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ABSTRACT The flagellar filament, the bacterial organelle of motility, is the smallest rotary propeller known. It consists of 1),
a basal body (part of which is the proton driven rotary motor), 2), a hook (universal joint—allowing for off-axial transmission of
rotary motion), and 3), a filament (propeller—a long, rigid, supercoiled helical assembly allowing for the conversion of rotary
motion into linear thrust). Helically perturbed (so-called ‘‘complex’’) filaments have a coarse surface composed of deep grooves
and ridges following the three-start helical lines. These surface structures, reminiscent of a turbine or Archimedean screw,
originate from symmetry reduction along the six-start helical lines due to dimerization of the flagellin monomers from which the
filament self assembles. Using high-resolution electron microscopy and helical image reconstruction methods, we calculated
three-dimensional density maps of the complex filament of Rhizobium lupini H13-3 and determined its surface pattern and
boundaries. The helical symmetry of the filament allows viewing it as a stack of identical slices spaced axially and rotated by
constant increments. Here we use the closed outlines of these slices to explore, in two dimensions, the hydrodynamic effect of
the turbine-like boundaries of the flagellar filament. In particular, we try to determine if, and under what conditions, transitions
from laminar to turbulent flow (or perturbations of the laminar flow) may occur on or near the surface of the bacterial propeller.
To address these questions, we apply the boundary element method in a manner allowing the handling of convoluted
boundaries. We tested the method on several simple, well-characterized cylindrical structures before applying it to real, highly
convoluted biological surfaces and to simplified mechanical analogs. Our results indicate that under extreme structural and
functional conditions, and at low Reynolds numbers, a deviation from laminar flow might occur on the flagellar surface. These
transitions, and the conditions enabling them, may affect flagellar polymorphism and the formation and dispersion of flagellar
bundles—factors important in the chemotactic response.

INTRODUCTION

Bacteria are the only cells known to swim using rotating

propellers. The flagellum, the bacterial organelle of motility,

consists of 1), a rotary motor largely embedded in the cell

envelope and driven by a proton or sodium ion gradient

generated across the cell membrane, 2), a relatively flexible,

curved, short hook functioning as a universal coupler (or

universal joint) enabling the transmission of rotary motion in

directions off axial to the motor’s shaft, and 3), a rigid,

superhelical filament that functions as a propeller, i.e., con-

verting the rotary motion of the motor into linear thrust

(DePamphilis and Adler, 1971a,b; Berg and Anderson, 1973;

Silverman and Simon, 1974). The hook and the filament are

self-assembling helical polymers constructed frommonomers

of the protein flagellin (Asakura, 1970).

The ability of the monomers to coexist in two stable and

switchable conformations and the initial helical symmetry of

the straight polymer allow for filament polymorphism (for

reviews, see Asakura (1970), Calladine (1983), and Kamiya

et al. (1982); for a more recent view, see Coombs et al.

(2002)), i.e., to supercoil reversibly into a variety of helical

forms with changing amplitude, wavelength, and helical

sense. These dynamic helical parameters may affect the

overall hydrodynamic properties of the propeller, allowing

it to adapt to changing environmental conditions (e.g., vis-

cosity, flow, and mechanical stress). The hydrodynamics of

rotating propellers in the form of smooth, rigid, corkscrew-

like tubes or lines is well established (see, e.g., Berg (1993),

Bray (2001), Brennen and Winet (1977), Holwill and Burge

(1963), Lighthill (1976), and Schreiner (1971)). One would

assume that, given the small dimensions (;1–2 3 10�4 cm)

and, consequently, low Reynolds numbers of bacteria (10�4–

10�5), the flow associated with them is completely laminar

(Purcell, 1977, 1997).

Although being the largest and most diverse phylogenetic

group, eubacteria have only two types of flagellar filaments

(propellers): ‘‘plain’’ and ‘‘complex’’ (see Schmitt et al.,

1974a,b). The ‘‘complex’’ filaments are structurally per-

turbed forms of the ‘‘plain’’ ones. The perturbation is a result

of symmetry reduction due to flagellin dimerization. The

reduction of symmetry occurs along the right-handed six-

start helical lines (resulting in a helical perturbation

(Trachtenberg et al., 1986)) or along the left-handed five-

start helical lines (resulting in a nonhelical perturbation

(Trachtenberg et al., 1998)). (The six-, five-, and three-start

families mentioned can be viewed, at least at low resolution,

as six-, five-, and three-stranded helical bundles or densities).
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Only two bacterial species are known to have helically

perturbed filaments—Rhizobium and Pseudomonas (Schmitt

et al., 1974a,b). We have been studying the three-dimen-

sional molecular structure (Trachtenberg et al., 1986, 1987,

1998; Cohen-Krausz and Trachtenberg, 1998; 2003a,b) and

the physical properties (Trachtenberg and Hammel, 1992) of

the complex bacterial propellers using high-resolution elec-

tron microscopy and image reconstruction techniques. These

studies resulted in detailed density maps whose surface pat-

terns are of particular interest here.

