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In this paper, solutions of the heat equation with the boundary condition of the fourth kind
are presented. The proposed solution is based on He’s variational iteration method, after
the application of which the exact solution of the problem is obtained.
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1. Introduction

The variational iteration method was developed by Ji-Huan He [1–3]. This method provides an effective and efficient
way of solving a wide range of nonlinear operator equations [4–9]. For example, Momani and his colleagues [10] applied the
variational iterationmethod in solving the ordinary differential equationswith boundary conditions. Likewise, Dehghan and
Shakeri [11] used the method in the approximate solution of a differential equation arising in astrophysics. There are other
publications, where the variational iteration method was utilized for solving the exact or approximate solution of partial
differential equations. Momani and Abuasad [9] used the variational iteration method for solving Helmholtz’s equation.
Similarly, Wazwaz [12,13] employed themethod in exact solutions of Laplace and wave equations. In Refs. [14,15] the heat-
like and wave-like equations were solved, whereas the use of the method for the heat transfer or diffusion equations was
described in Refs. [16–19]. The solution of the system of partial differential equations was described in Ref. [20]. Słota [21]
applied the variational iterationmethod combinedwith an optimization for an approximate solution of one-phase direct and
inverse Stefan problemswith a Dirichlet boundary condition. Tatari and Dehghan [22] used the variational iterationmethod
for computing a parameter in a semi-linear inverse parabolic equation. The convergence of the method was discussed
by Tatari and Dehghan [23]. He in papers [24,25] described some new interpretations and applications of the variational
iteration method.
In this paper, the author made an attempt at solving the heat equation with the boundary condition of the fourth kind.

The proposed solution is based on He’s variational iterationmethod, after the application of which, the sequence convergent
to the exact solution of the problem is derived.

2. Statement of the problem

Let D1 = {(x, t); x ∈ [x1, 0], t ∈ [0, t∗)} and D2 = {(x, t); x ∈ [0, x2], t ∈ [0, t∗)} (Fig. 1). On the boundary of these
domains five components are distributed:

Γ1 = {(x, 0); x ∈ [x1, 0]} , (1)
Γ2 = {(x, 0); x ∈ [0, x2]} , (2)

Γ3 =
{
(x1, t); t ∈ [0, t∗)

}
, (3)
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Fig. 1. Domain formulation of the problem.

Γ4 =
{
(0, t); t ∈ [0, t∗)

}
, (4)

Γ5 =
{
(x2, t); t ∈ [0, t∗)

}
, (5)

where the initial and boundary conditions are given.
In domains D1 and D2 we consider the heat conduction equations:

αu
∂2u(x, t)
∂x2

=
∂u
∂t
(x, t), (x, t) ∈ D1, (6)

αv
∂2v(x, t)
∂x2

=
∂v

∂t
(x, t), (x, t) ∈ D2. (7)

With initial conditions on boundaries Γ1 and Γ2:

u(x, 0) = ϕu(x), x ∈ [x1, 0], (8)
v(x, 0) = ϕv(x), x ∈ [0, x2], (9)

and Dirichlet’s conditions on boundaries Γ3 and Γ5:

u(x1, t) = ψu(t), t ∈ [0, t∗), (10)

v(x2, t) = ψv(t), t ∈ [0, t∗). (11)

On common boundary Γ4 the boundary conditions of the fourth kind are given (the condition of temperature continuity and
the condition of heat flux continuity):

u(0, t) = v(0, t), t ∈ [0, t∗), (12)

−ku
∂u(x, t)
∂x

∣∣∣∣
x=0
= −kv

∂v(x, t)
∂x

∣∣∣∣
x=0
, t ∈ [0, t∗), (13)

where αu and αv are the thermal diffusivity, ku and kv are the thermal conductivity, u and v are temperature, and t and x
refer to time and spatial location, respectively. Let us assume that the functions that describe the considered task comply
with the following compatibility conditions:

ϕu(x1) = ψu(0), ϕu(0) = ϕv(0),

ϕv(x2) = ψv(0), −ku
∂ϕu

∂x
(0, 0) = −kv

∂ϕv

∂x
(0, 0).

We shall seek functions u(x, t) and v(x, t), determined in domains D1 and D2 respectively, which meet the conditions of
heat transfer and the above specified conditions.

