and the
predator population in system (1.1) will die out, which is brought by large white noise, such as weather, epidemic disease.
From this point, we say that the stochastic model is more realistic than the deterministic model.

The rest of this paper is organized as follows. In Section 2, we show that there is a unique non-negative solution of
system (1.2). In Section 3, we show that there is a stationary distribution under small white noise. While in Section 4, we
consider the situation when the white noise is large. We prove that the system is nonpersistent. Finally, we make numerical
simulation to conform to our analytical result.

2. Existence of the positive solution

Throughout this paper, unless otherwise specified, let (Ω, {Ft}t�0, P ) be a complete probability space with a filtration
{Ft}t�0 satisfying the usual conditions (i.e. it is right continuous and F0 contains all P-null sets). Denote R2+ = {x ∈ R2:
x1 > 0, x2 > 0}.

In any population model, it is essential that the solution of the model is positive. So in this section, we show that there
is a unique positive solution of system (1.2).

Lemma 2.1. For any initial value (x0, y0) ∈ R2+ , there is a positive solution (x(t), y(t)), t ∈ [0, τe) of system (1.2), where τe is the
explosion time.
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Proof. Consider the following system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

du =
(

a1 − α2

2
− b1eu − c1ev

m1 + m2eu + m3ev

)
dt + α dB1(t),

dv =
(

−a2 − β2

2
− b2ev + c2eu

m1 + m2eu + m3ev

)
dt − β dB2(t),

(2.1)

with initial value u0 = log x0, v0 = log y0. It is clear that the coefficients of system (2.1) satisfy local Lipschitz condition,
then there is a local solution (u(t), v(t)), t ∈ [0, τe) of system (2.1). Therefore, by Itô’s formula, it is easy to check that
(x(t) = eu(t), y(t) = ev(t)) is the positive solution of system (1.2) with the initial value (x0, y0). �
Theorem 2.1. For any initial value (x0, y0) ∈ R2+ , there is a unique solution (x(t), y(t)) of system (1.2) on t � 0, and the solution will
remain in R2+ with probability 1.

Proof. Since Lemma 2.1 shows that there is a positive local solution (x(t), y(t)), t ∈ [0, τe) of system (1.2), then to show this
solution is global, we only need to show that τe = ∞ a.s. Let m0 � 0 be sufficiently large so that both x0 and y0 lie within
the interval [1/m0,m0]. For each integer m � m0, define the stopping time

τm = inf
{

t ∈ [0, τe): min
{

x(t), x(t)
}

� 1/m or max
{

x(t), y(t)
}

� m
}
,

where throughout this paper, we set inf ∅ = ∞ (as usual ∅ denotes the empty set). Clearly, τm is increasing as m → ∞. Set
τ∞ = limm→∞ τm , whence τ∞ � τe a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ and (x(t), y(t)) ∈ R2+ a.s. for all t � 0.
In other words, to complete the proof all we need to show is that τ∞ = ∞ a.s. For if this statement is false, then there are
a pair of constants T > 0 and ε ∈ (0,1) such that

P {τ∞ � T } > ε.

Hence there is an integer m1 � m0 such that

P {τm � T } � ε for all m � m1. (2.2)

Define a C2-function V : R2+ → R+ by

V (x, y) = c2(x − 1 − log x) + c1(y − 1 − log y).

The non-negativity of this function can be seen from u − 1 − log u � 0,∀u > 0. Using Itô’s formula, we get

dV = c2(x − 1)

[(
a1 − b1x − c1 y

m1 + m2x + m3 y

)
dt + α dB1(t)

]
+ c2α

2/2 dt

+ c1(y − 1)

[(
−a2 − b2 y + c2x

m1 + m2x + m3 y

)
dt − β dB2(t)