Helically perturbed (‘‘complex’’) filaments have a rather

coarse surface with deep grooves and ridges along the right-

handed three-start helical lines, reminiscent of an Archime-

dean screw or turbine. The concomitant propelling function

of these organelles and their unique hydrodynamic shape is

intriguing. Here, we attempt to study the hydrodynamics of

bacterial motility at the level of molecular dimensions.

Rather than treating the helical propeller in its entirety as

a smooth, featureless tube (or helical line), we explore

whether the turbine-like surface pattern of the ‘‘complex’’

filament might make a potential contribution to the

propeller’s hydrodynamics. We do so on a local scale, i.e.,

not on the entire superhelical filament, but on a straight

segment or, rather, on a cross section of it (see below). In

viscous, gel-like environments (e.g., Trachtenberg, 1986)

bacteria can bore their way through the medium. An overall

screw-like shape is helpful (see Gilad et al. (2002) and

references therein). In fluid environments of low viscosity,

a modified surface pattern would also help and the deviation

from laminar flow might be of importance. The deviation

from pure laminar flow, to any extent and even only under

extreme conditions, may initiate a disturbance leading to

a flagellar polymorphic switch and effect flagellar bundle

formation and dispersion—a key element in controlling the

direction of swimming and the chemotactic response (Larsen

et al., 1974). It is sufficient to initiate a local perturbation in

flow at the tip of the filament. The perturbation, or, rather, its

structural effect, may, then, propagate along the filament or

the flagellar bundle (see Macnab and Ornston, 1977, for

examples of polymorphic transitions propagating from and

to the cell proximal end of the filament).

Here we use the boundary element method (BEM), which

we extend and refine to handle complex surfaces (see below)

beyond what has been previously applied to studies on

smooth tubular flagella. In particular we explore whether the

unique, turbine-like, coarse and convoluted surface structure

of the ‘‘complex’’ bacterial propeller affects its microhy-

drodynamics, i.e., may cause deviation from pure laminar

flow, and to what extent.

Due to the helical symmetry of the propeller, all its cross-

sectional slices are identical (at a resolution lower than the

rise-per-subunit), but rotated and shifted axially by a constant

amount. At this stage, we reduce the analysis to two

dimensions and apply it to the actual closed contour of sin-

gle cross-sectional density maps as generated by electron

microscopy and helical image reconstruction. For compar-

ison, we apply the method to a smooth cylindrical cross

section and to a reduced and simplified mechanical model

(Archimedean screw) with helical and dimensional param-

eters of a flagellar filament. Such a comparison might sin-

gle out the unique contribution of the different structural

components and, in particular, the complex flagellar surface

pattern.

The BEM enables to approximate solutions of differen-

tial equations, which can be represented as integrals along

the boundary (Brebbia, 1984; Powel and Wrobel, 1995;

Pozrikidis, 2002). The advantage of such a representation is

that it may be readily applied to problems with complex

geometries. In our case, we attempt to model the flow using

the Stokes equation. Here, the solution may be written as

integrals along the boundary and, therefore, the BEM may

be easily implemented. Moreover, the BEM has a definite

advantage over other methods (e.g., finite difference or

spectral methods) in cases where the domain has a convo-

luted boundary. A similar representation holds for time-

dependent problems. However, the BEM becomes limited if

we want to include nonlinear effects (i.e., model the flow by

the Navier-Stokes equations). For these applications, the use

of finite-difference, finite-volume, or finite-element methods,

where nonlinear terms are handled more efficiently, is

preferred (see Ben-Artzi et al. (2001) for a detailed dis-

cussion and applications).

Although this analysis is concerned with and applied to an

extreme case of potential biological importance, it might

have broad implications on nanotechnological problems.

THEORY AND DATA ANALYSIS

The boundary element method is a numerical technique for

solving differential problems by invoking their integral

representation, which involves integrals along the boundary

of the computational domain. The BEM is an efficient way to

handle problems with complicated boundaries, especially in

the case where the solution of the differential problem can be

constructed only from boundary integrals. We include here

some of the essential formulas and refer to Brebbia (1984),

Powel and Wrobel (1995), and Pozrikidis (2002) for more

details.

The boundary element method

Since the fluid is highly viscous and can be regarded as being

in its steady state, the Stokes equation

hDu� =p ¼ 0

div u ¼ 0
inV (1)

serves as an adequate model. Here u is the fluid velocity, p is
the pressure field, div u ¼ 0 is the incompressibility

condition, and h is the viscosity coefficient. It is known
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that Eq. 1 has solutions subject to appropriate boundary

conditions, typically the no-slip condition u ¼ 0 onV. In the

BEM, one expresses the solution in V by its values on the

boundary. A crucial ingredient of the method is the

evaluation of certain combinations of the derivatives of the

unknowns at the boundary. To do this, we first prove the

following:

Lemma 1

If u and v are incompressible, namely div u ¼ div v ¼ 0, then

+
i

ð
V

ðuiDvi � viDuiÞdV¼+
i

ð
@V

ui+
k

@vi
@xk

1
@vk
@xi

� �
nk dS

�+
i

ð
@V

vi+
k

@ui
@xk

1
@uk

@xi

� �
nk dS; (2)

where

u¼
u1

u2

u3

0
@

1
A; v¼

v1
v2
v3

0
@

1
A;

@V is the boundary ofV, dS is a surface measure on @V, and

n¼
n1

n2

n3

0
@

1
A

is the unit normal to the boundary. (See Proof in Appendix 1.)

