
1. Introduction and results 

We tist the consequences of this fact. Let 
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be the compositron of the restriction to the subgroupIf and the iocalisation (this 
time corresponding to Euler classes of If-rnodulcs). Let 

be the sum of the q{+ where H runs through a complete set of nun-conjugate closed 
subgroups of G. Uie have an analogous tnap for A’ethcory and a commutative diagram 

(we abbreviate f Ia,, a?, . ..I 1 = 1 lo]] 1. 

This is in contrast to the cobordism theory, where Sj:i.$ is always non-zero lilt 
Ttreoretn 3.11, The map r’ is injectivt. this is essentially the fact that a representation 
is determined by its character. The map r probably is also injcctive; I have &xked 
this for many groups G and will write ahout it elsewhere. From 19, Theorem 1 J ir 
follows that t a Q is injective if G is finite. From Theorem 1 and Lemma I we get 

the result that elementsx andjp in LJF; are distinguished by B, i.e. by K-theory 
dlaracteristic nutnbers, if and only if they are distinguished by the maps r,f for 
cyclic H in G’. In particular (using injcctivity ofr) the map B : t!JfJ -+ RG j( Ia] ] is 
injective for cyclic G. 

There are corresponding statements for geometric bard&m. Let ll :(‘A’) be the 

bordism group _of k.dimension:tf singular unitary G-manifolds in A’ and Ic t 
i : U f(X) -+ L$‘fX) be the Pontrjagin-Thorn construction. Call x =Ri : li$- l.J$ 

-+ R(G j[ [a] 1 the characteristic number map. The tocalisatirtn U$F+S-ILrc; can also 
be written O$#C) -+ U$C:SF), where this is part of the exact homology s&uence 
of the pm IC’,SF); here C is the cone on SF and SF is the classifying spa~c for 
numerable G-spaces without stationary 
also meaningful for il’i;. The map i : U.(C’,Sf+ -+ U$!lC,SQ is always injcctivc 14. cp 

oints (7, Sate 51. This interpretation is 

Theorem 3. I. Proposition 4.11. Hence from the work of Hamrick and Ossc. [ 101 

and Theorem 1 we conclude: 

Theorem 2. LP~ G he cyclic. Then the charucterisric number ntq is irtjecriw. The 
ZPU~ B : ‘j’c” -+ R(G ) [ [al, a2, . . . ] ] is ittjective. 

The injectivity of B in Theorem 2 implies, as in the proof of [6, Sstz 8j ” the fol- 
lowing theorem. 



Theorem 3 in turn implies that for cyclic G,K-theory characteristic numbers de- 
termine bordism classes of unitary manifolds without fixed points, and as a special 
case we see that the integrality theorem holds (compare the last sentence of 14, 54)). 
The proof 1s completely analog~s to the proof of (6, Satz 6, Sate 7) and need not 
be written once more. 

2. Characteristic numbers. The Boardman map 

Let G be a compact Lie group. For a C-space X we denote by K,(X) the Grothen- 
die& ring of numerable complex G-vector bundles {even if X is not compact). The 
i& exterior power of vector bundles extends to a rnap x’ : K&T) -+ K&‘-l. If one 
puts, with an indeterminate I, 

then 

One defines natural transformations 4 : KG(X) --* K,(X) by putting 

One still has 

Let &,,, : E(n) --* 8(nt) be the universal rtt-dimensional complex G vector bundle. 
kt R = Z[q, q, . . . ] be the polynomial ring over the integers in a countable number 
of variables ci. If V is a complex G-module, we define a ring homomorphism 
. 
I,, bP: R -+K,(B,n) by putting 

. 
I, 

I 
&) = r”(& -- C’ - I?? + I Vi). 

where 1 Vi is the complex dimension of V, and P’,nz and 1 Cl are trivial bundles with 
fibre V,nz and I Vi and trivial G-action on m and WI. 

Let km.,, l * B(m) X B(N) --* B(m + 11) be the classifying map of f, X t,. Let 

d:R +R a R be thediagonal 



and .W i 1s the Thom space of Ek.) We consider the following composition of hc,mo- 
morphisms 

where (a) is i :lli+,t, F, (b 1 is the Thorn homomorphism for [,+ ,6’r9 (c) is induced by 1; 
and (d) is the suspension isomorphism. We remark that the Thorn homomorphisms 
and suspension homomorphisms are defined such that the corresponding Lulcr 
classes (= restriction of the Thorn class to the zero section) are given by the alter- 
nating sum over the exterior powers of the cc;rljugate bundle. One verifies that the 
homomorphism above is indepcndcnt of the representative/of x. So we get a homo- 
morphism 

!? = b&: U$Y) --+ HornQR,K&Y)). 

in view of formula (3) the h,, arc multiplicative in the fc4lowing sense: Give 
Honr(H,K&k’)) the ring structure induced by the diagcmal J of R and the multipli- 
cation p of &4X). Then the & are compatible with the multiplication in U&Y). 
For computational purposes it is better to use a dualized version of the groups 
Hom(‘R,R&I~)). Develop the product 

m 
Cl = I I ( I + cj fi f “2 ff + . ..I. 