]
+ c1β

2/2 dt

:= LV dt + c2α(x − 1)dB1(t) − c1β(y − 1)dB2(t),

where

LV = c2
(−a1 + α2/2

) + c1
(
a2 + β2/2

) + c2(a1 + b1)x + c1(b2 − a2)y

− b1c2x2 − b2c1 y2 + c1c2 y

m1 + m2x + m3 y
− c1c2x

m1 + m2x + m3 y

� c2
(−a1 + α2/2

) + c1
(
a2 + β2/2 + c2/m3

) + c2(a1 + b1)x + c1(b2 − a2)y − b1c2x2 − b2c1 y2

� K ,

and K is a positive constant. Therefore

τm∧T∫
0

dV
(
x(t), y(t)

)
�

τm∧T∫
0

K dt +
τm∧T∫
0

c2α(x − 1)dB1(t) −
τm∧T∫
0

c1β(y − 1)dB2(t),

which implies that,

E
[
V

(
x(τm ∧ T ), y(τm ∧ T )

)]
� V

(
x(0), y(0)

) + E

τm∧T∫
K dt � V

(
x(0), y(0)

) + K T . (2.3)
0
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Set Ωm = {τm � T } for m � m1, then by (2.2), we know P (Ωm) � ε . Note that for every ω ∈ Ωm , there is at least one of
x(τm,ω), y(τm,ω) equal either m or 1/m, then V (x(τm), y(τm)) is no less than

m − 1 − log m or
1

m
− 1 − log

1

m
= 1

m
− 1 + logm.

Consequently,

V
(
x(τm), y(τm)

)
� (m − 1 − logm) ∧

(
1

m
− 1 + logm

)
.

It then follows from (2.2) and (2.3) that

V
(
x(0), y(0)

) + K T � E
[
1Ωm(ω)V

(
x(τm), y(τm)

)]
� ε

[
(m − 1 − logm) ∧

(
1

m
− 1 + log m

)]
,

where 1Ωm(ω) is the indicator function of Ωm . Letting m → ∞ leads to the contradiction that ∞ > V (x(0), y(0)) + K T = ∞.
So we must have τ∞ = ∞ a.s. �
3. Stationary distribution

In this section, we mainly show that system (1.2) imitates system (1.1), when the stochastic perturbation is small. In
accordance with the globally asymptotic stability of E∗(x∗, y∗) of system (1.1), we show that there is a stationary distribution
of system (1.2), which can be considered as a stability in the stochastic sense. Before giving the main theorem, we first give
a lemma used in the proof of the theorem.

Let X(t) be a homogeneous Markov process in El (El denotes Euclidean l-space) described by the stochastic equation

dX(t) = b(X)dt +
k∑

r=1

gr(X)dBr(t). (3.1)

The diffusion matrix is

A(x) = (
aij(x)

)
, aij(x) =

k∑
r=1

gi
r(x)g j

r (x).

Assumption B. There exists a bounded domain U ⊂ El with regular boundary Γ , having the following properties:

(B.1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix A(x) is bounded
away from zero.

(B.2) If x ∈ El \ U , the mean time τ at which a path issuing from x reaches the set U is finite, and supx∈K Exτ < ∞ for
every compact subset K ⊂ El .

Lemma 3.1. (See [10].) If (B) holds, then the Markov process X(t) has a stationary distribution μ(·). Let f (·) be a function integrable
with respect to the measure μ. Then

P x

{
lim

T →∞
1

T

T∫
0

f
(

X(t)
)

dt =
∫
El

f (x)μ(dx)

}
= 1

for all x ∈ El .

Remark 3.1. The proof is given in [10]. Exactly, the existence of a stationary distribution with density is referred to Theo-
rem 4.1, p. 119 and Lemma 9.4, p. 138. The weak convergence and the ergodicity are obtained in Theorem 5.1, p. 121 and
Theorem 7.1, p. 130.

To validate (B.1), it suffices to prove that F is uniformly elliptical in U , where F u = b(x) · ux + (tr(A(x)uxx))/2, that is,
there is a positive number M such that

l∑
aij(x)ξiξ j � M|ξ |2, x ∈ U , ξ ∈ Rl
i, j=1
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(see Chapter 3, p. 103 of [9] and Rayleigh’s principle in [26, Chapter 6, p. 349]). To verify (B.2), it is sufficient to show that
there exist some neighborhood U and a non-negative C2-function such that and for any El \ U , LV is negative (for details
we refer to [28, p. 1163]).