Now, let us choose three pairs of solutions ðvð1Þ; qð1ÞÞ,
ðvð2Þ; qð2ÞÞ, ðvð3Þ; qð3ÞÞ that solve, respectively,

hDv
ð jÞðx;jÞ�=q

ð jÞ ¼�d
ð jÞðx� jÞ

divv
ð jÞ ¼ 0

; j¼ 1; 2; 3;

�
(3)

where

d
ð jÞðxÞ ¼

d
ð jÞ
1 ðxÞ

d
ð jÞ
2 ðxÞ

d
ð jÞ
3 ðxÞ

2
64

3
75

and d
ð jÞ
k ðx � jÞ ¼ djkdðx � jÞ.

Here

djk ¼ 1 j¼ k
0 j 6¼ k

�

is the Kronecker delta and dðx � jÞ is the delta function.
The three pairs ðvð jÞ; qð jÞÞ; 1# j# 3 constitute the

fundamental solution.

The construction of such solutions is provided below.

They serve for the representation of any solution in terms of

its boundary values as follows:

Lemma 2

Let u, p be a solution of Eq. 1. Then for any interior point

j 2 V

�ujðjÞ ¼+
i

ð
@V

ui+
k

Tkiðvð jÞ;qð jÞÞnk dS

�+
i

ð
@V

v
ð jÞ
i +

k

Tkiðu;pÞnk dS; j¼ 1; 2; 3; (4)

where Tkiðu; pÞ ¼ �dkip1hð@ui=@xk 1 @uk=@xiÞ. (See

proof in Appendix 2.)

We point out that this Lemma represents the essential

feature of the BEM. Note that the boundary elements

wiðu; pÞ ¼ +
k
Tkiðu; pÞnk depend on the derivatives of the

unknown solution on @V. In Lemma 4 below, we show how

they are evaluated in terms of the given boundary values of u.

Fundamental solutions

The next step is to construct the fundamental solution, i.e.,

the three pairs of solutions to Eq. 3. We will actually do that

in two dimensions. The three-dimensional case may be

treated similarly. We denote here x ¼ ðx1; x2Þ. We choose,

without loss of generality, j ¼ 1 in Eq. 3 and thus seek

solutions of

hDvð1Þ �=qð1Þ ¼� dðx� jÞ
0

� �
; j¼ ðj1;j2Þ: (5a)

divv
ð1Þ ¼ 0: (5b)

Taking the divergence of both sides of Eq. 5a, using Eq.

5b, we have

Dq
ð1Þ ¼ @d

@x1
ðx� jÞ:

Let qð1Þðx; jÞ ¼ ð@=@x1Þqðx; jÞ, where we require

Dqðx; jÞ ¼ dðx � jÞ.
As is well-known (Roach, 1982), qðx; jÞ ¼

ð1=2pÞlnjx � jj so that qð1Þðx; jÞ ¼ ð1=2pÞðx1 � j1Þ=
ðjx � jj2Þ:
By Eq. 5a, for

v
ð1Þ ¼ v

ð1Þ
1

v
ð1Þ
2

� �
;

we have:

hDv
ð1Þ
1 �@q

ð1Þ

@x1
¼�dðx� jÞ (6a)

hDvð1Þ2 �@qð1Þ

@x2
¼ 0: (6b)

Since div vð1Þ ¼ 0, there exists a function c such that

v
ð1Þ
2 ¼ @c=@x1; v

ð1Þ
1 ¼ �@c=@x2:

From Eq. 6b, it follows that hDð@c=@x1Þ ¼
ð@2=@x1@x2Þq, which is a condition that must be satisfied

by c.
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Looking for c of the form c ¼ @~cc=@x2, we get

hD~cc ¼ q ¼ ð1=2pÞlnjx � jj.
Assuming that ~cc is radially symmetric about j, ~cc ¼ ~ccðrÞ,

r ¼ jx � jj, we find that

h
1

r

@

@r
ðr~ccrÞ ¼

1

2p
lnr:

By integration, ~ccr ¼ ðr=4phÞðln r � 1=2Þ. Integrating

once again yields ~cc ¼ ðr2=8phÞðln r � 1Þ.
Now,

c¼ @~cc

@x2
¼ 1

8ph
½2lnr�1�ðx2� j2Þ;

so that

v
ð1Þ
1 ¼� @c

@x2
¼� 1

4ph
lnr1

1

4ph
� ðx1 � j1Þ2

r
2 � 1

8ph
;

v
ð1Þ
2 ¼ @c

@x1
¼ 1

4ph

ðx1 � j1Þðx2� j2Þ
r2

:

We may ignore the constant �1=8ph and obtain

v
ð1Þ
1 ¼ 1

4ph
�lnr1

ðx1 � j1Þ2
r
2

� �
:

To summarize, we have for j ¼ 1, 2,

q
ð jÞ ¼ 1

2p

xj� jj

jx� jj2 ; x¼ ðx1;x2Þ: (7)

v
ð jÞ
i ¼ 1

4ph
�dij lnjx� jj1 ðxi� jiÞðxj � jjÞ

jx� jj2
 !

