
Egyptian Informatics Journal (2016) 17, 125–137

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Cairo University

Egyptian Informatics Journal

www.elsevier.com/locate/eij
www.sciencedirect.com
FULL-LENGTH ARTICLE
Designing of vague logic based multilevel feedback

queue scheduler
* Corresponding author.

Peer review under responsibility of Faculty of Computers and

Information, Cairo University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.eij.2015.09.003

1110-8665 � 2015 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information, Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Supriya Raheja a,*, Reena Dadhich b, Smita Rajpal c
aDepartment of Computer Science & Engineering, School of Engineering & Technology, NCU (Formerly ITM University),
Gurgaon, Haryana, India
bDepartment of Computer Science & Informatics, University of Kota, Kota, Rajasthan, India
cAlpha Global IT, Toronto, Canada
Received 28 January 2015; revised 2 August 2015; accepted 5 September 2015
Available online 19 October 2015
KEYWORDS

Vague based Multilevel

Feedback Queue (VMLFQ)

Scheduler;

Scheduler;

Multilevel Feedback Queue

(MLFQ) Scheduling;

Vague set theory;

Vague inference system
Abstract Multilevel feedback queue scheduler suffers from major issues of scheduling such as star-

vation for long tasks, fixed number of queues, and static length of time quantum in each queue.

These factors directly affect the performance of the scheduler. At many times impreciseness exists

in attributes of tasks which make the performance even worse. In this paper, our intent is to

improve the performance by providing a solution to these issues. We design a multilevel feedback

queue scheduler using a vague set which we call as VMLFQ scheduler. VMLFQ scheduler intelli-

gently handles the impreciseness and defines the optimum number of queues as well as the optimal

size of time quantum for each queue. It also resolves the problem of starvation. This paper simu-

lates and analyzes the performance of VMLFQ scheduler with the other multilevel feedback queue

techniques using MatLab.

� 2015 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information,

Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

A scheduler is the key module of any contemporary operating

system that manages the concurrent execution of active tasks
by sharing the CPU time among these tasks. To achieve these
goals it runs a scheduling algorithm which selects the next task
to run as well as divide the CPU time. In a productive system,
scheduler should be fair and efficient [1,2]. Efficiency and fair-
ness can be considered in terms of different parameters such as

average waiting time, average turnaround time, average
response time, and starvation. These goals vary with the sys-
tem being used. Keeping these goals, operating system’s

designers prefer to use Multilevel Feedback Queue (MLFQ)
scheduling algorithm for scheduler over other scheduling
algorithms.

The fundamental problems with the MLFQ scheduling are
threefold: first is how to assign the parameters to the scheduler,
such as how to decide the optimum number of queues, how

much length of time quantum for each queue and how the pri-
ority is assigned to each task, so that starvation will not occur

https://core.ac.uk/display/82739166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eij.2015.09.003&domain=pdf
http://dx.doi.org/10.1016/j.eij.2015.09.003
http://dx.doi.org/10.1016/j.eij.2015.09.003
http://www.sciencedirect.com/science/journal/11108665
http://dx.doi.org/10.1016/j.eij.2015.09.003

Q0

Q1

Q2

Figure 1 Variation in the size of time quantum within different

queues.

tv (x)

1-f v (x)

x

1-fv (X)

0 X

1

Figure 3 Vague member functions.

126 S. Raheja et al.
[3]. Most of the MLFQ schedulers allow variable length of

time quantum to the queues. Often higher priority queues
are assigned short time quantum for interactive tasks and the
lower priority queues are assigned long time quantum as they

contain background tasks. Fig. 1 illustrates the variation in
size of time quantum within each queue. Each black box rep-
resents the one time quantum.

Second, it tries to optimize the average turnaround time.

Third, MLFQ desires that the system should be more respon-
sive, thus to minimize the response time [4]. However, the algo-
rithms such as Round Robin minimize the response time but

unfortunately increase the turnaround time [5]. Moreover,
task’s attributes can be having imprecise data which further
affect these issues and make performance even worse. Hence,

the focus of an operating system designer is to build a sched-
uler that achieves all the desired goals of scheduling and at
the same time handles the impreciseness.

In this paper we introduce a vague logic based new multi-

level feedback queue CPU scheduler and call it as VMLFQ
scheduler. VMLFQ scheduler considers all the above men-
tioned problems with MLFQ and provides solutions to all.

VMLFQ scheduler dynamically calculates the length of time
quantum for each queue which makes the scheduler flexible.
Hence, it can take decisions at run time. With all these, it also

improves the performance of a system in terms of average
waiting time, average turnaround time, average normalized
turnaround time and average response time.
Q0
T5

2ms

Q1
T7

4ms
T6

4m

Q2 T9

Highest Priority

Lowest Priority

Figure 2 Pictorial representation of m
This paper is organized as follows. Section 2 gives brief
explanation of the task scheduling algorithm and the Mul-

tilevel Feedback Queue Scheduling. This section also discusses
the related work of MLFQ. Section 3 provides the reader with
the background information on vague set theory. Section 4

describes VMLFQ scheduler in detail. Section 5 discusses the
simulation with the help of sample task sets and results.
Finally, Section 6 concludes the work.