Remark 3.2. System (1.2) can be written as the form of system (3.1),

d

(
x(t)
y(t)

)
=

(
x(t)(a1 − b1x(t) − c1 y(t)

m1+m2x(t)+m3 y(t) )

y(t)(−a2 − b2 y(t) + c2x(t)
m1+m2x(t)+m3 y(t) )

)
dt +

(
αx(t)

0

)
dB1(t) +

(
0

−β y(t)

)
dB2(t),

and the diffusion matrix is

A = diag
(
α2x2, β2 y2).

Theorem 3.1. Assume (c2 − a2m2)a1/b1 > a2m1,b1 > a1m2/(m1 + m2x∗) and α > 0, β > 0 such that δ < min{c2(b1 − m2(a1 −
b1x∗)/m1)(m1 + m3 y∗)(x∗)2,b2c1(m1 + m2x∗)(y∗)2}, where δ = c2x∗α2/2 + c1 y∗β2/2 and (x∗, y∗) is the equilibrium of system
(1.1). Then there is a stationary distribution μ(·) for system (1.2) and it has ergodic property.

Proof. Since (c2 − a2m2)a1/b1 > a2m1, then there is a positive equilibrium (x∗, y∗) of system (1.1), and

a1 = b1x∗ + c1 y∗

m1 + m2x∗ + m3 y∗ , a2 = c2x∗

m1 + m2x∗ + m3 y∗ − b2 y∗,

m1 + m2x∗ + m3 y∗ = c1 y∗

a1 − b1x∗ = c2x∗

a2 + b2 y∗ . (3.2)

Define

V (x, y) = c2
(
m1 + m3 y∗)(x − x∗ − x∗ log

x

x∗

)
+ c1

(
m1 + m2x∗)(y − y∗ − y∗ log

y

y∗

)
.

By Itô’s formula, we get

LV = c2
(
m1 + m3 y∗)(x − x∗)(a1 − b1x − c1 y

m1 + m2x + m3 y

)
+ c2

(
m1 + m3 y∗)x∗α2/2

+ c1
(
m1 + m2x∗)(y − y∗)(−a2 − b2 y + c2x

m1 + m2x + m3 y

)
+ c1

(
m1 + m2x∗)y∗β2/2

= −b1c2
(
m1 + m3 y∗)(x − x∗)2 − b2c1

(
m1 + m2x∗)(y − y∗)2 + δ

+ c2m2(a1 − b1x∗)(m1 + m3 y∗)
m1 + m2x + m3 y

(
x − x∗)2 − c1m3(a2 + b2 y∗)(m1 + m2x∗)

m1 + m2x + m3 y

(
y − y∗)2

� −c2

(
b1 − m2

m1

(
a1 − b1x∗))(

m1 + m3 y∗)(x − x∗)2 − b2c1
(
m1 + m2x∗)(y − y∗)2 + δ,

where (3.2) is used in the second equality and δ = c2x∗α2/2+c1 y∗β2/2. Note that b > a1m2/(m1 + m2x∗), then b1 −m2(a1 −
b1x∗)/m1 > 0. When

δ < min

{
c2

(
b1 − m2

m1

(
a1 − b1x∗))(

m1 + m3 y∗)(x∗)2
,b2c1

(
m1 + m2x∗)(y∗)2

}
,

then the ellipsoid

−c2

(
b1 − m2

m1

(
a1 − b1x∗))(

m1 + m3 y∗)(x − x∗)2 − b2c1
(
m1 + m2x∗)(y − y∗)2 + δ = 0

lies entirely in R2+ . We can take U to be a neighborhood of the ellipsoid with U ⊆ E2 = R2+ , so for x ∈ U \ E2, LV � −K (K is
a positive constant), which implies condition (B.2) in Lemma 3.1 is satisfied. Besides, there is M = min{α2x2, β2 y2, (x, y) ∈
U } > 0 such that