; i¼ 1; 2: (8)

As a corollary we can now compute the terms Tkiðvð jÞ; qðjÞÞ
in Eq. 4.

Lemma 3

For the fundamental solution, the terms Tkiðvð jÞ; qð jÞÞ may be

written in the following form:

Tkiðvð jÞ;qð jÞÞ[ �dkiq
ð jÞ1h

@v
ð jÞ
i

@xk
1

@v
ð jÞ
k

@xi

 !

¼� 1

p

ðxi � jiÞðxj� jjÞðxk� jkÞ
r
4 :

(See proof in Appendix 3.)

Following the discussion after Lemma 2, we finally

express wiðu; pÞ ¼ +
k
Tkiðu; pÞnk in terms of the given

boundary values.

Lemma 4

Suppose @V is smooth, then for j 2 @V

�1

2
ujðjÞ ¼+

i

ð
@V

+
k

uiTkiðvð jÞ;qð jÞÞnk dS

�+
i

ð
@V

+
k

v
ð jÞ
i Tkiðu;pÞnk dS

¼+
i

ð
@V

uiwiðvð jÞ;qð jÞÞdS�+
i

ð
@V

v
ð jÞ
i wiðu;pÞdS: (9)

(See proof in Appendix 4.)

TEST PROBLEMS

Here we assess the BEM theory, applied to simple, well-

defined objects for which solutions are available:

Test problem 1: Stokes equations for flow over
a cylinder with radius R 5 10 and v 5 1

The boundary conditions are given on

u¼ u1

u2

� �
¼ x

�y

� �
; ðx;yÞ 2 @V:

In this case the exact solution is known. It is given by

u1 ¼ x, u2 ¼ �y, p ¼ const ¼ 0 in @V [V. By Eq. 9

1

2
ujðjÞ1+

i

ð
@V

uiwiðvð jÞ;qð jÞÞdS

¼+
i

ð
@V

vð jÞi wiðu;pÞdS; j¼ 1;2; (10)

where wiðu; pÞ ¼ +2

k¼1
Tkiðu; pÞnk.

It can be shown that w1 ¼ 2x=R, w2 ¼ 2y=R; therefore,
w1=u1 ¼ 2=R ¼ 0:2, w2=u2 ¼ 0:2 whenever u1 6¼ 0;
u2 6¼ 0.

After discretizing @V by a 24-node polygon, and choosing

linear approximations to the functions involved, Eq. 10

reduces to a set of algebraic linear equations.

Table 1 A presents the solutions w1; w2 (columns 4 and

5) at the nodal points ðx; yÞ (column 2) on the first quarter

of the boundary @V. Columns 6 and 7 of Table 1 contain

the numerical ratios w1=u1 and w2=u2. These values

should be compared with the exact values, both of which

are 0.2.

Table 1 B presents the errors in the computed tractions for

various points on the boundary and for various number of

grid points. The computed rate of the convergence is defined

by r logðeh1=eh2Þ=logðh1=h2Þ, where eh1 ; eh2 are the errors in
the traction for two different grids with meshes h1; h2. Since
the boundary is approximated by a polygon, first order

convergence is expected.
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Test problem 2: uniform flow over a
circular cylinder

This is equivalent to a cylinder moving with velocity

U ¼ ð�1; 0Þ relative to the fluid that surrounds it, whereas

u ! O as jxj ! ‘.
The total force, Fi, acting on the cylinder is:

Fi ¼
R
@V +2

j¼1
Tijnj dS; i ¼ 1; 2; where F1, F2 are forces in

the x, y directions, respectively. We denote D ¼ F1 the total

drag and L ¼ F2 the total lift on the cylinder.

The drag for low to moderate Reynolds numbers (high to

moderate viscosity) is known to behave as Cd � ð1=2ÞrU22a,
where U is the norm of the velocity field at infinity, a is the

cylinder’s radius, r is the density, Cd ¼ 8p=R lnð7:4=RÞ,
and R ¼ 2Ua=h is the Reynolds number (Lamb, 1932;

Batchelor, 1967).

In Table 2 A, we show the computed drag (column 2) and

lift (column 5) with 150 points on the cylinder. In column 2

we represent the expected drag as calculated by Batchelor

(1967, page 246), i.e., D ¼ 8prU2a=R lnð7:4=RÞ, where

R ¼ 2Ua=h.
The ratio between our computed drag and the expected

value by Batchelor (1967) is presented in column 4 and is

shown be around 1. The computed lift is shown in column 5,

and is shown to be around zero—its expected value.

Table 2 B presents the errors in the computed tractions for

various values of viscosity and for various number of grid

points. The computed rate of the convergence is defined by

r ¼ logðeh1=eh2Þ=logðh1=h2Þ, where eh1 ; eh2 are the errors in
the traction for two different grids with meshes h1; h2: The
computed rate of convergence ranges from 1.05 to 17.5,

where first order accuracy is expected.