2. Related work

Scheduling algorithm is the technique that a scheduler uses to

decide the next task to run. The performance of operating sys-
tem mainly depends on the scheduling algorithm used by
scheduler. There have been a number of scheduling algorithms

proposed in the literature such as First Come First Serve,
Priority, Shortest Job First, Round Robin, Multilevel Queue,
and Multilevel FeedBack Queue scheduling algorithm [6–9].
However, out of all, multitasking systems prefer Multilevel

Feedback Queue Scheduling algorithm [10,11]. As our focus
is on Multilevel Feedback Queue, all these algorithms are
out of scope of this paper.
T3
2ms

T1
2ms

s
T4

4ms
T2

4ms

T8

ultilevel feedback queue example.

VIS-MLFQ

Scheduling
Algorithm

VMLFQ
Scheduler

Q1

Q2

Qn

Ready Queue
Task

admits

Figure 4 VMLFQ scheduler.

Ready
Queue

Data Base

+

Rule Base

Vague Logic
Module

Vague Truth
Function

Vague False
Function

Vague
Inference
Engine

Grade
Function
Module

Task’s
Attributes

Figure 5 Vague inference system for VMLFQ scheduler.

Vague logic based multilevel feedback queue scheduler 127
MLFQ scheduling is one of the widely known scheduling

approaches for interactive systems. In 1962, Corbato et al.
had first accounted the MLFQ scheduler in a system called
as Compatible Time Sharing System (CTSS). Just like Mul-

tilevel Queue, the Multilevel Feedback Queue also contains mul-
tiple queues and each queue has a different priority. The highest
priority task from highest priority queue is scheduled first with
CPU. Here, the priority is the key factor for task to run since

MLFQ allows moving the task from one priority queue to
another priority queue. Therefore, the fundamental principle
of MLFQ scheduling depends on how to set priorities of each

task. Instead of assigning a static priority to task, MLFQ
changes the priority according to its observed behavior [4].
Suppose, if a task repeatedly requests for input device and

releases the CPU iteratively, MLFQ scheduler will mark this
task as high priority task; rather if a task requests the CPU
for long duration, MLFQ will mark it as low priority task.

Additionally, if a task waits for CPU for long duration in
lower priority queue, it will move to the higher priority queue.
In such a manner, MLFQ tries to memorize about a task, and
hence uses the past activities of the task to predict its behavior.

Let us consider an example of MLFQ where ready queue is
divided into three queues Q0, Q1 and Q2 as shown in Fig 2.
Here Q0 has higher priority than Q1, and Q2 has lowest prior-

ity. Each queue has its own scheduling algorithm. The sched-
uler follows RR scheduling approach for queues Q0 and Q1

CPU Time

1 2 3

1 3

3

Q1
Q2

Q3

Figure 6 VMLFQ scheduling example.

Table 1 Sample task set 1.

Task name Arrival time (ms) Burst time (ms)

T1 0 40

T2 0 30

T3 0 50

T4 2 70

T5 4 25

T6 6 60

T7 7 45

T1 T2 T3

0 10 20 30

Q1

Q2 T1 T2 T3

70 90 110 130

Q3 T1 T3 T4

205 215 235 275

Figure 7 Gantt chart for sam

Q1

Q2

Q3

T1 T2 T3

0 10 20 30

T1 T2 T3

70 90 110 130

T4

T1 T3 T4

205 215 235 265

310 320

Q4

Figure 8 Gantt chart for samp

128 S. Raheja et al.
whereas for Q2, it follows FCFS approach. When the task
enters in the system, firstly it is added at the end of Q0 and

then system allots a fixed single time quantum. This scheduling
algorithm provides the facility to move the tasks from one
queue to another queue. If the task consumes more CPU time,

the task is moved to the lower priority queue Q1 and allotted
double time quantum.
T4 T5 T6 T7

40 50 60 70

T4 T5 T6 T7

150 165 185 205

T6 T7

305 320

ple task set 1 using MLFQ.

T4 T5 T6 T7

40 50 60 70

T4 T5 T6 T7

150 165 185 205

T6 T7

295 310

le task set 1 using PMLFQ.

Q1

Q4

Q3

Q2

T1 T2 T3 T4 T5 T6 T7

0 10 20 30 40 50 60 70

T3 T6 T4

285.5 287 298.5 320

T2 T1 T7 T3 T6

184 187.5 201 219.5 241.5 263.5

T4

285.5

T5 T2 T1 T7 T3 T6 T4

70 85 101.5 118 134.5 151 167.5 184

Figure 9 Gantt chart for sample task set 1 using VMLFQ.

Vague logic based multilevel feedback queue scheduler 129
Q0 is using time quantum 2 ms and Q1 is using 4 ms as illus-
trated in Fig 2. In this example, the interactive and the I/O
bound tasks (T1, T3 and T5) will complete their execution in

Q0 but the CPU bound tasks (T2, T4, T6, T7, T8 and T9) will
move to the lower level queues Q1 and Q2. The task that waits
for a longer time can be moved to the higher priority queues.