3. He’s variational iteration method

Using variational iteration method we are able to solve the nonlinear equation:

L(u(t))+ N(u(t)) = f (t), (14)
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where L is the linear operator, N is the nonlinear operator, f is a known function and u is a sought function. At first, we
construct a correction functional:

un(t) = un−1(t)+
∫ t

0
λ(s)

(
L(un−1(s))+ N(ũn−1(s))− f (s)

)
ds (15)

where ũn−1 is a restricted variation [1–5,26,6], λ(s) is a general Lagrange multiplier [27,1,2], which can be identified
optimally by the variational theory [28,1–3] and u0(s) is an initial approximation. Next, we determine the general Lagrange
multiplier and identify it as a function of λ = λ(s). Finally, we obtain the iteration formula:

un(t) = un−1(t)+
∫ t

0
λ(s)

(
L(un−1(s))+ N(un−1(s))− f (s)

)
ds, (16)

from which an approximate solution (and frequently, an exact solution) of Eq. (14) may be derived.

4. Solution of the problem

To solve theproblemof theheat transfer at ideal contact between the twoobjects, the variational iterationmethod is used.
The author would like to present two solutions based on the use of correction functional in t-direction and in x-direction,
respectively.
Method 1. The correction functionals in t-direction for Eqs. (6) and (7) can be expressed as follows:

un+1(x, t) = un(x, t)+
∫ t

0
λ1(s)

(
∂un(x, s)
∂s

− αu
∂2ũn(x, s)
∂x2

)
ds, (17)

vn+1(x, t) = vn(x, t)+
∫ t

0
λ2(s)

(
∂vn(x, s)
∂s

− αv
∂2ṽn(x, s)
∂x2

)
ds, (18)

where ũn and ṽn are restricted variation and λ1 and λ2 are the general Lagrange multiplier, which can be optimally be
identified by the variational theory. The stationary conditions are given by:

λ′1(s) = 0,
(
1+ λ1(s)

)
s=t = 0, (19)

λ′2(s) = 0,
(
1+ λ2(s)

)
s=t = 0, (20)

so that

λ1(s) = −1, (21)
λ2(s) = −1. (22)

Hence, we obtain the following iteration formulas:

un+1(x, t) = un(x, t)−
∫ t

0

(
∂un(x, s)
∂s

− αu
∂2un(x, s)
∂x2

)
ds, (23)

vn+1(x, t) = vn(x, t)−
∫ t

0

(
∂vn(x, s)
∂s

− αv
∂2vn(x, s)
∂x2

)
ds. (24)

As initial approximations u0(x, t) and v0(x, t) the functions describing the initial conditions may be selected. Because the
compatibility conditions are fulfilled, the initial approximationsmeet conditions (12) and (13) given at the interface between
the two domains.

Method 2. Now, correction functionals in x-direction will be applied for Eqs. (6) and (7):

un+1(x, t) = un(x, t)+
∫ 0

x
λ1(s)

(
∂2un(s, t)
∂s2

−
1
αu

∂ ũn(s, t)
∂t

)
ds, (25)

vn+1(x, t) = vn(x, t)+
∫ x

0
λ2(s)

(
∂2vn(s, t)
∂s2

−
1
αv

∂ṽn(s, t)
∂t

)
ds, (26)

where ũn and ṽn are restricted variation and λ1 and λ2 ares the general Lagrange multiplier. From Eqs. (25) and (26), the
general Lagrange multipliers can be identified as follows:

λ1(s) = x− s, (27)
λ2(s) = s− x. (28)
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Substituting values of the general Lagrange multipliers into Eqs. (25) and (26) we obtain the following iteration formulas:

un+1(x, t) = un(x, t)+
∫ 0

x
(x− s)

(
∂2un(s, t)
∂s2

−
1
αu

∂un(s, t)
∂t

)
ds, (29)

vn+1(x, t) = vn(x, t)+
∫ x

0
(s− x)

(
∂2vn(s, t)
∂s2

−
1
αv

∂vn(s, t)
∂t

)
ds. (30)

Next, the initial approximations may be selected in the following form:

u0(x, t) = Au + Bu x, (31)
v0(x, t) = Av + Bv x, (32)

where Au, Av , Bu and Bv are parameters independent from variable x. By employing conditions (12) and (13) we establish
that parameters Au, Av , Bu and Bv must comply with the following relations:

Av = Au, (33)

Bv =
ku
kv
Bu. (34)

5. Examples

To illustrate the solution procedure and show the capability of the method, some examples are considered. All results
are calculated by using the symbolic calculus software Mathematica.