THE BACTERIAL FLAGELLAR FILAMENT

Native and reduced filament structures

The bacterial flagellar filament is a helical, self-assembling

polymer of flagellin monomers. The helical symmetry is

used to calculate the three-dimensional reconstruction of the

filament by Fourier-Bessel methods (DeRosier and Moore,

1970). At a resolution lower than one rise-per-subunit (;9.7

Å for complex filaments; see Trachtenberg et al. (1986,

1987)), the reconstruction can be viewed as a stack of

identical slices, raised and rotated relative to each other by

constant increments (9.7 Å; 1328). Thus, the problems posed

here can be treated, stepwise, as two-dimensional (per cross

section) and three-dimensional (per stack). For a full account

on the three-dimensional structures of complex flagellar

filaments, see Trachtenberg et al. (1986, 1987, 1998) and

Cohen-Krausz and Trachtenberg (1998, 2003a,b).

Here, we confine our analysis to the two-dimensional case.

We compare single cross sections of the actual three-

TABLE 1B Computed w1,w 2 with 48 points on the boundary,

at the same selected points (x i,y i) as in Table 1 A, computed

e1,e2, to be compared with the exact values, r1, r2 are the

rate of convergence when compared to the coarser grid

Node w1 w2 e1 e2 r1 r2 q1 q2

1 2.000149 �0.000091 1.49(�4) 0.91(�4) 5.63 0.53 8.40 0.5

2 1.931862 �0.518158 1.04(�5) 5.20(�4) 9.25 0.94

3 1.731796 �1.001094 2.55(�4) 1.09(�3) 3.84 1.07 1.76 5.03

4 1.413760 �1.416040 4.54(�4) 1.83(�3) 0.65 0.62

5 0.999445 �1.734516 5.55(�4) 2.47(�3) 0.96 0.85 4.33 1.49

6 0.517242 �1.934964 3.96(�4) 3.11(�3) 1.55 1.20

q1; q2 are the rate of convergence when a grid of 24 points is compared to

a grid with 12 points. For example, the computed error e1 ¼ 1:49ð�4Þ in
the fourth column means that e1 ¼ 1:493 10�4. The rates of convergence

are r1; r2, when compared to the coarser grid. The computed rate of the

convergence is defined by r ¼ logðeh1=eh2 Þ=logðh1=h2Þ, where eh1 ; eh2 are

the errors in the traction for two different grids with meshes h1; h2. Here
h1; h2 are the meshes that correspond to 24 and 48 points, respectively.

q1; q2 are the rate of convergence when a grid of 24 points is compared to

a grid with 12 points.

TABLE 2A Computed drag for various values of viscosity,

compared with Batchelor’s; their computed ratio appears in

the third column

Viscosity Computed drag Drag Ratio Computed lift

50 134.3 120.3 1.11 0.018

75 184.8 176.5 1.10 0.011

80 185.8 176.7 1.05 0.011

90 187.6 194.7 0.96 0.011

100 233.0 215.5 1.09 0.007

The last column contains the computed lift, which should be compared with

exact lift—zero.

TABLE 2B Computed drag error and rates of convergence for

various number of grid points on the boundary (n 5 75, 100, 125,

and 150) for different values of viscosity 5 80, 90, and 100

Viscosity

Batchelor’s

drag

Error_

75 Rate

Error_

100 Rate

Error_

125 Rate

Error_

150

80 176.7 63.6 1.81 37.7 4.57 13.6 2.70 8.3

90 194.7 81.0 1.35 54.8 2.66 30.3 7.96 7.1

100 215.5 101.4 1.05 74.9 1.81 50.0 5.75 17.5

The convergence rate is defined by r ¼ logðen1=en2 Þ=logðn2=n1Þ, where
en1 ; en2 are the errors in the drag for two different number of mesh points,

n1; n2, on the boundary.

TABLE 1A Computed w1,w 2, where w i(u,p)5
P2

k51 T ki(u,p)nk,

at selected points (x i,y i) on ›X in the first quarter, computed

w1=u1,w 2=u2, to be compared with the exact values 0.2 and 0.2,

respectively

Node x y w1 w2 w1/u1 w2/u2

1 10 0 2.0152 0 .2015 NA

2 9.6593 2.5882 1.9457 �.5183 .2014 .2003

3 8.6603 5 1.7425 �1.0023 .2012 .2005

4 7.0711 7.0711 1.4206 �1.4198 .2009 .2008

5 2.5882 8.6603 1.0030 �1.7413 .2006 .2011

6 2.5882 9.6593 .5186 �1.9444 .2004 .2013

The number of grid points on the boundary is 24.
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dimensional density maps of Rhizobium to a circular cross

section of a cylinder of similar diameter (see ‘‘test problems’’)

and to a cross section through an idealized Archimedean

screw of the same helical parameters (see below).

The surface topology of the three-dimensional density

map is defined by the outermost contour line. We lowered

the contour level so that a closed, continuous line defines the

outer surface of the cross section and represents ;100% of

the protein’s volume. To reduce the structure to an idealized

mechanical analog and simplify it, the internal densities (see

Cohen-Krausz and Trachtenberg (1998); Trachtenberg et al.

