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Motivated by the recent observation of the B-mode signal in the cosmic microwave background by
BICEP2, we study the Starobinsky-type inflation model in the framework of old-minimal supergravity,
where the inflaton field in the original (non-supersymmetric) Starobinsky inflation model is promoted
to a complex field. We study how the inflaton evolves on the two-dimensional field space, varying the
initial conditions. We show that (i) one of the scalar fields has a very steep potential once the trajectory
is off from that of the original Starobinsky inflation, and that (ii) the B-mode signal observed by BICEP2
is too large to be consistent with the prediction of the model irrespective of the initial conditions. Thus,
the BICEP2 result strongly disfavors the complexified Starobinsky inflation in supergravity.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
Recently, B-mode polarization of cosmic microwave background
(CMB) has been observed by BICEP2, which indicated a large
tensor-to-scalar ratio of [1]

r(BICEP2) = 0.2+0.07
−0.05. (1)

The observation of BICEP2 provides a significant constraint on in-
flationary models because the value of r is directly related to the
scale of inflation (i.e., the expansion rate during inflation). In par-
ticular, the BICEP2 result strongly disfavors one of the interesting
possibilities, i.e., Starobinsky inflation model [2,3] which utilizes a
scalar degree of freedom in the gravitational sector as an inflaton.
This is because the Starobinsky inflation predicts r of the order of
10−3, which is significantly smaller than the BICEP2 result.

If one extends the model, this conclusion may change. The ex-
tension we consider in the present study is to supersymmetrize
the model because supersymmetry is a prominent candidate of the
physics beyond the Standard Model. In such a model, the inflation
can still be realized solely by the gravitational sector, while new
scalar degrees of freedom are automatically introduced, which may
affect the dynamics of inflation.

The Starobinsky model is based on a modified theory of grav-
ity, so we need to consider a modified theory of supergravity.
There are two minimal off-shell formulations of supergravity: the
old-minimal [4–6] and the new-minimal [7] supergravity. Super-
gravity embedding of Starobinsky model has been studied both in
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the old-minimal [8–10] and the new-minimal [11,12] supergravi-
ties. These studies share the original philosophy of the Starobin-
sky model in the sense that the supergravity generalizations of
the model rely solely on (super)geometrical or (super)gravitational
quantities.1 The old-minimal realization of Starobinsky model is
possible with generic “Kähler potential” and “superpotential” of
scalar curvature supermultiplet with extra propagating scalar de-
grees of freedom other than the inflaton (also called scalaron)
[8–10].2 On the contrary, the new-minimal realization has a Hig-
gsed (massive) vector field as well as the inflaton [11,12]. Thus,
we consider the old-minimal supergravity because it automatically
introduces new scalar degrees of freedom.

In this letter, we study the Starobinsky-type inflation model
in the framework of old-minimal supergravity. We pay particu-
lar attention to the fact that there exist two scalar degrees of
freedom originating from the gravity multiplet in such a model.

1 In this respect, see Ref. [13] for the inflationary scenario induced by gravitino
condensation. Closely related works to Refs. [8–12] include Refs. [14,15] in the
old-minimal formulation and Refs. [16] (see also Refs. [17]) in both formulations.
See also other recent related works [18,19] in supergravity. These can reproduce
the scalar potential of the dual theory of the Starobinsky model [20], but do not
necessarily have pure (super)geometrical or (super)gravitational interpretation. Gen-
eralization of the duality [8] between higher-curvature supergravity and standard
matter-coupled supergravity has recently been discussed in Ref. [21] which provides
the higher-curvature supergravity representation of the attractor model [22].

2 Imposing a constraint R2 = 0, one can construct the old-minimal higher-
curvature supergravity with only one (pseudo)scalar in addition to the scalaron [23].
Even in this case, the discussion after Eq. (7) holds.
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We study the evolution of the inflaton on the two-dimensional
field space. We will see that the potential of one of the scalar
fields becomes very steep once the trajectory is off from that of
the original Starobinsky inflation. We also show that the tensor-to-
scalar ratio in the supergravity Starobinsky model is too small to
be consistent with the BICEP2 result even though the field space is
enlarged.

The generic action of the old-minimal supergravity [8,10] is, in
chiral curved superspace language,3

S =
∫

d4xd2Θ2E

[
−1

8
(D̄D̄ − 8R)N(R, R̄) + F (R)

]
+ H.c. (2)

where N(R, R̄) and F (R) are the hermitian and the holomorphic
functions of the scalar curvature chiral superfield R, respectively.
The superfield R contains Ricci scalar curvature R in its ΘΘ com-
ponent and gravitino in its Θ and ΘΘ components. It also con-
tains a complex scalar M and real vector bμ . These are auxiliary
fields in the case of the minimal action with N = −3 and F = 0.
For generic functions N and F , however, these become dynamical.