Example 1. At first, we consider an example in which: x1 = −1, x2 = 1, αu = 1
4 , αv = 1, ku = 1, kv = 2 and

ϕu(x) =
1
6
e−2x−2

(
3 e4x+3 + e3 + 2

)
, (35)

ϕv(x) =
1
6
e−x−2

(
3 e2x+3 + e3 + 2

)
, (36)

ψu(t) =
1
6
et−1

(
e4 + 2 e+ 3

)
, (37)

ψv(t) =
1
6
et−3

(
3 e5 + e3 + 2

)
. (38)

Starting with initial approximations in the form:

u0(x, t) =
1
6
e−2x−2

(
3 e4x+3 + e3 + 2

)
, (39)

v0(x, t) =
1
6
e−x−2

(
3 e2x+3 + e3 + 2

)
, (40)

and using iterative formulas (23) and (24) (the first method) we can obtain the following results:

u1(x, t) =
1
6
e−2x−2

(
3 e4x+3 + e3 + 2

) (
1+ t

)
,

u2(x, t) =
1
6
e−2x−2

(
3 e4x+3 + e3 + 2

) (
1+ t +

t2

2!

)
,

u3(x, t) =
1
6
e−2x−2

(
3 e4x+3 + e3 + 2

) (
1+ t +

t2

2!
+
t3

3!

)
,

u4(x, t) =
1
6
e−2x−2

(
3 e4x+3 + e3 + 2

) (
1+ t +

t2

2!
+
t3

3!
+
t4

4!

)
,

u5(x, t) =
1
6
e−2x−2

(
3 e4x+3 + e3 + 2

) (
1+ t +

t2

2!
+
t3

3!
+
t4

4!
+
t5

5!

)
,

...
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and

v1(x, t) =
1
6
e−x−2

(
3 ex+3 + e3 + 2

) (
1+ t

)
,

v2(x, t) =
1
6
e−x−2

(
3 ex+3 + e3 + 2

) (
1+ t +

t2

2!

)
,

v3(x, t) =
1
6
e−x−2

(
3 ex+3 + e3 + 2

) (
1+ t +

t2

2!
+
t3

3!

)
,

v4(x, t) =
1
6
e−x−2

(
3 ex+3 + e3 + 2

) (
1+ t +

t2

2!
+
t3

3!
+
t4

4!

)
,

v5(x, t) =
1
6
e−x−2

(
3 ex+3 + e3 + 2

) (
1+ t +

t2

2!
+
t3

3!
+
t4

4!
+
t5

5!

)
,

....

Therefore,

u(x, t) = lim
n→∞

un(x, t) =
1
6
et−2x−2

(
3 e4x+3 + e3 + 2

)
, (41)

v(x, t) = lim
n→∞

vn(x, t) =
1
6
et−2x−2

(
3 e2x+3 + e3 + 2

)
, (42)

which are the exact solutions of the considered example.

Example 2. Now, we consider an example in which: x1 = −1, x2 = 1, αu = 1
4 , αv = 1, ku = 1, kv = 2 and

ϕu(x) = e2x, (43)

ϕv(x) = ex, (44)

ψu(t) = et−2, (45)

ψv(t) = et+1. (46)

Starting with initial approximations in the form:

u0(x, t) = e2x, (47)

v0(x, t) = ex, (48)

and using iterative formulas (23) and (24) (the first method) we can obtain the following results:

u1(x, t) = e2x
(
1+ t

)
,

u2(x, t) = e2x
(
1+ t +

t2

2!

)
,

u3(x, t) = e2x
(
1+ t +

t2

2!
+
t3

3!

)
,

u4(x, t) = e2x
(
1+ t +

t2

2!
+
t3

3!
+
t4

4!

)
,

u5(x, t) = e2x
(
1+ t +

t2

2!
+
t3

3!
+
t4

4!
+
t5

5!

)
,

...

and

v1(x, t) = ex
(
1+ t

)
,

v2(x, t) = ex
(
1+ t +

t2

2!