2∑
i, j=1

aijξiξ j = α2x2ξ2
1 + β2 y2ξ2

2 � M
∥∥ξ2

∥∥
for all (x, y) ∈ U , ξ ∈ R2, which implies condition (B.1) is also satisfied. Therefore, the stochastic system (1.2) has a stationary
distribution μ(·) and it is ergodic. �
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Lemma 3.2. Let (x(t), y(t)) be a positive solution of (1.2) with any initial value (x0, y0) ∈ R2+ , then there are K1(p) and K2(p) such
that

E
[
xp(t)

]
� K1(p), E

[
yp(t)

]
� K2(p), p > 0.

Proof. By Itô’s formula, we compute,

dxp = pxp
(

a1 − b1x − c1 y

m1 + m2x + m3 y

)
dt + pαxp dB1(t) + α2

2
p(p − 1)xp dt

= pxp
(

a1 + α2

2
(p − 1) − b1x − c1 y

m1 + m2x + m3 y

)
dt + pαxp dB1(t)

� pxp(
a1 + pα2/2 − b1x

)
dt + pαxp dB1(t),

and

dyp = pyp
(

−a2 − b2 y + c2x

m1 + m2x + m3 y

)
dt − pβ yp dB2(t) + β2

2
p(p − 1)yp dt

= pyp
(

−a2 + β2

2
(p − 1) − b2 y + c2x

m1 + m2x + m3 y

)
dt − pβ yp dB2(t)

� pyp(
c2/m2 + pβ2/2 − b2 y

)
dt − pβ yp dB1(t).

Taking expectation, we have

dE[xp(t)]
dt

� p
(
a1 + pα2/2

)
E
[
xp(t)

] − b1 E
[
xp+1(t)

]
� p

(
a1 + pα2/2

)
E
[
xp(t)

] − b1
(

E
[
xp(t)

])1+1/p
,

and

dE[yp(t)]
dt

� p
(
c2/m2 + pβ2/2

)
E
[

yp(t)
] − b2 E

[
yp+1(t)

]
� p

(
c2/m2 + pβ2/2

)
E
[

yp(t)
] − b2

(
E
[

yp(t)
])1+1/p

.

Therefore, by comparison theorem, we get

lim sup
t→∞

E
[
xp(t)

]
�

(
a1 + pα2/2

b1

)p

, lim sup
t→∞

E
[

yp(t)
]
�

(
c2/m2 + pβ2/2

b2

)p

,

which together with the continuity of E[xp(t)] implies that there exist K1(p) > 0, K2(p) > 0 such that

E
[
xp(t)

]
� K1(p), E

[
yp(t)

]
� K2(p), t ∈ [0,∞). �

By the ergodic property, for m > 0, we have

lim
t→∞

1

t

t∫
0

(
xp(s) ∧ m

)
ds =

∫
R2+

(
zp

1 ∧ m
)
μ(dz1,dz2) a.s.,

lim
t→∞

1

t

t∫
0

(
yp(s) ∧ m

)
ds =

∫
R2+

(
zp

2 ∧ m
)
μ(dz1,dz2) a.s. (3.3)

Besides, by dominated convergence theorem, we get

E

[
lim

t→∞
1

t

t∫
0

(
xp(s) ∧ m

)
ds

]
= lim

t→∞
1

t

t∫
0

E
[
xp(s) ∧ m

]
ds � K1(p),

E

[
lim

t→∞
1

t

t∫ (
yp(s) ∧ m

)
ds

]
= lim

t→∞
1

t

t∫
E
[

yp(s) ∧ m
]

ds � K2(p),
0 0
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which together with (3.3) implies∫
R2+

(
zp

i ∧ m
)
μ(dz1,dz2) � Ki(p), i = 1,2.

Letting m → ∞, we get∫
R2+

zp
i μ(dz1,dz2) � Ki(p), i = 1,2.