(1987)) were reduced to a solid cylinder. The external three-

start, right-handed helical windings were taken as external,

continuous, smooth blades protruding from the central shaft

with helical dimensions of pitch, off-axial tilt, and radial

depth similar to those of Rhizobium. In three dimensions,

such a reduced form becomes a three-start Archimedean

screw. In cross section it is a symmetrical structure of three

blades protruding from a central, solid shaft. The leading and

trailing edges of the blades were shaped so as to optimize

hydrodynamic performance.

A surface view of a three-dimensional reconstruction of R.

lupini is shown in Fig. 1 A. Its mechanical analog is shown

next to it in Fig. 1 B. The respective cross sections are shown
in Fig. 2, A and B. The corresponding cylinder analyzed

would be the solid body from which the Archimedean screw

was carved out.

A schematic model depicting a bacterium with one

supercoiled flagellum aligned axially is shown in Fig. 3,

left. In this case, a point on the filament would follow a circle

equal to the diameter of the filament’s supercoil. The curved

hook may position the filament off axially (Fig. 3, right) such
that it precesses. In this case, a point on the filament would

follow a conical cross section. The tip of the filament follows

a larger circle and, when rotated by the motor at a given

frequency, moves at a higher velocity relative to cell

proximal points.

Extreme conditions of flagellar geometry
and rotation

An average complex flagellar filament of, e.g., Rhizobium
lupini has a pitch, P¼ 2.283 10�4 cm, a diameter, D¼ 63
10�5 cm, and a tubular diameter, d¼ 23 10�6 cm. A typical

cell has 2–3 filaments with ;2–3 helical repeats each and

a typical swimming velocity of 5.243 10�3 cm/s (Trachten-

berg et al., 1987).

The length, L, of an average helical repeat is: L ¼
[P21(pD)2]1/2 ¼ 2.96 3 10�4 cm. The supercoiled filament

is at its maximal diameter, ¼ 9.42 3 10�5 cm, when it is

tightly coiled, i.e., when P ¼ d. Note that Dmax increases as

the filament, L, is tilted by an angle a (D ¼ 2L sin a; see
Fig. 3, right). At a ¼ 308, it may increase about fivefold.

Such off-axial filament tilts were observed in dark-field

images (S. Trachtenberg, unpublished) and in images of

fluorescently labeled filaments (Scharf, 2002; Turner et al.,

2000) of R. lupini.
Bacterial propellers have been reported to rotate at

frequencies, f, up to ;1700 Hz (;1 3 105 rpm (McCarter,

2001)). Thus, the velocity, v, of a point on the propeller’s

surface would be: v ¼ pDf. Under these conditions (L ;
10�3 cm, a ¼ 308) the flow over a point on the surface at the

filament’s end would be ;5.92 cm/s. For comparison, the

velocity, v, of a point on an axial filament of typical

FIGURE 2 Cross sections through the three-dimensional

reconstruction of Rhizobium lupini (A) and its mechanical

analog (B). The density map of R. lupini is contoured so

that it represents 100% of the protein volume and has

a continuous outer contour line (the only useful line in our

analysis). The corresponding cylindrical cross section is

the full circle containing B.

FIGURE 1 (A) Surface view of a segment from a reconstruction of the

flagellar filament of Rhizobium lupini. The three-dimensional density map is

displayed at a relatively high contour level (see Fig. 2 A) to demonstrate

interior details and connectivities. (B) The simplified, mechanical analog in

the form of a right-handed Archimedean screw. The diameter of the

structures is ;200 Å.
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parameters (D ¼ 6 3 10�5 cm, f ¼ 100 Hz) would be ;1.9

3 10�2 cm/s.

The fluid environment in which the propeller rotates is

defined by its density, r, and viscosity, h. Here we use, for
simplicity, the values for water at 378C, which are very

similar to those of the dilute broth in which bacteria are

cultured: r ¼ 0.99299 gr./cm3 and h ¼ 6.9153 10�3 gr./cm

3 s. The Reynolds number, Re, under these conditions

would be: Re ¼ (Drv)/h.
Under these conditions, the Reynolds number would be

;0.051. At a tilt of ;308, Re might reach ;0.26. For

comparison, Re of a typical filament (see above) is ;1.6 3
10�4, indicating the extremity of the case we analyze.

Laminar and turbulent flow over flagellar surfaces

We now apply the BEM method, as described and tested in

previous sections, to cross sections of idealized and actual

flagellar and circular boundaries. The most crucial factor

(ignoring, for the moment, the convolution and complexity

of the boundary) determining the transition from laminar to

turbulent flow is the Reynolds number (composed of D, v, r,
and h). In this regard, the parameters we can vary in our

model (of fixed viscosity, density, and temperature) are the

propeller’s frequency of rotation, off-axial inclination, and

supercoiled diameter. These parameters determine, actually,

the relative velocity of the incompressible fluid over the

boundary. Given the realistic combinations of dimensions,

velocities, and viscosities involved, the corresponding

Reynolds numbers are in the order of ;0.05–0.25.