i= I 

formally C,e%’ according to the monomials 8 = c;’ = C? . . . . Then b’ is symmetric 
in the I~, 12s . . . and can be expressed as a polynomial with integer coefficients in the 
elementary symmetric functions q, a2, .._ of the tt, f2. . . . . So we consider 
br E Z[q, Uz, . ..I. If&v ’ IS any Z-algebra, define a map 

cy : Hom(R,K) + K f [aI, a2. . ..I ) 
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(where A’[ fop u2. . . . ] ] is the algebra of formal power series over K in ul, aZ. . ..) by 

Then clt is a ring homomorphism (for details see [3, X. 1.22]). Note that for I’ = 
ik, 0.0, . ..) we get hf - -a ak . The composition of cr and b defines the Boardman map 

B : L’zI’(X) “K,(x) [ [q. up . ..]I. 

If c(q) is the cobordism Euler class of a line bundle q over X, then 

(4) Ile(?j)=(I-Q)t(l-&q t(l--?j)‘u,t.... 

Mere q is the complex conjugate of q. (We have not distinguished a bundle and the 
corresponding element in K&X).) For odd degrees we define B through the suspen- 
sion isomorphism. To sum up: The Roardman map 

(5) B : L;‘i*;(X) -, K$Y)[ [Qp a,, ...I ] i 

is a natural tram Cortnation of multiplicative cohomology theories such that (4) holds. 

Remark. In our presentation of B everything is +graded (U* through even and odd 
degrees). It is also possible to use Z-graded KG -theory and homogeneous power se- 
ries (degree Oi = - 2) such that B has degree zero by giving ci degree 2i, ivR V degree 
zero, and .Thom homomorphisms the degree “dimension of the bundle”, and using 
a graded Horn(R. K ). 

If&f is a compact unitary G-manifold, then one has the index: homomorphism 
ind : KG(bf) *H(G) (cf. 12, p. 4981). If x E L/G is the element represented by&f 
via the Pontjagin-Thorn construction, then b(x) is the homomorphism which maps 
a monomial in the ci onto Ind of the corresponding monomial in the $(/rl--T), 
where 7 is the tangent bundle ofM and Jr/ its complex dimension. (In fact, by the 
definition of unitary manifoid one has to add some trivial bundles E to 7, and then 
one considers complex structures on r e ke which are G-invanant.) If G = {I ) is 
the trivial group, then B : II/+ + Z[ fal, a2, . ..)I is injective by the theorem of 
Stong f l-3) and Hattori [ I I 1. Note further that B by<construction is compatible 
with the restriction of group actions to subgroups. 

Remadc. The construction of x in 16, p. 2921 is wrong. Normal and tangent bundle 
have to be interchanged. 

3. Roof of Theorttm 1 

If G is abelian, the irreducible representations are one-dimensional. In o 

get S’Qq$(X) I[ II 11 we therefore have to invert power series of the form (4). But 



then the locahsation is equivalent to inverting elements ( I- 1’) E R(G) for non-trivial 
irreducible G-modules V. Let T be multiplicatively generated by such t -- T’. We have 
to show that 

S’B:.S’U; + T- kGMaJ1 

is injective. 
We recall the canonical elements of .S” tfz that we found in [ 8 J. Let q be the 

canonical line bundle over infinite complex projective space CP”. Let V be a non- 
trivial irreducible G-module. There is an isomorphism Uz(CPor) = Uz [[C) ] of U’- 
algebras; the element C corresponds to the Euler class c(q). Hence we can write 

(6) e(C/o t7)=ilu(C’)taI(~~C+02(CT)CZ + . . . . 

La x : li; -+s -‘U$ be the localisation and put i+( V) = e( I’)“’ ?UJ I,‘). Let 
iF>: j EJ_! be a complete set of non-trivia) non-isomorphic irreducible G-modules. 
Then we have by f8, Satr 21: 

t’+[$.(q): i2 I,jEb) @ Z[e(b;.),c(l$)-‘: jEJ] 

in& s-‘p ’ G 1s an isowmphim of iI*-algebras. Owe has &,a,( Vj) = e( I$). 

The proof of Theorem 1 now runs along the following lines: We show that the 
elements S-‘B(Aq( I$+), j E J, i > 0, are algebraically independent over S” B( L!** 1). 
SinceS-‘BIL;,, l 1 is injective by the theorem of tiattori and Stong. we conclude 
that KtB is injective on the U*-subalgebra A generated by the elements AD(( Vj). 
But every element of S-t&‘8 is algebraic over A. Hence S”B is injective. 

To proceed, we have to compute.$-tB(A+( 5)). We apply S”B to the detining 
equation (6,) for the a,4 V) and use (4). We get the equality 

(3 (I-. V362fi)-~() ._ Vw$j2n,+. . .=Be(YsPtl)=B(ag(V))+B(ul(C’))BC+. . . 

with 

f8j BC=(1--~fj)t(l-~)2a1 t... 