The theory is classically equivalent [8,24] to the standard
matter-coupled supergravity [25]

S =
∫

d4xd2Θ2E

[
3

8
(D̄D̄ − 8R)e−K/3 + W

]
+ H.c. (3)

with the following no-scale type Kähler potential and superpoten-
tial:

K = −3 ln

(
T + T̄ − N(S, S̄)

3

)
, (4)

W = 2T S + F (S). (5)

Linearized analysis of the original picture (higher-curvature super-
gravity) for a simple function N(R, R̄) has been performed in
Ref. [26]. Bosonic Lagrangian of the original picture and compar-
isons of both pictures are described in Ref. [10]. Note that any N
and F functions lead to the unique Kähler and superpotentials for
T because the origin of T is a Lagrange multiplier. In particular,
canonically normalized field X = √

3/2 ln(1 + 2 Re T /3) along the
real axis (Im T = S = 0) has the Starobinsky potential (cf. Eq. (9)).
Roughly speaking, Re T , Im T , S , and S̄ in this picture correspond to
R , ∂μbμ , M , and M̄ in the original geometrical picture, respectively.
In this letter, we focus on the standard matter-coupled supergrav-
ity picture.

Consider a Kähler potential for S ,

N(S, S̄) = −3 + 12

m2
S S̄ − ζ(S S̄)2. (6)

The first term (constant) is needed to reproduce Einstein super-
gravity. The second term leads to the kinetic term of the new
degrees of freedom. However, this term produces the scalar po-
tential unbounded below in the region of large |S|. Instability for
radial |S| direction is stabilized by the third term proportional to ζ

(see e.g. Refs. [27,28,14,10] and references therein).
Small ζ makes other local minima near the original minimum

(T = S = 0). Because of these reasons, we take a sufficiently large
value of ζ . Note that, for sufficiently large ζ , S is stabilized for any
value of T . We also assume F (S) = 0 so that the potential value at
the vacuum is zero. Thus, S is set to the minimum S = 0, and the
resultant effective theory has two fields Re T and Im T with only
one parameter m.

3 Throughout this letter, we use the Planck unit M P = 1, where M P � 2.4 ×
1018 GeV is the reduced Planck scale.
After stabilization of S , the Lagrangian density is given by

L = − 3

(2 Re T + 3)2

(
∂μ Re T ∂μ Re T + ∂μ Im T ∂μ Im T

)

− 3m2

(2 Re T + 3)2

(
Re T 2 + Im T 2). (7)

Canonical normalization of both fields at the same time is impos-
sible in this case. We find it useful to define the semi-canonical
basis that does not have kinetic mixing and realizes canonical nor-
malization at the vacuum (X = Y = 0)4:

X =
√

3

2
ln

(
1 + 2

3
Re T

)
, Y =

√
2

3
Im T . (8)

Then, the Lagrangian density becomes

L = −1

2
∂μ X∂μ X − 1

2
e−2

√
2/3X∂μY ∂μY

− 3m2

4

(
1 − e−√

2/3X)2 − m2

2
e−2

√
2/3X Y 2. (9)

The third term is the Starobinsky potential. Looking at the second
and fourth terms, one may naively guess that chaotic inflation [29]
is possible neglecting the common factor e−2

√
2/3X . However, as

we shall see, this exponential factor strongly drives X to the posi-
tive direction in the large Y region.

Now let us investigate if the fields X and/or Y play the role of
inflaton which are responsible for the present density fluctuations
of our universe. For this purpose, we first study the evolution of
these fields. The evolution equations for X and Y are given by

Ẍ + 3H Ẋ +
√

3

2
m2e−√

2/3X(
1 − e−√

2/3X)

−
√

2

3
e−2

√
2/3X(

m2Y 2 − (Ẏ )2) = 0, (10)

Ÿ + 3HẎ − 2

√
2

3
Ẋ Ẏ + m2Y = 0, (11)

where the “dot” denotes the derivative with respect to time t and
H ≡ ȧ/a (with a being the scale factor) is the expansion rate of the
universe. When the energy density of the universe is dominated by
that of T , we obtain

H =
√

ρT

3
(12)

where ρT is the total energy density:

ρT = KT + V T , (13)

KT = 1

2
Ẋ2 + 1

2
e−2

√
2/3X Ẏ 2, (14)

V T = 3m2

4

(
1 − e−√

2/3X)2 + m2

2
e−2

√
2/3X Y 2. (15)

By solving the above equations numerically, we follow the trajec-
tories of X and Y with various initial values.