What we show below are a series of cross-sectional, scaled

maps for each of the three structures studied (cylinder,

Archimedean screw, and complex flagellar filament). Each

panel corresponds to a given Reynolds number. The fluid

flows over each boundary from left to right and is indicated

with vectors whose direction and magnitude indicate local

direction and velocity of flow. The boundary is sampled at

24 boundary points for a cylinder, 144 points for the

Archimedean screw, and 410 points for the flagellar filament.

The arrows are layered concentrically at radial intervals of 10

units, i.e., 23 10�6 cm, indicating the behavior of the flow at

various distances from the boundary. For clarity, normali-

zation of vectors was carried out for the Archimedean screw

and flagellar filament.

The flow over a straight cylinder

The first case we test is a circular cross section through

a straight, smooth cylinder equal in diameter to a flagellar

filament. The flow regimes at Reynolds numbers, Re ¼ 0.2,

1, 10, and 100 are shown. The flow is laminar under all

conditions (Fig. 4). See also ‘‘test problems’’.

The flow over an idealized Archimedean screw

The flow over an idealized Archimedean screw, having the

helical parameters of R. lupine, is shown in Fig. 5. A

complete laminar flow is seen at Re ¼ 0.01.Very slight

disturbances in flow can be detected at Re ¼ 0.05. The

disturbances become noticeable at Re ¼ 0.3–0.5.

The flow over the filament of R. lupini

The filament of R. lupini, having the same dimensions and

proportions as the idealized screw and smooth cylinder,

is presented in the same manner for Reynolds numbers Re ¼
0.01, 0.015, 0.2, 1, and 10 (Fig. 6). At Re ¼ 0.01, the flow is

completely laminar as suggested from all vectors being

parallel in all layers presented. Deviation from laminar flow

is first detected at Re ¼ 0.015. A reversal in flow can be

detected in part of the structure, which is changed again at

Re ¼ 0.02 with an increase in turbulence from there on.

It is apparent from the data shown that the deviation from

laminar flow differs between the structures analyzed. Within

the tested range, the flow over a smooth cylinder remains

laminar throughout. Fluctuations around the smooth Archi-

FIGURE 3 Flagellar shape and orientation. (Left) The superhelical

filament can coincide with the cell’s axis and rotate about it. (Right) The

curved hook can reorient the filament off-axially in which case it precesses

about a conical surface. The relative circular path of the flagellar tip is

indicated for both cases.Note thatD¼ 2L sina andmay increase dramatically

with the filament’s off-axial tilt. The cell body is depicted as a gray ellipse.
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medean screw are detected at higher Reynolds numbers. The

interesting finding is that in the flagellar structure, the

initiation of turbulence occurs within the Reynolds number

regime applicable to realistic, although extreme, flagellar

environments and motility conditions. Since the only dif-

ference between the structures tested is the degree of surface

complexity, we can only assume that this is the crucial fac-

tor in initiating the earlier transitions from laminar to turbu-

lent flow. The easiest way to increase the Reynolds number,

the crucial factor in determining the nature of flow over the

surface, is to control the extent of the precession of the fila-

ment and, therefore, the flow velocity at its tip. The initiation

of a disturbance at the filament’s tip will probably propagate

toward the cell proximal end as is often seen in high-inten-

sity dark-field videomicroscopy.

Microhydrodynamic studies on flagellar propulsion

The hydrodynamics of swimming cells has been studied

analytically and quantitatively by applying various methods

(for review, see e.g., Kim and Karilla (1991). Slender body

theory (SBT) (Brennen and Winet, 1977; Hancock, 1953)

was applied to cilia and flagella. Myerscough and Swan

(1989) and Ramia (1991) applied this method to bacteria

with a spiral cell body. Resistive force theory (RFT) has

been applied to spermatozoa, propagating planar sinusoidal

waves (e.g., Gray and Hancock, 1955) as well as to bacteria

with rigid rotating propellers (Chwang and Wu, 1971;

Schreiner, 1971). The boundary element method has been

applied to the study of microbial swimming (Phan-Thien

et al., 1987), the results being in good agreement with both

the SBT method (Higdon, 1979) and experimental observa-

FIGURE 4 Flow patterns over a smooth cylinder (presented as a circular cross section) at Reynolds numbers Re¼ 0.2, 1, 10, and 100. The flow is from left to

right. The vectors indicate scaled speed and direction of flow. Three vector layers, spaced 10 units apart, i.e., around 23 10�6 cm, are shown. The x, y axes are
in nondimensional units. Note that the flow is laminar throughout the entire range.
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FIGURE 5 Flow patterns over an idealized, three-start, right-handed Archimedean screw having helical parameters identical to those of the complex filament

of Rhizobium lupini. The flow is sampled at Reynolds numbers Re ¼ 0.01, 0.05, 0.3, 0.5, 1, and 10. The flow is completely laminar until Re ¼ 0.05. Slight

turbulence is detected at Re ¼ 0.3 near the leading edges of the blades; it becomes noticeable beyond Re ¼ 0.5. The vectors are normalized for clarity.
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FIGURE 6 Flow over the flagellar surface of Rhizobium lupini sampled at Reynolds numbers Re ¼ 0.01, 0.015, 0.2, 1, and 10. The flow is completely

laminar at Re ¼ 0.01. First signs of turbulence are detected at Re ¼ 0.015. The turbulence occurs at the leading edges of the outer windings as in the

Archimedean screw. The vectors are normalized for clarity.
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tions. The BEM proved best when dealing with bulky, non-

slender bacteria, such as Spirillum (Phan-Thien et al., 1987),

whereas the SBT method failed to agree with experimental

observations (Myerscough and Swan, 1989). Ramia et al.