That is to say, functions f1(z1, z2) = zp
1 and f2(z1, z2) = zp

2 are integrable with respect to the measure μ, i.e.

lim
t→∞

1

t

t∫
0

xp(s)ds =
∫

R2+

zp
1μ(dz1,dz2), lim

t→∞
1

t

t∫
0

yp(s)ds =
∫

R2+

zp
2μ(dz1,dz2) a.s. (3.4)

In addition, it is clear that

c2 dx + c1 dy = (
a1c2x − b1c2x2 − a2c1 y − b2c1 y2)dt + c2αx dB1(t) − c1β y dB2(t),

then

c2
x(t) − x0

t
+ c1

y(t) − y0

t
= a1c2

t

t∫
0

x(s)ds − b1c2

t

t∫
0

x2(s)ds − a2c1

t

t∫
0

y(s)ds − b2c1

t

t∫
0

y2(s)ds

+ c2α

t

t∫
0

x(s)dB1(s) − c1β

t

t∫
0

y(s)dB2(s). (3.5)

Let M1(t) = ∫ t
0 x(s)dB1(s), M2(t) = ∫ t

0 y(s)dB2(s), then M1(t), M2(t) are martingales with M1(0) = M2(0) = 0, and

lim
t→∞

〈M1, M1〉t

t
= lim

t→∞
1

t

t∫
0

x2(s)ds =
∫

R2+

z2
1μ(dz1,dz2) < ∞,

lim
t→∞

〈M2, M2〉t

t
= lim

t→∞
1

t

t∫
0

y2(s)ds =
∫

R2+

z2
2μ(dz1,dz2) < ∞,

according to (3.4). Hence by strong law of large numbers [20], we have

lim
t→∞

1

t

t∫
0

x(s)dB1(s) = 0, lim
t→∞

1

t

t∫
0

y(s)dB2(s) = 0 a.s.

which together with (3.4) and (3.5), yields

lim
t→∞

c2x(t) + c1 y(t)

t
=

∫
R2+

(
a1c2z1 − b1c2z2

1 − a2c1z2 − b2c1z2
2

)
μ(dz1,dz2) a.s.

Combing upper arguments, we get the following theorem.

Theorem 3.2. Suppose the conditions in Theorem 3.1 hold. Then we have

lim
t→∞

1

t

t∫
0

xp(s)ds =
∫

R2+

zp
1μ(dz1,dz2), lim

t→∞
1

t

t∫
0

yp(s)ds =
∫

R2+

zp
2μ(dz1,dz2), p > 0,

lim
t→∞

c2x(t) + c1 y(t)

t
=

∫
R2+

(
a1c2z1 − b1c2z2

1 − a2c1z2 − b2c1z2
2

)
μ(dz1,dz2) a.s.
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Note that

dx � x(a1 − bx1)dt + αx dB1(t),

and

dx � x

(
a1 − c1

m3
− b1x

)
dt + αx dB1(t),

then by the theory in [14], we get

lim sup
t→∞

log x(t)

t
� 0, lim sup

t→∞
1

t

t∫
0

x(s)ds � a1 − α2/2

b1
a.s.,

if a1 > α2/2;

lim inf
t→∞

log x(t)

t
� 0, lim inf

t→∞
1

t

t∫
0

x(s)ds � a1 − c1/m3 − α2/2

b1
a.s.,

if a1 > c1/m3 + α2/2. Therefore, if a1 > c1/m3 + α2/2, we have

lim
t→∞

log x(t)

t
= 0 a.s. (3.6)

Moreover,

log x(t) − log x0

t
= a1 − α2

2
− b1

1

t

t∫
0

x(s)ds − c1
1

t

t∫
0

y(s)

m1 + m2x(s) + m3 y(s)
ds + α

B1(t)

t
,

which together with (3.4), (3.6) and limt→∞ B1(t)/t = 0 a.s. implies

lim
t→∞

1

t

t∫
0

y(s)

m1 + m2x(s) + m3 y(s)
ds = a1 − α2/2

c1
− b1

c1

∫
R2+

z1μ(dz1,dz2) a.s.