Since MLFQ is mainly preferable algorithm for interactive
tasks, Torrey and Coleman have implemented a MLFQ sched-
uler to compare the response of interactive tasks. Proposed
algorithm has shown some improvements in terms of turn-

around time, as the MLFQ scheduling performance depends
on the number of queues and the length of time quantum is
assigned to each queue. With this aim, Parvar and Safari have

utilized the recurrent neural network to optimize the number
of queues and the size of time quantum of each queue of
MLFQ scheduler [12]. Hoganson has pointed the performance

of MLFQ scheduler in terms of task starvation. MLFQ
scheduling algorithm is efficient and effective for small CPU
bound tasks or interactive tasks but in the lower priority

queues, the CPU-intensive tasks may get starved and reduce
the performance of MLFQ scheduler. He has presented an
approach that extenuates the MLFQ starvation problem [13].

Rao and Shet have further implemented the MLFQ sched-

uler for multi-task real time systems [14]. They have proposed
a new multilevel feedback queue (NMLFQ) scheduling algo-
rithm which is implemented in C++. Bhunia has also given

a solution for the MLFQ scheduler for the tasks which get
starved in the lower priority queues for waiting CPU. The pro-
posed solution considers five queues. In this approach, the

number of queues is fixed and also the time slice increases from
upper to lower queues. The tasks from the lower queue may
also be shifted to higher priority queues on the basis of remain-
ing CPU burst time which results in the reduction of number

of starved tasks up to some level [15]. We are calling this algo-
rithm as PMLFQ scheduling algorithm. In this book Arpaci-
Dusseau and Arpaci-Dusseau have discussed numerous issues

related to MLFQ scheduling [4]. There is no development in
the literature which shows the handling of uncertainty in
MLFQ scheduling.
This research work is grounded to handle the uncertainty
using vague set theory. We call this as VMLFQ scheduler.
We compare VMLFQ with MLFQ and PMLFQ scheduling.

We claim that the proposed work results in better performance
in terms of average waiting time, average response time, aver-
age normalized turnaround time and average normalized turn-

around time. In the next section we will discuss preliminaries
of vague set theory which is the core part of our work.

3. Vague set theory

In this section we concisely discuss one of the generalized
forms of fuzzy set theory called as vague set theory. Fuzzy
set theory was specifically designed by Prof. Zadeh to mathe-

matically represent impreciseness and uncertainty [16–18]. It
is a formalized tool for dealing with imprecision. Let X=
{x1, x2, . . ., xn} be the universe of discourse, where an element

of X is denoted by x.

Definition 1 (Fuzzy Set). A fuzzy set F in X is defined by its
membership function lF: X? [0, 1] where lF(x) is the degree

of membership of element x in a fuzzy set F [19–22].

In a fuzzy set, each element is assigned a single membership

value in the interval [0,1]. This single membership value does
not separate the evidence in favor and evidence against. Gau
and Buehrer have pointed this single membership value and
introduced vague set theory over fuzzy set theory which

considers both evidences individually [23].

Definition 2 (Vague Set). A vague set V in X is defined by a
truth membership function tv(x) 2 [0, 1]and a false member-

ship function fv(x) 2 [0, 1], where tv(x) is a lower bound on
the grade of membership of x derived from the evidence for
x, fv(x) is a lower bound on the grade of membership of x
derived from the evidence against x, and tv(x) + fv(x) 6 1.

The grade of membership of x in the vague set is bounded to
a subinterval [tv(x), 1 � fv(x)] of [0, 1] as shown in Fig. 3
[23,24].

(a) (b)

(c) (d)

(e)

1 2 3 4 5 6 7
50

100

150

200

250

300

350

Number of Tasks

Tu
rn

ar
ou

nd
 T

im
e

MLFQ
PMLFQ
VMLFQ

1 2 3 4 5 6 7
3

3.5

4

4.5

5

5.5

6

6.5

7

Number of Tasks

N
or

m
al

iz
ed

 T
ur

na
ro

un
d

Ti
m

e

MLFQ
PMLFQ
VMLFQ

1 2 3
0

50

100

150

200

250

Sample Task Set 1

P
er

fo
rm

an
ce

AWT
ATT
ANT
ART

1 2 3 4 5 6 7
50

100

150

200

250

300

Number of Tasks

W
ai

tin
g

Ti
m

e

MLFQ
PMLFQ
VMLFQ

1 2 3 4 5 6 7
0

10

20

30

40

50

60

Number of Tasks

R
es

po
ns

e
Ti

m
e

MLFQ
PMLFQ
VMLFQ

Figure 10 (a) Waiting time (task set 1), (b) turnaround time (task set 1), (c) response time (task set 1), (d) normalized turnaround time

(task set 1) and (e) overall performance result (task set 1).

130 S. Raheja et al.

Table 2 Sample task 2.

Task name Arrival time (ms) Burst time (ms)

T1 0 90

T2 0 30

T3 0 28

T4 0 57

T5 0 73

T6 0 19

T7 0 42

T8 0 67

Q1

Q2

Q3

T1 T2 T3 T4 T5 T6 T7

0 8 16 24 32 40 48 56

T8

64

T1 T2 T3 T4 T5 T6 T7

64 80 96 112 128 144 155 171

T8

187

T1 T2 T3 T4 T5 T7

253 259 263 296 345 363 406

T8

187

Figure 11 Gantt chart for MLFQ (sample task set 2).

