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A b s t r a c t - - G e n e r a l  classes of two variables Appell polynomials are introduced by exploiting prop- 
erties of an iterated isomorphism, related to the so-called Laguerre-type exponentials. Further ex- 
tensions to the multi-index and multivariable cases are mentioned. (~) 2004 Elsevier Ltd. All rights 
reserved. 
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1.  I N T R O D U C T I O N  

In recent articles, in the  framework of the  monomial i ty  principle [1,2], a class of generalized 

exponent ia l  functions, the  so-called Laguerre- type  exponent ia ls  (short ly  L-exponent ials) ,  was 

in t roduced [3]. 

These functions are de termined by using a differential isomorphism, denoted by the sym- 

bol T :=  T~, act ing onto the  space A :=  As  of analyt ic  functions of the  x variable by means of 

the  correspondence 

D :=  Dx ~ DL := DxD;  x. --* D-~ 1, (1.1) 

where 

so tha t  

X n 

D~-~(1) :=  ~'.r' (1.2) 

X n 

T (x n) -- ~-T" (1.3) 
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The operator D L = Dx D, is called in literature the Laguerre derivative and appears quite 
frequently in mathematical modelling relevant to vibrating phenomena in viscous fluids and even 
in mechanical problems such as the oscillating chain (see [4, pp. 282-284]). 

According to the above isomorphism, substituting the derivative operator D with the Laguer- 
rian der ivat ive  L)L and the multiplicative operator x. with the antiderivative ~ ; 1 ,  the solutions 
of all linear differential equations are preserved. 

This property allowed to construct in a straightforward way solutions to ordinary [5,6] or partial 
differential equations [3,7]). 

A first example of the above-mentioned isomorphism was found proving the connection be- 
tween the Hermite-Kampd de Fdriet (or Gould-Hopper) polynomials [8-11], and the two variable 
Laguerre polynomials. 

As it is well known, the Hermite-Kampd de F~riet polynomials are called heat polynomials [12], 
since they are elementary solutions of the heat equation, but they enter even in the explicit 
solutions of many classical or pseudo-classical BVP in the half-plane (see [13,14]). The relevant 
results were generalized to many variables problems in [15,16]. 

The so-called two variable Laguerre polynomials are defined by 

(-1)~y.-~x ~ 
L.(=,  y) := n! 

r=0 ( " -  " 

It was shown (see [3,17]) that the polynomials £~ ( -x ,  y) are connected to the H-KdF poly- 
nomials H (1) (x, y) := (x + y)~ throughout the above-mentioned linear differential isomorphism, 
where the variable y is considered as a parameter. 

In order to avoid the change of sign of the x variable, we use the more simple notation 

n y n _ r X  r 

n~(x,y) := £~( -x , y )  = a! E ( n : r - ~ . ( r ! )  2 . 
r ~ 0  

(1.4) 

Using this notation, we can write 

Ln(x,y) := L(~l)(x,y) = 7-= (H(~l)(x,y)) . (1.5) 

Note that the exponential function is transformed by T into the Laguerrian exponential el (x) 

oo 2C k 
~eX ---- el(X):----- E 

k=0 (k!)2" 
(1.6) 

The use of the above isomorphism already permitted the definition of higher-order Laguerre 
polynomials which are the Laguerrian counterpart of the Gould-Hopper ones [17], and Laguerre- 
type Bessel functions [18]. 

Particular cases of higher-order type Laguerre polynomials were used for the computation of 
moments of chaotic radiations (see [19]). 

It is convenient, in the following, to introduce a suitable notation regarding the isomorphism T 2 
and its iterations. According to the above definition we can write 

T~ = D~ 1 = D~I(1), 

T~=T=DjI (1 )=D -1 ~-x(1), 

and, by induction 

T=8 T=~-I D;1(1) -1 = = D~r2_l (1), 

so that D.~(1) = (n!)2, 

X ~ 

so that  D~_2~_1 (1) = -(hi) 8 . 