In Fig. 1, we show the contours of the potential and the evo-
lutions of the fields on (X, Y ) plane. As representative initial con-
ditions, we choose (X(tinit), Y (tinit)) = (0,100), (0,80), (−2,100)

4 Alternatively, one may transform Im T into canonically normalized form by Z =√
2
3 e−√

2/3X Im T . Then the potential for Z is also simplified, V = V S(X) + m2

2 Z 2,

where V S(X) is the Starobinsky potential. However, in this basis, X is no more
canonically normalized and there is a kinetic mixing between X and Z .
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Fig. 1. Evolutions of the fields on the (X, Y ) plane. The green closed contour at
around the minimum (i.e., (X, Y ) = (0,0)) corresponds V T (X, Y )/m2 = 0.1, while
other green lines represent the contours of V T (X, Y )/m2 = 1, 10, 102, 103, 104 and
105 from right to left. The solid red, solid blue, dashed red, and dashed blue lines
represent the evolutions of the fields with initial conditions (X(tinit), Y (tinit)) =
(0,100), (0,80), (−2,100) and (−2,80), respectively. Note that dashed lines over-
lap with the solid lines for X > 0. Points with numbers show the e-folding numbers
for each trajectory. The trajectories are terminated at the end of inflation (i.e.,
εH = 1). (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

and (−2,80). (The initial values of Ẋ and Ẏ are taken to be zero.)
With such initial conditions, we can see that T starts to move to
the X direction first, then it settles to the real axis (i.e., Y � 0).
After reaching to the real axis, the motion of T is well approxi-
mated by the single-field inflation with X ; the situation is almost
the same as the non-supersymmetric original Starobinsky inflation.
As can be seen from the dashed lines, the trajectories are almost
unchanged even if X starts from X < 0.

On each contour, in particular for Y �= 0, we show several points
which give rise to some specific values of the e-folding numbers
until the end of inflation. Here, the e-folding number is defined as

Ne(t) ≡
tend∫
t

dt′H
(
t′), (16)

where tend is the time at the end of inflation. In our analysis,
we define it by εH (tend) = 1, where the slow-roll parameter εH

is given by

εH ≡ − Ḣ

H2
= 1 − ä

aH2
= 3KT

ρT
. (17)

We have used the Einstein equation in the last equality. We can
see that the change of the e-folding value in the period of Y � 1
is small. Therefore, a large value of the e-folding number dur-
ing inflation, which is necessary to solve the horizon and flatness
problems, should be accumulated when T is on the real axis.

For εH < 1 and εH > 1, the expansion of the universe is accel-
erating and decelerating, respectively. Thus, for inflation to happen,
εH < 1 is necessary. To see when the expansion is accelerating, in
Fig. 2, we plot εH as a function of Ne , taking (X(tinit), Y (tinit)) =
(0,100) and (X(tinit), Y (tinit)) = (0,80). We can see that, just after
the start of the motion, εH significantly increases and soon be-
comes larger than 1. In this period, the expansion of the universe
Fig. 2. The slow-roll parameter εH as a function of the e-folding number Ne , for
the initial conditions (X(tinit), Y (tinit)) = (0,100) (red line) and (X(tinit), Y (tinit)) =
(0,80) (blue line). The dashed line, corresponding to εH = 1, is drawn to guide the
eyes. Note that Ne decreases with time. (For interpretation of the references to color
in this figure, the reader is referred to the web version of this article.)

is decelerating and not inflating. The drop of εH at Ne � 57 (45) in
the red (blue) line corresponds to the point at which Y becomes
most negative and Ẏ � 0 (cf. Fig. 1).

Thus, the universe transits from the decelerating epoch to the
Starobinsky-type inflation. We call the period in between as “tran-
sition period,” and the period of the Starobinsky-like expansion
as “Starobinsky-inflation period.” The important point is that
the transition period is very short; during the transition period,
Ne changes ∼ 3 or so. (For the case of (X(tinit), Y (tinit)) = (0,100),
for example, the transition period corresponds to 55 � Ne � 58.)
This is due to the fact that the motion of Y becomes suppressed
soon after the condition εH < 1 is satisfied. If we require that the
causal connection be realized for the scale much longer than k−1∗
(with k∗ being the wavenumber corresponding to the present Hub-
ble scale), the mode with the wavenumber k∗ should leave the
horizon in the Starobinsky-inflation period. Then, the tensor-to-
scalar ratio becomes O (10−3) and is too small to be consistent
with the value given in Eq. (1). Thus, in the light of the recent BI-
CEP2 result, the Starobinsky inflation is disfavored even if the field
space is complexified in the framework of old-minimal supergrav-
ity.

One of the possibilities to change this conclusion may be to
consider the case where the mode with k∗ exits the horizon in
the transition period. However, such a solution looks unlikely. Even
though the density fluctuations with the wavenumber ∼ k∗ may
be altered, fluctuations with the wavenumber k larger than ∼ 10k∗
have almost the same property as those in the case of Starobinsky
inflation. Consequently, for the angular scale of θ � π/l with l �
O (10), the density perturbations behave as those in the Starobin-
sky model. The BICEP experiment is sensitive to the B-mode signal
with l ∼ 50–150, while the scalar-mode fluctuations for such an
angular scale is well studied by using CMB and other observables.
Thus, in the present model, it is difficult to enhance the tensor-
mode fluctuations without conflicting observations.

Note added: While we are preparing the manuscript, the pa-
per [30] showed up on arXiv, which has some overlap with this
letter. See also Refs. [31] and [32] for recent related works.
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