Hence we have to expand the first series in (7) as a power series in (8) and the re- 
sultjng coefficients are the B(ad v)). The required expansion is a difficult task; we 
avoid it by introducing new coordinates. The Boardman map B maps the coefficients 
U* injectivdy into the poiynomial ring 

P: =Z[d,, u2, ..,I C R(C)[ [ut, aZF . ..I]. 

WC identify U* with this subring of P and extend S”B to 

and sirni!arly from.57tUE(CP”) =S-‘(U$ [[Cl]) to (S-‘U,$ mU, P)[ [Cl]. 
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and h(x) its inverse in the sense that g(h(*r)) = x = It(&)). We expand 4 I/’ 8 11) in 
terms of I@(q)). and get 

with suitable b&V). From (9) ~e conclude that hi(V) has the form 

(10) bi( 13 = o& 0 + ri( I% 

where Y+ 1’) is a polynomial in q$ p, . . . . q_t( V) with coefficients in P. Therefore 
the S-%(a& 13) are tigehraically independent over P if and only if the S-‘B(bi( Vj) 
we independent over P. To make this statement meaningful we use Lemma I to- 

gether with the fact that 

is injective. 

Froof of Lemma I. Write C = Znr X T’, where T” is an n-dimensional torus (n 2 0) 
and 2, the cyclic group of order m. Then 

R(G) 2 HI&? @ NO, R(Z,) 2 z[x]!(X”-l). 

R(T”) 2 Z[q, . . . . x,, l/xl, . . . . I/X,$ 

whererw, xl, . . . . X, are suitable irreducible modules. If we invert the (1 -x’), 
1 Gj < m, we get a ring without zero divisor, isomorphic to a subting of Q[w], 
w = exp (M/m), by evaluating at a generator of 2,. The tensor product with R(T) 
then has no zero divisor and further localisation cannot change this fact. So T’R(C) 
is as claimed for cyclic C. For non-abelian G one shows that T-‘R(G) = 0 as in 
[S, p.36], using equivariant K-theory instead of cobordism theory. if G is abeliau, but 
not cyclic, then a direct calculation shows that T-‘R(G) = 0; for instance, for 
C = ZP X ZP the product of the eiementa (1 -, Vj), j EJ, is zero in R(G). 

We return to the elements bAV). From the definition we get 

(11) Be( V @ rl) = CeC$( 0) (~~e(#, 

113 &he(q) = hBt$q) = hg( 14j) = l-4. 

That means, in order to compute Bbi( v) we have to expand 

(1-I~)+(1-fi)2Q~ + . . . 

in terms of (1 -e), and this can be achieved using the formal Taylor expansion. if 
we put AX) = g( 1 - &), then 

(13) B6 (v) = (if)_‘Pg’k’(l--V) i, l 9 



where glkJ . i(; the A’*’ formal derivative. So we have reduced our problem to showing 

that the power series g czij( 1 - I$), j E J, k 2 0, are algebraically independent over P. 

We use the foil~wing gmerahsrrtion of Vandi- rrnonde’s determinant. 

Proof. The usual evaluation of the Vandtrmonde determinant essentia!ly WI &s also 
in this case. We sketch the procedure. Multiply the jth column by y I anC subtract 

from the{1 +j) Ii1 Expand with respect to the first row. Use suitable 7 jw operations . . 

and extract common row factors (x~---.T~) and &-- I )x1 for j = 2, . . . . I to get a deter- 
minant af the same form as before with rk -1 rows, except that y 1. . . .._yk are re- 
placed byJa2, .=. ‘f, y l _ and tt is replaced by rr-- 1 and the last ro r’ is missing. Finlly 
this procedure 1~ * is to the Vandermonde determinant. 

The F:oof of Theorem 1 will now be finished with the following algebraic result. 

Proof. Ley US work over the quotient field Q ofK. Assume we have an algebtic re- 
latian R[b( 1 j, . . . . b(r, )j = 0, H here b( I). . . . . b(q) are without loss of generality the 
bj(Vt) with f G t G k and 0 ;r;Ej < P and R is a polynomial with coefficients in 
Q[a,. qt ..* 1. These coefficients involve only a finite number of indeterminates a#, 
say oniy t7t, l *.,4m* Choose rt > m. The power series b,{ VC, have the form 

a 

“0 + upz, f U2tzz + . . . , UiEQ. 

We look at the coefficients of the b(i) of a,, Q,,,~, . . . . u,,+~,_~. They form a determi- 
nant which up to a non-zero factor is just the one considered in Lemma 3 and hence 
different from zero. We can therefore express the b(j) as linear combination of se- 
ries b’(f), where b’(7) involves Q,+~ with a non-zero coefficient and does not involve 
Q,,~, i #j, CI G i C kr. If we rewrite the relation R(b( 1)9 . . . . b(q)) = 0 in terms of 
the b’u) and put Us = 0 for k 3 n+kr, we would get an algebraic relation of polyno- 
mi~sb’ti)~~jai+f~r~EQ[ul,...,a,I,i>m, overQ[ol,...,a,l,whichisimpossi- 
ble. 
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