Vague logic based multilevel feedback queue scheduler 131
Definition 3 (Vague Value). The interval [tv(x), 1 � fv(x)] is
called the ‘vague value’ of x in V as given in Fig 3. The vague
set V is written as V 6 x, [tv(x), fv(x)] > : x 2 X.

Consider a universe X for priority of the tasks. A vague
value for priority of a task can be [0.5, 0.7]. Here, 0.5 and .3

represent the truth part and false part of vague value respec-
tively, whereas remaining 0.2 stands for hesitated part of vague
value [25].
Q1

Q2

Q3

Q4

T1 T2 T3 T4

0 8 16 24 3

T1 T2 T3 T4

64 80 96 112 1

T1 T2 T3 T4

211 217 221 2187

T1 T4 T5 T8

353 362 387 4311

Figure 12 Gantt chart for PM
4. VMLFQ scheduler

VMLFQ scheduler supports a finite number of queues n and a
finite number of active tasks N. Each task requires arrival time

A and burst time B. Let Q = {Q1, Q2, . . ., Qn} be the set of n
queues and T = {T1, T2, . . ., TN} be the set of N tasks, then
{Ai|i= 1, . . ., N} represents the arrival time and {Bi|

i= 1, . . ., N} represents the burst time for ith task respectively.
VMLFQ scheduler dynamically divides the ready queue into
finite number of queues Q1, . . ., Qn 2 Q. VMLFQ scheduler
has two components as shown in Fig. 4:

� Vague Inference System (VIS-MLFQ)
� Scheduling algorithm

4.1. VIS-VMLFQ

Our VIS-MLFQ has the ability to learn the current behavior of
the active tasks and based on the ability, it converts the inputs
T5 T6 T7

2 40 48 56

T8

64

T5 T6 T7

28 144 155 171

T8

187

T5 T7

45 267 287 311

T8

06

LFQ (sample task set 2).

Q1

Q2

Q3

Q4

Q5

T1 T2 T3 T4 T5 T6 T7

0 7.9 15.8 23.7 31.6 39.5 47.4 55.3

T8

63.2

T6 T3 T2 T7 T4 T8 T5

63.2 74.3 90 105.7 121.4 137.1 152.8 168.5

T1

184.2

T3 T2 T7 T4 T8 T5

188.6 195 213.4 235.9 258.4 280.9 303.4

T1

184.2

T4 T8 T5 T1

314.3 335.2 361.4 387.6303.4

T5 T1

388.3 406387.6

Figure 13 Gantt chart for VMLFQ (sample task set 2).

132 S. Raheja et al.
into the desired output. Here, our aim is to generate an opti-
mum value for time quantum. Hence, our VIS takes the burst
time and number of tasks as inputs and maps these inputs into

an optimum size of time quantum. Fig. 5 illustrates the flow of
data from one module to another module in VIS-VMLFQ. It
has 4 modules as given below:

� Vague Logic Module
� Grade Function Module

� Vague Inference Engine
� Data Base and Rule Base

4.1.1. Vague Logic Module

VLM converts the inputs into the respective vague values to
handle the dependability of task’s parameters in the universe

of discourse [0, 1]. These vague values are defined with true-
membership function (tQ) and false-membership function
(fQ). VLM takes two parameters, burst time (B) and number

of active tasks (N) as inputs from the Data Base. Based on
these inputs tQ and fQ are defined as given in Eq. (1) and
Eq. (2) respectively.

tQ ¼ Bavg

Bavg þ Bmax þN
ð1Þ

fQ ¼ Bavg

Bavg þ Bmin þN
ð2Þ

Though tQ and fQ functions are independent to each other a
relation is drawn between these two vague functions i.e. tQ +

fQ 6 1 and tQ 6 fQ 6 1. Since the system is not aware of the
actual values of parameters and scheduler does not consider
the dependability of parameters to schedule the tasks. In our
work, VLM handles the uncertainty and impreciseness by con-
sidering the in-between dependability of different attributes of
tasks during its decision making. It results in the formation of

these two membership functions tQ and fQ, on which decisions
of our scheduler depend.

4.1.2. Grade Function Module

GFM defines the degree of accuracy of vague values. It
receives the vague functions as input and by adding these
two functions it returns the accuracy among vague value as

given in Eq. (3). Similar to vague functions, the degree of accu-
racy SQ should also be less than 1.

SQ ¼ tQ þ fQ; SQ � 1 ð3Þ
4.1.3. Data Base and Rule Base

Data Base acts as the container for the ready tasks [26–28]. It
retrieves all the necessary information about tasks from the

ready queue and stores within it, for example burst time B,
arrival time A, number of ready tasks N, static time quantum
QS. It also maintains the information about the maximum and

minimum burst time, average burst time currently present in
ready queue using Eqs. (4)–(6).

Bmax ¼ max fB1;B2BNg ð4Þ

Bmin ¼ min fB1;B2BNg ð5Þ

Bavg ¼
XN

i¼1

Bi

N
ð6Þ

It always fetches the current values from the ready queue
and returns to VLM and Vague Inference Engine.