Now, we consider y(t). It is clear that

dy � y

(
−a2 + c2

m2
− b2 y

)
dt − β y dB2(t),

then

lim sup
t→∞

log y(t)

t
� 0, lim sup

t→∞
1

t

t∫
0

y(s)ds � c2/m2 − a2 − β2/2

b2
a.s.

if c2/m2 > a2 + β2/2. Note that

log y(t)

t
= log y0

t
−

(
a2 + β2

2

)
− b2

t

t∫
0

y(s)ds + c2

t

t∫
0

x(s)

m1 + m2x(s) + m3 y(s)
ds − β

B2(t)

t
,

then

lim inf
t→∞

1

t

t∫
0

x(s)

m1 + m2x(s) + m3 y(s)
ds � a2 + β2/2

c2
+ b2

c2

∫
R2+

z2μ(dz1,dz2) a.s.
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Therefore, we have

Theorem 3.3. Assume the conditions in Theorem 3.1 hold and a1 > c1/m3 + α2/2, c2/m2 > a2 + β2/2. Then we have

lim
t→∞

1

t

t∫
0

y(s)

m1 + m2x(s) + m3 y(s)
ds = a1 − α2/2

c1
− b1

c1

∫
R2+

z1μ(dz1,dz2),

lim inf
t→∞

1

t

t∫
0

x(s)

m1 + m2x(s) + m3 y(s)
ds � a2 + β2/2

c2
+ b2

c2

∫
R2+

z2μ(dz1,dz2) a.s.

4. Non-permanence

In this section, we show the dynamics of system (1.2) with large white noise. Large white noise may lead to the extinc-
tion of the two species, which does not happen in the deterministic system.

First, we give the property of the solutions of a one-dimensional stochastic equation. Consider the following stochastic
equation [17]:

dXt = a(Xt)dWt + b(Xt)dt. (4.1)

Lemma 4.1. Let Xt be a solution of Eq. (4.1), and

s(ξ) =
ξ∫

0

exp

{
−

z∫
0

2b(r)

a2(r)
dr

}
dz.

If s(−∞) > −∞ and s(∞) = ∞, then limt→∞ Xt = −∞ a.s.

Theorem 4.1. Let (x(t), y(t)) be a solution of system (1.2). Then:

(1) If c2/m2 < a2 + β2/2 and a1 > α2/2, then limt→∞ y(t) = 0 a.s. and the distribution of x(t) converges weakly to the probability

measure with density f ∗(ζ ) = Cζ 2(a1−α2/2)/α2−1e−2b1ζ/α2
, where C = (2b1/α

2)2(a1−α2/2)/α2
/Γ (2(a1 − α2/2)/α2), and

lim
t→∞

1

t

t∫
0

x(s)ds = a1 − α2/2

b1
a.s.

(2) If a1 < α2/2, then limt→∞ x(t) = 0, limt→∞ y(t) = 0 a.s.

Proof. It is clear that

d log y = (−a2 − β2/2 + c2/m2 − b2 y
)

dt − β dB2(t)

� (−a2 + c2/m2 − b2 y)dt − β dB2(t).

Let

dΨ (t) = (−a2 + c2/m2 − b2eΨ (t))dt − β dB2(t),

then log y(t) � Ψ (t) a.s. and it is easy to compute s(−∞) > −∞ and s(∞) = ∞ when c2/m2 < a2 + β2/2. Then
limt→∞ Ψ (t) = −∞ a.s. according to Lemma 4.1. Thus by the comparison theorems for stochastic equations and the posi-
tivity of the solution, we get

lim
t→∞ y(t) = 0 a.s.