(1.7) 

(1.8) 

(1.9) 
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It is easily seen that, V k E N, V s E N, 

j~--I klxkWl" ^ - 1  kiTkTl" 
~" (xk)  = [(k + 1)!] 2 ' ' ' ' '  DV (x~) = [(k + 1)!1 s+l '  

and, V h E N, 

(1.10) 

j~--h k !xk  +h ^ - h  k !xk  +h 
~'~ (xk)  = [(k + h)!] ~ ' ' ' ' '  D~r2 (xk) = [(k + h)!] ~+1' 

This is in accordance with the results of a paper by Dattoli and Ricci [3] about the definition 
of the higher-order Laguerre-type exponentials, which are defined in such a way that 

oo x k  
~Vxs (e x) ~- es(% ) : =  ~ (k!)s+ 1 . (1.11) 

k=0 

Working with the iterated isomorphism T ~, derivative operator D := D~ must be substituted 
with the Laguerrian derivative 

DsL := (DsL)~ := D x  D .  . . x  D (1.12) 

(containing (s + 1) ordinary derivatives with respect to the x variable). 
General classes of higher-order Laguerre polynomials were defined in [17], by putting 

x y (1.13) 

which are explicitly expressed by 

[m/j] ykxm_Jk 
n~;s;~) (x, y) = H ~  ) (T~(x),Ty~(y)) = m! ~ [k!]a+l[(m _jk)!]s+ 1 

k=O 
(1.14) 

and are given by the generating function 

oo tm 
L(Jm;s;a)(x,y) ~ .  = 5r~Ty ~ exp { x t  -F yt  j } = es(x t )ea  (ytJ) . 

m=0 

The same procedure is used in the present article in order to generalize the Appell polynomials, 
considering Laguerre-type Appell polynomials of higher order, and extending in such a way the 
preceding definitions of the papers [20,21]. 

In this way, we are able to obtain general classes of Appell polynomials, including the Bernoulli 
and Euler ones, which can be defined throughout generating functions which include L-exponen- 
tials instead of the ordinary one. This can be done acting separately with respect to each 
independent variable, and in this case the relevant variable will be used, as an index of the 
considered isomorphism, in order to avoid confusion (e.g., T~ s will denote the s-times iterated 
isomorphism acting with respect to the x variable, and so on). 

Of course, we consider mainly the polynomials in two variables, in order to write down explicitly 
in a more friendly way the relevant properties, however all the formulas can be easily extended 
to the general case, by using a vectorial and multi-index approach which is mentioned in the 
concluding section. 

2. 2 D  A P P E L L  P O L Y N O M I A L S  

For any j _> 2, the 2D Appell polynomials R~ j) (x, y) are defined by means of the generating 
function 

oo tn  
y; t)  : =  A(t)e = F_, y) (2.1) 

n~0 
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Even in this general case, the polynomial P~)(x, y), is isobaric of weight n, so that it does not 
contain the variable y, for every n -- 0 ,1 , . . .  , j  - 1. 

• Explicit forms of the polynomials P~) in terms of the Hermite-Kamp6 deF6riet polyno- 
mials H (j) and vice-versa. 

The following representation formula holds: 

RT)(x,y) = ~ (~kn .(5) 

[h/j] x h _ j r y  r T~,~_h 
=n!h:O (n-h)!  ~o= (h-jr)!r! '  

(2.2) 

where the T~k are the "Appell numbers" appearing in the definition: A(t) = ~=o(Ttk/kI) 
t k, (A(0) ¢ 0); 

k=O 

where the Qk are the coefficients of the Taylor expansion in a neighborhood of the origin 
of the reciprocal function 1/A(t). 

• Recurrence relation. 

It is useful to introduce the coefficients of the Taylor expansion: 

A'(t) ~-~ t ~ 
A(t) -- ~ an ~.. (2.3) 

The following linear homogeneous recurrence relation for the generalized Appell poly- 
nomials P~J) (x, y) holds: 

n(o j)(x,  y) = 1, 

=~>(~,~): (~ + oo/=~_>,/~, ~)+ (7 - , ) ' "  ' '~  =<~o-,' '~ '") 
ri--2 + (° 
k=O 

(2.4) 

* Shift operators. 

1 
L~ := - D~, 

n 

L + := (x + s0) + J 
( j  - 1) !  

n--1 

YD~- 1 + ~  a~-k Dn_k 
k=o ( g T ~ ) !  x ' 

(2.5) 

• Differential equation. 

I a~-i ajDj+I {a j - I÷JY~  D~ 
( n _ l ) ! D ~ ÷ ' " +  j] x ~- t  ~-=1)]  ] 

a~-2 D~_l ÷. . .  + (x + ~o) Dx - n] R~)(x, y) = O, 
( j  - 2 ) !  

(2.6) 
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3. HIGHER-ORDER APPELL POLYNOMIALS 

According to the above-mentioned properties, we can define a more general class of higher-order 
Appell polynomials. Namely, the following result holds. 