(a) (b)

(c) (d)

(e)

1 2 3 4 5 6 7 8
50

100

150

200

250

300

350

400

450

Number of Tasks

Tu
rn

ar
ou

nd
 T

im
e

MLFQ
PMLFQ
VMLFQ

1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

10

Number of Tasks

N
or

m
al

iz
ed

 T
ur

na
ro

un
d

Ti
m

e

MLFQ
PMLFQ
VMLFQ

1 2 3
0

50

100

150

200

250

300

Sample Task Set 2

P
er

fo
rm

an
ce

AWT
ATT
ANT
ART

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

Number of Tasks

R
es

po
ns

e
Ti

m
e

MLFQ
PMLFQ
VMLFQ

1 2 3 4 5 6 7 8
50

100

150

200

250

300

350

Number of Tasks

W
ai

tin
g

Ti
m

e
MLFQ
PMLFQ
VMLFQ

Figure 14 (a) Waiting time (task set 2), (b) turnaround time (task set 2), (c) response time (task set 2), (d) normalized turnaround time

(task set 2) and (e) overall performance result (task set 2).

Vague logic based multilevel feedback queue scheduler 133

50

100

150

200

250

300

Av
er

ag
e

W
ai

tin
g

Ti
m

e

134 S. Raheja et al.
4.1.4. Vague Inference Engine (VIE)

VIE returns the optimum value of time quantum QD. It fetches

the value of QS from the Data Base and the degree of accuracy
from the GFM. Finally, on the basis of rules given in Eq. (7), it
returns the size of time quantum QD.

if ð8i;Ai ¼¼ 0Þ then

QD ¼ SQ �QS ð7Þ
else

QD ¼ QS
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Samples

MLFQ PMLFQ VMLFQ

Figure 15 Average waiting time.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
er

ag
e

Tu
rn

ar
ou

nd
 T

im
e

Samples
MLFQ PMLFQ VMLFQ

Figure 16 Average turnaround time.
4.2. VMLFQ Algorithm

Begin

Initialize the variables

QS = static time quantum assigned by the system

N= number of tasks

Do Loop: 1, . . ., N

Initialize the variables

B = burst time of task.

A = arrival time of task.

// initial value of remaining burst time.

RBT= B

End Loop

Do Loop: 1, . . ., N

Assign all tasks to Q1.

Calculate QD for Q1 // Using VIS-MLFQ

End Loop

Do Loop: 1, . . ., N

Calculate the response ratio (RR) using Eq. (8).

RR ¼ Waiting Timeþ Burst Time

Burst Time
ð8Þ

End Loop

Sort the Queue in descending order of RR.

Schedule the tasks for QD time.

if (RBT< QD)

Task does not need more CPU time

else

Task moves to lower level queue Qi where 2 6 i 6 n

End if

Calculate the dynamic quantum for lower level queues Q2 to

Qn using Eq. (9).

QD ¼ SQðQD þNÞ ð9Þ

Go to begin until N= = 0

End
4.3. Working of VMLFQ scheduler

Initially, it assigns all active tasks to highest priority queue Q1.

VMLFQ scheduler sorts Q1 in the descending order of
response ratio calculated using Eq. (8). It schedules the task
with highest response ratio first with CPU for the length of
optimum time quantum which is calculated by the component
VIS-MLFQ.

The length of optimum time quantum depends on the num-
ber of tasks, their burst time, and also on the system assigned
time quantum. After completing the assigned time quantum,

the task will either move to next level queue Q2 or leave the
system. If the task has completed its execution it will leave
the system otherwise resumes its execution in the next level

queue. The tasks of lower level queues will be scheduled only
when the higher level queues becomes empty. As the task waits
for a long time, the priority of the task will automatically move
up on the basis of response ratio. Considering the response

ratio for scheduling the tasks prevents the starvation problem
in lower level queues [29]. The value of time quantum for other
queues Q2, . . ., Qn depends on the value of time quantum for

previous queue, number of tasks in current queue and the
remaining burst time of tasks.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
er

ag
e

Re
sp

on
se

 T
im

e

Samples
MLFQ PMLFQ VMLFQ

Figure 17 Average response time.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MLFQ PMLFQ VMLFQ

Figure 18 Average normalized turnaround time.

0 10 20 30 40

AWT

ATT

ANT

ART

8

6

15

3.12

9

7

16

3.12

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t i

n
%

MLFQ vs VMLFQ

PMLFQ vs VMLFQ

Figure 19 Improvement in performance of VMLFQ scheduler

with MLFQ and PMLFQ scheduling.

Vague logic based multilevel feedback queue scheduler 135
Let’s look at an example, where task 2 is I/O, task 1 is CPU
bound and task 3 is highly CPU bound. These three tasks are
initially assigned to higher priority queue Q1 (see Fig. 6). As

task 2 is I/O bound, it needed less CPU time and completed
its execution within the assigned time quantum (calculated
through VIS) but task 1 and task 3 being CPU bound need

more CPU time than the assigned time quantum. Therefore,
these tasks have shifted to lower priority queue Q2. A new time
quantum is assigned to the tasks in Q2. Now we can see that in

Q2, task 1 has completed its execution within the time quan-
tum but task 3 needs more CPU time so it is again shifted to
Q3. In this specific example our ready queue is divided into
three queues but there can be more number of queues depend-

ing on the requirement of application. Next section discusses
the two components of VMLFQ scheduler in detail.