That is to say, for ∀0 < ε < a1 − α2/2, there exist a constant T1 = T1(ω) and a set Ωε such that P (Ωε) > 1 − ε and
y(t) � m1ε/c1 for t � T1 and ω ∈ Ωε . Then

x(t)
(
a1 − ε − b1x(t)

)
dt + αx(t)dB1(t) � dx(t) � x

(
a1 − b1x(t)

)
dt + αx(t)dB1(t),
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and (
a1 − α2/2 − ε − b1x(t)

)
dt + α dB1(t) � d log x(t) �

(
a1 − α2/2 − b1x(t)

)
dt + α dB1(t). (4.2)

Consider the following equation

dΦ(t) = (
a1 − α2/2 − b1eΦ(t))dt + α dB1(t). (4.3)

If a1 > α2/2, Eq. (4.3) has the density g∗(ζ ) such that

1

2
α2 g′∗(ζ ) = (

a1 − α2/2 − b1eζ
)

g∗(ζ ). (4.4)

Therefore from (4.2) and the arbitrary of ε , we get the distribution of log x(t) converges weakly to the probability measure
with density g∗ . Thus, from (4.4), we obtain the distribution of x(t) converges weakly to the probability measure with den-
sity f ∗(ζ ) = C2ζ

2(a1−α2/2)/α2−1e−2b1ζ/α2
, where C2 = (2b1/α

2)2(a1−α2/2)/α2
/Γ (2(a1 − α2/2)/α2). Besides, from the ergodic

theorem and (4.4) it follows that

lim
t→∞

1

t

t∫
0

x(s)ds =
∞∫

−∞
eζ g∗(ζ )dζ =

∞∫
−∞

a1 − α2/2

b1
g∗(ζ )dζ = a1 − α2/2

b1
a.s.

Thus, the proof of case (1) is completed. Now, we prove case (2). Obviously,

d log x(t) =
(

a1 − α2

2
− b1x(t) − c1 y(t)

m1 + m2x(t) + m3 y(t)

)
dt + α dB1(t)

�
(
a1 − α2/2

)
dt + α dB1(t).

Since a1 − α2/2 < 0, we have limt→∞ log x(t) = −∞, and so limt→∞ x(t) = 0 a.s. which implies

d log y(t) =
(

−a2 − β2

2
− b2 y(t) − c2x(t)

m1 + m2x(t) + m3 y(t)

)
dt + β dB2(t)

� −a2/2 dt + β dB2(t).

By the same arguments as above, we have limt→∞ y(t) = 0 a.s. according to a2 > 0. �
Remark 4.1. The case (1) of Theorem 4.1 shows the situation when the predator population will die out, and the prey pop-
ulation is persistent for system (1.2), which also happens in system (1.1) if c2/m2 < a2. But, from the condition of case (1)
of Theorem 4.1, we can see this phenomena can also happen in system (1.2), even if c2/m2 > a2. In addition, we show
that large white noise can make the extinction of the two species in system (1.2) (see the case (2) of Theorem 4.1), which
does not happen forever in system (1.1). Therefore, the white noise can bring more asymptotic behavior, and the large
white noise may be bad weather, serious epidemic, etc. in a real world, which are responsible for the extinction of the
species.

5. Simulations

In order to conform to the results above, we numerically simulate the solution of system (1.2). By the method mentioned
in [12], we consider the discretized equation:⎧⎪⎪⎨

⎪⎪⎩
xk+1 = xk + xk

[(
a1 − b1xk − c1 yk

m1 + m2xk + m3 yk

)
�t + αε1,k

√
�t + 1

2
α2(ε2

1,k�t − �t
)]

,

yk+1 = yk + yk

[(
−a2 − b2 yk + c2xk

m1 + m2xk + m3 yk

)
�t + σ2ε2,k

√
�t + 1

2
σ 2

2

(
ε2

2,k�t − �t
)]

.

Choosing suitable parameters in the system, by Matlab we get the simulation figures with initial value (x(0), y(0)) =
(0.6,0.4) and time step �t = 0.002.