THEOREM 3.1. The polynomials p~;s;a)(x, y), defined by the generating function 

oo t n  

A(t)e=(xt)e~ (yt j) = E R~;=;=)(x' Y) n-'!' (3.1) 
n=0 

w h e r e  

are explicitly expressed by 

n(d;=;:)(x, y) :-- R~) (T:(~), ~ @ ) ) ,  (3.2) 

= ~=-h~h ~ ,  Y), (3.3) 
h=O 

where the coefficients Rk are the Appell numbers associated with the function A(t) (see equa- 
tion (2.2)), and the higher-order Laguerre polynomials L(J;s;a)(x y), defined by equation (1.14), h k 

come into play 
L(h j;s;~) (x, y) ---- TET~H (/) ( x "  (3.4) x y h t ,1t} .  

PROOF. Applying the isomorphisms T~ ~ and Tu~ to both sides of the generating function of the 

polynomials R~ ) (x, y), yields 

c~ tn  

7-~Tu ~d(t)e~t+ytj = E TzSTu ~Rg)(x, Y) n~' 
n.~O 

and therefore, 
oe tn  

A(t)e=(xt)e~@tO = ~ R(f (Z:(x), ~ ( y ) )  ~ ,  
r~O 

so that equations (3.1),(3.2) hold. Equation (3.4) is a consequence of (2.2) and (3.3). 

Further properties are obtained by using the same procedure as above, and can be summarized 
as follows. 

THEOREM 3.2. The polynomials p~';8;a)(x, y), verify the recurrence relation 

R(J;=;~)(x,y) = 1, 

--,.(;) n 1 .,s;:) (=, y), 
+ a,~_k_lR(k j 

k=O 

R (j;=;~) (x where the operator D~r2_~(~),-1 acting on ,~-I t , y), is defined by equations (1.9),(1.10), and 
the ak are the coefficients of the expansion (2.3). 

THEOREM 3.3. Shift operators for the polynornials /~J;s;a) (x, y), are given by 

n~ := 1 D=L, 
n 

n-1 (3.6) 
-1 J ^ ~-1 an-k ^ 
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THEOREM 3.4. A differential equation satisfied by the polynomials R~;S;a) (x, y), is given by 

( n - l ) !  , z + ' " + ~  sL + ~  ~ _ 1 ) !  ] DsL 

+ ( 3 ~ ) , D s L  + " ' + (  ~:-,(z,+~o) DsL-n j  (x ,y)=O.  

(3.7) 

4. CONCLUDING REMARKS 

The results obtained in the preceding section could be generalized by using the multivariable 
Hermite polynomials ~(J1 ..... iN) defined throughout the generating function 

~k l~ . , .~k  N 

e x l t J l + ' " + x N t J N  @ rr(jl, . . . , jN) / t k  
= ?_..,~k t Z l , . . .  , z N )  ~, 

k=O 
(4.1) 

and noting that the corresponding multivariable Laguerre polynomials are obtained acting with 
linear isomorphisms operating separately with respect to each independent variable, namely 

L(j~ ..... jN;s~,...,sN) l_ [ ,~(Jl,...dN) , ) k t~l,... ,XN):= T ~ : . . . T ~  ~ kxl,... ,XN) • (4.2) 

By using the iterated isomorphisms acting with respect to the different independent variables, 
the following generating function can be easily obtained: 

E r(Jl ..... jN;sl,..-,s~)/_ tk 
~ k  t X l ,  . . . , X N )  -~. 

k=O 

c~ tk 
_ sx sN K"" u(Jl,-..JN)/- 
- ~, " ' "  ~ z.~"k t ~ l , . . . ,  ~ N )  

k=0 

= T ~ . . .  T~sN N exp (xlt jl +. . .  + xNt iN) 

- -  zz~ ~1 ~ • • • z x  N W N e  = eSl •. • e'sN 

(4.3) 

which generalizes equation (1.15). 
Therefore, a general class of multidimensional and multivariable AppeU polynomials can be 

introduced by means of the generating function 

A ( t ) e s l  ( z l t J l )  . esN ( x j N )  = z_,v'R(J'-n ..... j , ; s l  ..... s~ ) (~t ,_~ , . . . , x~)  ~.. 
n = 0  

(4.4) 

The relevant properties can be derived by using methods similar to those described in Section 3. 
Further extensions could be obtained by introducing the multivariable and multi-index poly- 

nomials mentioned in the last section of [17]. 
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