5. Simulation results

MatLab is used to design the VMLFQ scheduler. We are pre-
senting some of the snippets for different modules defined for

the VIS-MLFQ. Below is the snippet for VLM which fetches
the data from the Data Base and returns the vague value.

function [tQ, fQ] = vague_value(b, n)

bavg=mean(b);

bmax=max(b);

bmin=min(b);

tQ = (bavg)/(bavg + bmax + n);

fQ = (bavg)/(bavg + bmin + n);

end

The following snippet is for GFM that computes the grade
value after extracting the membership functions tQ and fQ
from VLM.

function [SQ] = grade_value(tQ, fQ)

SQ = tQ+ fQ;

end

The given snippet tells us how VIE calculates an optimum
value for time quantum.

function[QD] = OTQ(SQ, Qs)

if(sum= =0)

QD= SQ * Qs;

else

QD= Qs;

end

end

In this section, we are considering two sample task sets to eval-
uate the work. These task sets show how the scheduling

sequence of tasks using VMLFQ scheduler is different from
other MLFQ scheduling techniques. Each sample task set is
scheduled with MLFQ, PMLFQ and VMLFQ scheduling

136 S. Raheja et al.
algorithms. Finally, these algorithms are compared in terms of

performance metrics discussed in next section.

5.1. Performance criteria

We discuss the performance metrics which we consider for
evaluating the performance of VMLFQ scheduler.

Definition 4 (Waiting Time). Total time a task waits in ready
queue from its submission to completion. Average waiting

time can be calculated as given in Eq. (10). Here W1,W2, . . .,
WN are the waiting times for tasks (T1, . . ., TN) 2 T respec-
tively and N is the total number of active tasks.

AWT ¼ W1 þW2 þ . . .WN

N
ð10Þ

Definition 5 (Response Time). Time elapsed between the task
submission to its first useful output. Average response time can

be calculated as given in Eq. (11).

ART ¼ R1 þ R2 þ . . .RN

N
ð11Þ

Here R1, R2, . . ., RN are the response times for "Ti 2 T,
i= 1, . . ., N respectively.

Definition 6 (Turnaround Time). Total time of the task from
the submission to its complete execution. Turnaround time
can be computed by adding the waiting time and the burst time

of the task. Average turnaround time can be calculated as
given in Eq. (12). Here TT1, TT2, . . ., TTN are the turnaround
times for tasks (T1, . . ., TN) 2 T respectively.

ATT ¼ TT1 þ TT2 þ . . .TTN

N
ð12Þ

Definition 7 (Normalized Turnaround Time). It indicates the
relative delay experienced by a task. It is the ratio of turn-

around time to the burst time. Average normalized turnaround
time can be calculated as given in Eq. (13).

ANT ¼ NT1 þNT2 þ . . .NTN

N
ð13Þ

Here NT1, NT2, . . ., NTN are the normalized turnaround
times for tasks (T1, . . ., TN) 2 T respectively.
5.2. Sample task set 1

Consider a sample task set T = {T1, T2, . . ., T7} with different

arrival times and burst times as given in Table 1. We have
assumed static time quantum QS as 10 ms. Firstly, we have
applied MLFQ scheduling algorithm over the task set T.

MLFQ scheduling algorithm takes the size of time quantum
for Q1 and Q2 as 10 ms and 20 ms respectively (discussed in
Section 2), whereas, Q3 does not need any time quantum as
it follows FCFS algorithm. The sequence of scheduling for

each queue is shown in Fig. 7.
After that, we have applied the second scheduling algo-

rithm i.e. PMLFQ. It behaves just like a MLFQ algorithm
but it assumes fixed number of queues i.e. 5. Although, it has
5 queues but the size of time quantum in each queue increases
in the same way as in MLFQ like 10 ms, 20 ms, 30 ms and so

on. Fig. 8 shows the sequence of scheduling in each queue. As
all tasks have finished their execution before reaching Q5, we
have therefore represented scheduling up to Q4 only.

Finally, we have applied the VMLFQ scheduler over the
same task set T. VMLFQ scheduler intelligently divides the
ready queue into four sub queues (Q1, . . ., Q4) 2 Q at run time.

Initially, all tasks are assigned to Q1 as discussed in Section 4.
The optimum size of time quantum QD for each queue is cal-
culated using VMLFQ scheduling algorithm and it returns the
size for Q1, Q2, Q3 and Q4 as 10 ms, 16.5 ms, 22 ms and 30 ms

respectively. The scheduling sequence for VMLFQ scheduler is
shown in Fig. 9. Based on the above Gantt charts, waiting
time, turnaround time, response time and normalized turn-

around time are computed using Eq. (5), Eq. (6), Eq. (7) and
Eq. (8) respectively. The results are illustrated in Fig. 10(a),
(b), (c), (d) respectively.

Fig. 10(e) illustrates the overall performance of all three
scheduling algorithms. Here, ‘‘1” represents MLFQ schedul-
ing, ‘‘2” represents PMLFQ scheduling and ‘‘3” represents

VMLFQ scheduling algorithm. From the above graph we
can perceive the reduction in the performance metrics with
the VMLFQ scheduling. Reductions itself show the improve-
ment in the performance by VMLFQ.