(1993) refined and generalized the BEM to the study of bac-

terial motility.

Here we report on a higher-resolution application of the

boundary element method. We analyze the of actual three-

dimensional reconstructions of bacterial flagellar filaments

(propellers) rather than treating them as smooth, coiled cy-

linders or their center lines, as has been done in previous

applications of the method. We confined our study to the

structural and molecular surface (boundary) details and re-

stricted the analysis to the two-dimensional cross sections

taking advantage of the helical symmetry of the propeller.

We assumed, in our analysis, that the structures are

rigid—this is reasonable on a local scale. We also ignored

in our maps the potential hydration shell on the protein

surface; the thickness of an adsorbed molecular water layer

would be only ;3 Å.

We find that the convoluted surface of the ‘‘complex’’

flagellar filament is, under identical conditions, more

effective in causing a transition from laminar to turbulent

flow than smooth cylinders or analog Archimedean screws of

similar dimensions.

The initiation of turbulence at extreme conditions of

flagellar function, orientation, and structure suggests its po-

tential involvement in bundle formation and dispersion,

switching of helical sense, and polymorphic transitions.

Complex filaments are believed to be an adaptation to

motility in highly viscous environments. The thick and dense

mucilage layers that these bacteria have to swim across to

infect cells are highly structured. Under these circumstances,

a rigid filament with a screw-like surface might be helpful.

The outer windings seem to provide both the extra rigidity

needed for motility in structured media and better propulsion

in low viscosity media.

Although this high-resolution, surface-pattern-dependent

flow analysis was applied to an extremely small structure at

an extreme functional state (and simulated translationally

rather than rotationally), the sensitivity of the method points

toward its potential in analyzing larger structures in the

nanotechnology scale domain.

APPENDIX 1: PROOF OF LEMMA 1

Proof

Denote by I the left-hand side of Eq. 2. We clearly have, since divðuÞ ¼ 0,
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Applying the divergence theorem to the first and second integrals, we get,

The two last integrals vanish; the third by symmetry and the fourth since

div u ¼ div v ¼ 0.

APPENDIX 2: PROOF OF LEMMA 2

Proof

Define
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By Eqs. 1 and 3, J ¼ �ujðjÞ, and by the incompressibility condition
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On the other hand, by Lemma 1 and the divergence theorem,
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which is precisely the right-hand side of Eq. 4.

APPENDIX 3: PROOF OF LEMMA 3

Proof

Applying Eqs. 7 and 8 to the definition of Tki, we have

APPENDIX 4: PROOF OF LEMMA 4

Proof

When j 2 @V the functions Tkiðvð jÞ; qð jÞÞ, given in Lemma 3, seem to be

singular when x approaches j in @V. However, since nk are the components

of the normal, it is clear that ððx � jÞ=jx � jjÞ � n ¼ Oðjx � jjÞ, x 2 @V

(since ðx � jÞ=jx � jj approaches the tangent at j). In particular, multiplying

by r ¼ jx � jj we get+
k
ðxk � jkÞnk ¼ Oðr2Þ, and since jðxi � jiÞðxj � jjÞj

=r2 # 1 we see that +
k
Tkiðvð jÞ; qð jÞÞnk is continuous even as x ! j and the

integrals on the right-hand side of Eq. 9 are all well defined.

Next, take an interior point j 2 V and apply Lemma 2 with the constant

function u ¼ ðd1j; d2jÞ and p[ 0. Take instead ofV a (solid) ball Ke centered

at j. We get, by Eq. 4,

�dij ¼
ð
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+
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Tkiðvð jÞ;qð jÞÞnk dS:

By symmetry, if we take half of the solid sphere, we obtain �(1/2)dij for the

integral.

Now, we repeat the proof of Lemma 2 (in Appendix 2), but replaceV by

VnKe (i.e., we cut out fromV the part of the ballKe, centered at j, which is in

V). Then J ¼ 0 (since j is outside of VnKe) and hence, repeating the

calculations of the right-hand side in Appendix 2,
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On the part @Ke the normal is directed inside. Inspecting Eq. 8 for v, we

see that the contribution of this part in the second integral is O(e). As j

approaches a point on the boundary, the part @Ke approaches a half-sphere,

and since uðxÞ on @Ke can be replaced by uðjÞ (with O(e) error) we get for
j 2 @V, using the above derivation

1
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where the normal n is directed inward,
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By letting e�!0 we obtain Lemma 4.
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