)
,

v3(x, t) = ex
(
1+ t +

t2

2!
+
t3

3!

)
,
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v4(x, t) = ex
(
1+ t +

t2

2!
+
t3

3!
+
t4

4!

)
,

v5(x, t) = ex
(
1+ t +

t2

2!
+
t3

3!
+
t4

4!
+
t5

5!

)
,

....

Therefore,

u(x, t) = lim
n→∞

un(x, t) = e2x+t , (49)

v(x, t) = lim
n→∞

vn(x, t) = ex+t , (50)

which are the exact solutions.

Example 3. In the next example we assume: x1 = −1, x2 = 1, αu = 2, αv = 3, ku = 5, kv = 7 and

ϕu(x) = 5 cosh
(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)
, (51)

ϕv(x) = 5 cosh
(
x
√
3

)
+ 5
√
3 sinh

(
x
√
3

)
, (52)

ψu(t) =
5+ 7

√
2

2
et−

√
2
2 +

5− 7
√
2

2
et+

√
2
2 , (53)

ψv(t) =
5
2
(1−
√
3) et−

√
3
3 +

5
2
(1+
√
3) et+

√
3
3 . (54)

Starting with initial approximations in the form:

u0(x, t) = 5 cosh
(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)
, (55)

v0(x, t) = 5 cosh
(
x
√
3

)
+ 5
√
3 sinh

(
x
√
3

)
, (56)

and using iterative formulas (23) and (24) (the first method) we can obtain the following results:

u1(x, t) =
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)) (
1+ t

)
,

u2(x, t) =
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)) (
1+ t +

t2

2!

)
,

u3(x, t) =
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)) (
1+ t +

t2

2!
+
t3

3!

)
,

u4(x, t) =
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)) (
1+ t +

t2

2!
+
t3

3!
+
t4

4!

)
,

u5(x, t) =
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)) (
1+ t +

t2

2!
+
t3

3!
+
t4

4!
+
t5

5!

)
,

...

and

v1(x, t) =
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)) (
1+ t

)
,

v2(x, t) =
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)) (
1+ t +

t2

2!

)
,

v3(x, t) =
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)) (
1+ t +

t2

2!
+
t3

3!

)
,
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v4(x, t) =
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)) (
1+ t +

t2

2!
+
t3

3!
+
t4

4!

)
,

v5(x, t) =
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

)) (
1+ t +

t2

2!
+
t3

3!
+
t4

4!
+
t5

5!

)
,

...

which leads to the exact solution

u(x, t) = lim
n→∞

un(x, t) = et
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

))
, (57)

v(x, t) = lim
n→∞

vn(x, t) = et
(
5 cosh

(
x
√
2

)
+ 7
√
2 sinh

(
x
√
2

))
. (58)

Example 4. In this example the assumed data are the same as in Example 1, but unlike previously, the second method
described by iterative formulas (29) and (30) is used to arrive at a solution.
By considering conditions (33) and (34), the following initial approximations may be assumed:

u0(x, t) =
1
3
et−2

(
1+ 2e3 + 2 x (e3 − 1)

)
, (59)

v0(x, t) =
1
3
et−2

(
1+ 2e3 + x (e3 − 1)

)
. (60)

Using iterative formulas (29) and (30) (the second method) we can obtain the following results:

u1(x, t) = et−2
(
1
3
−
2 x
3
+
2 x2

3
−
4 x3

9

)
+ et+1

(
2
3
+
2 x
3
+
4 x2

3
+
4 x3

9

)
,

u2(x, t) = et−2
(
1
3
−
2 x
3
+
2 x2

3
−
4 x3

9
+
2 x4

9
−
4 x5

45

)
+ et+1

(
2
3
+
2 x
3
+
4 x2

3
+
4 x3

9
+
4 x4

9
+
4 x5

45

)
,

u3(x, t) = et−2
(
1
3
−
2 x
3
+
2 x2

3
−
4 x3

9
+
2 x4

9
−
4 x5

45
+
4 x6

135
−
8 x7

945

)
+ et+1

(
2
3
+
2 x
3
+
4 x2

3
+
4 x3

9
+
4 x4

9
+
4 x5

45
+
8 x6

135
+
8 x7

945

)
,

...