5.3. Sample task set 2

Let us suppose another Sample task set 2 with eight tasks

(T1, . . ., T8) 2 T with different burst times but same arrival
times as given in Table 2. Now, consider the static time quan-
tum QS as 8 ms. Again apply all three algorithms one by one

over task set 2 to analyze the performances in more detail.
Firstly, apply the MLFQ scheduling algorithm. The assigned
static time quantum QS for first queue is 8 ms. For second

and third queues the value of time quantum used was 16 ms
and 24 ms respectively. Fig. 11 represents the scheduling
sequence using Gantt chart for MLFQ scheduling.

Then, we have applied PMLFQ scheduling over the same

task set. The time quantum used by PMLFQ scheduling for
each queue is 8 ms, 16 ms, 24 ms and 32 ms respectively. The
scheduling sequence for PMLQ is shown in Fig. 12.

Finally, we have applied the proposed VMLFQ approach
over the task set 2. In this case it divides the ready queue into
five sub queues (Q1, . . ., Q5) 2 Q. The VIS returns the value of

QD as 7.9 ms i.e. used by scheduler as time quantum for Q1
whereas time quantum for Q2, Q3, Q4 and Q5 is 15.7 ms,
22.5 ms, 26.2 ms and 29 ms respectively. The scheduling
sequence for VMLFQ is given in Fig. 13.

Similarly for task set 2, waiting time, turnaround time,
response time and normalized turnaround time are computed
for each task and illustrated in Fig. 14(a), (b), (c) and (d)

respectively.
Average waiting time AWT, average response time ART,

average turnaround time ATT and average normalized turn-

around time ANT are computed using Eqs. (5), (6), (7) and (8)
respectively and are shown in Fig. 14(e). From the graph shown
in Fig. 14(e), we can verify the improvement in the overall per-

formance of VMLFQ as compared to MLFQ and PMLFQ.
Randomly multiple sets of tasks were generated and simulated

Vague logic based multilevel feedback queue scheduler 137
using MatLab. All task sets were scheduled using these three
algorithms. The performance comparison of these algorithms
is illustrated in Fig. 15, Fig. 16, Fig. 17 and Fig. 18 for average

waiting time, average response time, average turnaround time,
and average normalized turnaround time respectively.

In the above graphs, red line represents the VMLFQ

scheduling algorithm and in each case the outputs of VMLFQ
algorithm is on lower side of the graph which shows the reduc-
tion in the values of performance metrics. The reduction itself

proves the improvement in the performance of scheduler as
well as in the performance of system.

VMLFQ scheduler performs 3.12% better in average
response time, 15% in average normalized turnaround time,

6% in average turnaround time and 8% in average waiting
time as compared to MLFQ scheduling whereas it performs
3.12% better in average response time, 16% in average nor-

malized turnaround time, 7% in average turnaround time
and 9% in average waiting time as compared to PMLFQ
scheduling as shown in Fig. 19.

VMLFQ scheduler performs better mainly for four reasons:
The proposed VMLFQ scheduler responds effectively to
dynamic environment where number of queues are assigned

at run time as well as time quantum to each queue is also pro-
vided at run time. It handles the uncertainty and impreciseness
of tasks. In addition, VMLFQ scheduler improves the starva-
tion problem at the lower priority queues as we are considering

the response ratio. Last but not the least, it improves the per-
formance of the system in terms of average waiting time, aver-
age response time, average turnaround time and average

normalized turnaround time.

6. Conclusions

The purpose of our work is to present a novel approach to mul-
tilevel feedback queue CPU scheduling. This paper discussed
the problems and issues associated with the multilevel feedback
queue (MLFQ) scheduling. To resolve the issues we presented a

MLFQ scheduler that follows a vague logic approach to take
the decisions while meeting the performance requirements.
VMLFQ scheduling extends the concept of MLFQ scheduling

using vague logic to consider the impreciseness associated with
the scheduling parameters. The scheduler takes decisions based
on the burst time and the number of tasks. The VMLFQ based

scheduler provides the solution to each of the problems and
issues. It has resolved the problem of starvation for lower level
tasks. VMLFQ scheduler also followed the dynamic approach

for assigning number of queues rather than fixed number of
queues. Additionally, we compared the performance of
VMLFQ scheduling algorithm with the MLFQ scheduling algo-
rithm and PMLFQ scheduling algorithm via average response

time, average waiting time, average turnaround time and aver-
age normalized turnaround time. Based on the results shown
in Section 5, we concluded that the VMLFQ scheduling algo-

rithm has better performance over the traditional MLFQ
scheduling and PMLFQ scheduling algorithms.

References

[1] Tanenbaum AS, Woodhull AS. Operating systems design and

implementation. 3rd ed.; 2006.

[2] Silberchatz A, Galvin PB, Gagne G. Operating systems concepts.

8th ed. John Wiley and Sons; 2012.
[3] Torrey LA, Coleman J, Miller BP. A comparison of interactivity

in the Linux 2.6 scheduler and an MLFQ scheduler. Softw Pract

Experience 2007;37(4):347–64.

[4] Arpaci-Dusseau RH, Arpaci-Dusseau AC. Operating systems:

three easy pieces, scheduling: multilevel feedback queue. Version

0.80; 2014.

[5] Raheja S, Dhadich R, Rajpal S. An optimum time quantum using

linguistic synthesis for round Robin CPU scheduling algorithm.