In Figs. 1–4, we choose a1 = 0.4, a2 = 0.2, b1 = 0.7, b2 = 0.2, c1 = 0.1, c2 = 0.2, m1 = 0.1, m2 = 0.5, m3 = 0.3 and change
the values of α and β , then x∗ .= 0.49876, y∗ .= 0.20972, (c2 − a2m2)a1/b1 = 2/35, a2m1 = 1/50, a1m2/(m1 + m2x∗) .=
0.57244, c2[b1 −m2(a1 −b1x∗)/m1](m1 +m3 y∗)(x∗)2 .= 0.00361, b2c1(m1 +m2x∗)(y∗)2 .= 0.00031. Hence (c2 −a2m2)a1/b1 >

a2m1,b1 > a1m2/(m1 + m2x∗). In this situation, the equilibrium E∗(x∗, y∗) of system (1.1) is globally asymptotically stable.
But, the white noise may make system (1.2) appearing different phenomena. In detail, α = 0.05, β = 0.07 in Figs. 1 and 2,
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Fig. 1. The solution of the stochastic system and its histogram. The red lines represent the solution of system (1.2), and the blue lines represent the solution
of corresponding undisturbed system (1.1). The pictures on the right are the histogram of system (1.2). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 2. Population distribution around point E∗(x∗, y∗) .= (0.49876,0.20972) corresponding to Fig. 1. (For interpretation of the colors in this figure, the
reader is referred to the web version of this article.)

then c2x∗α2/2 + c1 y∗β2/2
.= 0.00018, and so the condition c2x∗α2/2 + c1 y∗β2/2 < min{c2[b1 − m2(a1 − b1x∗)/m1](m1 +

m3 y∗)(x∗)2,b2c1(m1 +m2x∗)(y∗)2} is also satisfied. Therefore, as Theorem 3.1 said, there is a stationary distribution (see the
histogram on the right in Fig. 1). In addition, the left pictures in Fig. 1 show that the solution of system (1.2) is fluctuating
in a small neighborhood. Moreover, from Fig. 2, we find that 95% or more of the population distribution lie within a
neighborhood, which can be imagined a circular or elliptic region centered at E∗(x∗, y∗) (see the red point in Fig. 2). All of
these imply system (1.2) is stochastic stability. In Fig. 3, we assume the predator population is suffered large white noise.
We choose α = 0.05, β = 0.7, then 0.4 = c2/m2 < a2 +β2/2 = 0.445. As the first case in Theorem 4.1 expected, the predator
population will die out a.s., and the prey population tends to the value (a1 − α2/2)/b1

.= 0.56964 in time average. In Fig. 4,
we choose α = 0.9, β = 0.07 such that a1 < α2/2, which means the prey population is suffered large white noise. In this
situation, both the prey population and the predator population are going to die out a.s.



452 C.Y. Ji, D.Q. Jiang / J. Math. Anal. Appl. 381 (2011) 441–453
Fig. 3. The solution of system (1.2) with the predator population suffered the large white noise, in which case the equilibrium E∗(x∗, y∗) system (1.1) is
globally asymptotically stable.

Fig. 4. The solution of system (1.2) with the prey population suffered the large white noise, in which case the equilibrium E∗(x∗, y∗) of system (1.1) is
globally asymptotically stable.

In Fig. 5, we choose the same parameters as in Fig. 1, but the value of a2, in which a2 = 5 such that a2m2 = 0.25 > c2.
In this situation, (a1/b1,0) of system (1.1) is globally asymptotically stable, and the solution of system (1.2) has the similar
phenomena as Fig. 2.

From these figures, we can see when the white noise is small, system (1.2) imitates system (1.1) (see Figs. 1, 2 and 5).
But when the white noise is large, it will bring the extinction of the species, which does not happen in the deterministic
system (see Figs. 3 and 4). Consequently, the stochastic system incorporates more asymptotic behavior. In real world, the
large white noise may be bad weather, serious epidemic, etc., which can be considered as the decisive factors responsible
for the extinction of populations.
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Fig. 5. The solution of system (1.2) with the small white noise, in which case (a1/b1,0) of system (1.1) is globally asymptotically stable.
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