and

v1(x, t) = et−2
(
1
3
−
x
3
+
x2

6
−
x3

18

)
+ et+1

(
2
3
+
x
3
+
x2

3
+
x3

18

)
,

v2(x, t) = et−2
(
1
3
−
x
3
+
x2

6
−
x3

18
+
x4

72
−
x5

360

)
+ et+1

(
2
3
+
x
3
+
x2

3
+
x3

18
+
x4

36
+
x5

360

)
,

v3(x, t) = et−2
(
1
3
−
x
3
+
x2

6
−
x3

18
+
x4

72
−
x5

360
+
x6

2160
−

x7

15120

)
+ et+1

(
2
3
+
x
3
+
x2

3
+
x3

18
+
x4

36
+
x5

360
+
x6

1080
+

x7

15120

)
,

....

The first sequence (component if et−2) contained in approximations un(x, t) is convergent to following function:

f1u(x) =
1
3

(
cosh(2 x)− sinh(2 x)

)
,

whereas the second sequence (component if et+1) is convergent to the following function:

f2u(x) =
1
3

(
2 cosh(2 x)+ sinh(2 x)

)
.
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The sequences in approximations vn(x, t) are correspondingly convergent to functions:

f1v(x) =
1
3

(
cosh(x)− sinh(x)

)
,

f2v(x) =
1
3

(
2 cosh(x)− sinh(x)

)
.

Hence, the following exact solutions are derived after some transformations:

u(x, t) =
1
6
et−2x−2

(
3 e4x+3 + e3 + 2

)
, (61)

v(x, t) =
1
6
et−2x−2

(
3 e2x+3 + e3 + 2

)
. (62)

Example 5. In this example, the secondmethod is used again, but this time, with the following input data: x1 = −1, x2 = 1,
αu = 1, αv = 1, ku = 4, kv = 3 and

ϕu(x) = −
3
7
e−x, (63)

ϕv(x) =
1
14

(
ex − 7 e−x

)
, (64)

ψu(t) =
3
7
et+1, (65)

ψv(t) =
1
14

(
e2 − 7

)
et+1. (66)

By considering conditions (33) and (34), the following form of initial approximations may be assumed:

u0(x, t) =
3
7
(x− 1) et , (67)

v0(x, t) =
1
7
(4 x− 3) et . (68)

Using iterative formulas (29) and (30) (the second method), we can obtain the following results:

u1(x, t) = et
(
−
3
7
+
3 x
7
−
3 x2

14
+
x3

14

)
,

u2(x, t) = et
(
−
3
7
+
3 x
7
−
3 x2

14
+
x3

14
−
x4

56
+
x5

280

)
,

u3(x, t) = et
(
−
3
7
+
3 x
7
−
3 x2

14
+
x3

14
−
x4

56
+
x5

280
−
x6

1680
+

x7

11760

)
,

...

and

v1(x, t) = et
(
−
3
7
+
4 x
7
−
3 x2

14
+
2 x3

21

)
,

v2(x, t) = et
(
−
3
7
+
4 x
7
−
3 x2

14
+
2 x3

21
−
x4

56
+
x5

210

)
,

v3(x, t) = et
(
−
3
7
+
4 x
7
−
3 x2

14
+
2 x3

21
−
x4

56
+
x5

210
−
x6

1680
+
x7

8820

)
,

....

The sequence contained in approximations un(x, t) is convergent to function:

fu(x) =
3
7

(
sinh(x)− cosh(x)

)
,
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whereas the sequence contained in approximations vn(x, t) is convergent to function:

fv(x) =
1
7

(
4 sinh(x)− 3 cosh(x)

)
.

Finally, after few simple transformations, the exact solution is derived:

u(x, t) = −
3
7
et−x, (69)

v(x, t) =
1
14

(
et+x − 7 et−x

)
. (70)

6. Conclusions

In this paper, the solutions of the heat equation with the boundary condition of the fourth kind are presented. The
proposed solutions are based on the variational iteration method. The calculations show that this method is effective for
solving the problems under consideration.
Unlike classic methods based on the finite difference or final elements principles, the proposed method does not require

the digitization of the domain. The variational iteration method renders a sequence of successive approximations, which is
compatible with the exact solution, if such a solution exists.
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