Int J Soft Comput 2012;3(1):57–66.

[6] Nie B, Du J, Xu G, Liu H, Yu R, Wen Q. A new operating system

scheduling algorithm. Advanced research on electronic commerce,

web application, and communication, vol. 143. Springer; 2011. p.

92–6.

[7] Dhamdhere DM. Operating systems a concept based approach.

2nd ed. Tata McGraw-Hill; 2008.

[8] Milenkovic M. Operating system concepts and design. Interna-

tional Edition. McGraw Hill; 1992.

[9] Haldar S, Aravind AA. Operating systems. Pearson Education

India; 2009.

[10] Abawajy JH. Job scheduling policy for high throughput comput-

ing environments. In: Ninth IEEE international conferences on

parallel and distributed systems, Ottawa, Ontario, Canada; 2002.

[11] FeitelsonDG,Rudolph L, SchwiegelshohnU. Parallel job scheduling,

a status report. In: 10th international conference on job scheduling

strategies for parallel processing, Springer-Verlag; 2004. p. 1–16.

[12] Parvar MRE, Parvar ME, Safari S. A starvation free IMLFQ

scheduling algorithm based on neural network. Int J Comput

Intell Res 2008;4(1):27–36.

[13] Hoganson KE. Reducing MLFQ scheduling starvation with

feedback and exponential averaging. Consort Comput Sci Coll

2009;25:196–202.

[14] Rao MV, Shet KC. Analysis of new multi-level feedback queue

scheduler for real time kernel. Int J Comput Cognit 2010;8(3):5–16.

[15] Bhunia A. Enhancing the performance of feedback scheduling. Int

J Comput Appl 2012;18(4):11–6.

[16] Klir GJ, St Clair UH, Yuan B. Fuzzy set theory: foundations and

applications. Englewood Cliffs, NJ: Prentice Hall; 1997, ISBN: 0-

13-341058-7.

[17] Zimmerman J. Fuzzy set theory and its applications. Norwell,

Massachusetts, U.S.A.: Kluwer Academic Publishers; 2001.

[18] Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets Syst

1998;20:87–96.

[19] Atanassov K. Intuitionistic fuzzy sets: theory and applications.

New York: Physica-Verlag, Springer; 2000.

[20] Zadeh LA. Fuzzy sets. Inform Control 1965;8:338–56.

[21] Zadeh LA. The role of fuzzy logic in the management of

uncertainty in expert systems. Fuzzy Sets Syst 1983;11:197–227.

[22] Zadeh LA. Outline of a new approach to the analysis of complex

systems and decision processes. IEEE Trans Syst, Man Cybern

1973;3:28–44.

[23] Gau WL, Buehrer DJ. Vague sets. IEEE Trans Syst, Man Cybern

1993;23:610–4.

[24] Bustince H, Burillo P. Vague sets are intuitionistic fuzzy set.

Fuzzy Sets Syst 1996;79:403–5.

[25] Lu A, Ng W. Vague sets or intuitionistic fuzzy sets for handling

vague data: which one is better? Lecture notes in computer

science, vol. 3716. Springer; 2005. p. 401–16, Conceptual Model-

ing-ER2005.

[26] Raheja S, Dadhich R, Rajpal S. Many valued logics for modeling

vagueness. Int J Comput Appl 2013;61(7):35–9.

[27] Raheja S, Dadhich R, Rajpal S. Designing of 2-stage CPU

scheduler using vague logic. Adv Fuzzy Syst 2014:1–10.

[28] Raheja S, Dadhich R, Rajpal S. 2-Layered architecture of vague

logic based multilevel queue scheduler. Appl Comput Intell Soft

Comput 2014:1–12.

[29] Moallemi A, Asgharilarimi M. A fuzzy scheduling algorithm

based on highest response ratio next algorithm. Computer

sciences and software engineering. Springer; 2008. p. 75–80.

http://refhub.elsevier.com/S1110-8665(15)00048-1/h0010
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0010
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0015
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0015
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0015
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0025
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0025
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0025
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0030
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0030
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0030
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0030
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0035
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0035
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0040
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0040
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0045
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0045
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0060
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0060
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0060
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0065
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0065
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0065
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0070
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0070
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0075
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0075
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0080
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0080
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0080
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0085
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0085
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0090
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0090
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0095
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0095
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0100
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0105
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0105
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0110
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0110
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0110
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0115
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0115
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0120
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0120
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0125
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0125
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0125
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0125
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0130
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0130
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0135
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0135
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0140
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0140
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0140
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0145
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0145
http://refhub.elsevier.com/S1110-8665(15)00048-1/h0145

	Designing of vague logic based multilevel feedback queue scheduler
	1 Introduction
	2 Related work
	3 Vague set theory
	4 VMLFQ scheduler
	4.1 VIS-VMLFQ
	4.1.1 Vague Logic Module
	4.1.2 Grade Function Module
	4.1.3 Data Base and Rule Base
	4.1.4 Vague Inference Engine (VIE)

	4.2 VMLFQ Algorithm
	4.3 Working of VMLFQ scheduler

	5 Simulation results
	5.1 Performance criteria
	5.2 Sample task set 1
	5.3 Sample task set 2

	6 Conclusions
	References

