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Directional multiscale transforms such as the shearlet transform have emerged in recent
years for their ability to capture the geometrical information associated with the singularity
sets of bivariate functions and distributions. One of the most striking features of the
continuous shearlet transform is that it provides a very simple and precise geometrical
characterization for the boundary curves of general planar regions. However, no specific
results were known so far in higher dimensions, since the arguments used in dimension
n = 2 do not directly carry over to the higher dimensional setting. In this paper, we extend
this framework for the analysis of singularities to the 3-dimensional setting, and show that
the 3-dimensional continuous shearlet transform precisely characterizes the boundary set
of solid regions in R

3 by identifying both its location and local orientation.
© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Several methods have been recently introduced in the literature to overcome the limitations of the traditional wavelet
transform in dealing with multidimensional data. In fact, while the continuous wavelet transform is able to identify the
location of singularities of functions and distributions through its asymptotic behavior at fine scales [9,13], it lacks the ability
to capture additional information about the geometry of the singularity set. This is a major disadvantage in imaging and
other multidimensional applications such as those concerned with the identification of edges and surfaces of discontinuity.

The reason for this limitation is the intrinsic isotropic nature of the continuous wavelet transform. In contrast, the
curvelet and shearlet transforms [1,11], two of the most successful generalizations of the wavelet approach recently intro-
duced, offer a directional multiscale framework with the ability to precisely analyze functions and distributions not only in
terms of locations and scales, but also according to their directional information. Indeed, the curvelet and shearlet trans-
forms are compatible with the notion of wavefront set from microlocal analysis [14], which plays a major role in the study
of propagation of singularities from PDEs [10]. For a distribution f , the wavefront set defines the location/direction pairs
(x, θ) where local windowed versions of f are non-smooth in the θ direction and it was shown to correspond exactly
to the points where the continuous curvelet and shearlet transforms have slow decay asymptotically at fine scales [1,11].
This point of view was further refined in [7,6] by providing a very precise characterization of the set of discontinuities of
bivariate functions using the continuous shearlet transform S Hψ . This is defined as the mapping
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S Hψ : f → S Hψ f (a, s, t) = 〈 f ,ψa,s,t〉,
taking a function f ∈ L2(R2) into the elements S Hψ f (a, s, t) depending on the scale variable a > 0, the orientation variable
s ∈ R and the locations t ∈ R

2. Here the analyzing functions ψast are well-localized waveforms associated with the variables
a, s and t (the exact definition will be given below) and are especially designed to deal with the geometry of bivariate
functions and distributions. In fact, let B = χS , where S ⊂ R

2 and its boundary ∂ S is a piecewise smooth curve. It was
shown in [6] (extending previous results in [7,11]) that both the location and the orientation of the boundary curve ∂ S can
be precisely identified from the asymptotic decay of S Hψ B(a, s, p), as a → 0. Specifically:

• If p /∈ ∂ S , then |S Hψ B(a, s, p)| decays rapidly, as a → 0, for each s ∈ R. By rapid decay, we mean that, given any N ∈ N,
there is a CN > 0 such that |S Hψ B(a, s, p)| � CaN , as a → 0.

• If p ∈ ∂ S and ∂ S is smooth near p, then |S Hψ B(a, s, p)| decays rapidly, as a → 0, for each s ∈ R unless s = s0 is the

normal orientation to ∂ S at p. In this last case, |S Hψ B(a, s0, p)| ∼ a
3
4 , as a → 0.

• If p is a corner point of ∂ S and s = s0, s = s1 are the normal orientations to ∂ S at p, then |S Hψ B(a, s0, p)|,
|S Hψ B(a, s1, p)| ∼ a

3
4 , as a → 0. For all other orientations, the asymptotic decay of |S Hψ B(a, s, p)| is faster (even

if not necessarily “rapid”).

These results provide the theoretical justification and the groundwork for improved numerical algorithms for edge analysis
and detection, such as those introduced in [17], which further demonstrate the benefits of a directional multiscale transform
with respect to the traditional wavelet approach. We refer to [3–5,12] for additional information about the discrete version
of the shearlet transform and its numerical implementations.

The goal of this paper is to extend the results reported above to the 3-dimensional setting. This is motivated both by a
mathematical desire for generalization and by the increasing need, in applications such as medical and seismic imaging, to
identify and analyze surfaces of discontinuities and other distributed singularities in 3-dimensional data.

Indeed, the mathematical framework of the bivariate shearlet transform extends naturally to n dimensions since this
transform arises from a square integrable representation of the shearlet group, and this group has a natural n-variate gener-
alization, as shown in [2,11]. Unfortunately, while it is straightforward to define a 3-dimensional shearlet transform S Hψ ,
many of the techniques introduced in the previous work to study the asymptotic decay of S Hψ at fine scales, in corre-
spondence of singularities, do not carry over from the 2D to the 3D setting. This is due to the additional complexity of
dealing with singularity sets which are defined on surfaces rather than along curves. Hence, to deal with the 3D problem,
several new ideas and techniques have been developed in this paper to obtain appropriate estimates for the 3-dimensional
continuous shearlet transform. Using these methods, we are able to show that, similarly to the 2-dimensional counterpart, if
B = χC , where C ⊂ R

3 is a convex region with nonvanishing Gaussian curvature, then the 3-dimensional continuous shear-
let transform of B has rapid asymptotic decay, at fine scales, for all locations except for the boundary surface ∂C , when the
orientation variable corresponds to the normal direction to the surface.

The paper is organized as follows. The definition of the shearlet transform, including the properties which are needed
for the arguments used in the proofs of this paper, are given in Section 2. The main theorem and the other results which
are needed for its proof are given in Section 3.

2. The shearlet transform

We recall the basic properties of the continuous shearlet transform, which was originally introduced in [11]. Consider the
subspace of L2(R3) given by L2(C (1))∨ = { f ∈ L2(R3): supp f̂ ⊂ C (1)}, where C (1) is the “horizontal cone” in the frequency
plane:

C (1) =
{
(ξ1, ξ2, ξ3) ∈ R

3: |ξ1| � 2,

∣∣∣∣ξ2

ξ1

∣∣∣∣ � 1 and

∣∣∣∣ξ3

ξ1

∣∣∣∣ � 1

}
.

The following proposition, which is a simple generalization of a result from [11], provides sufficient conditions on the
function ψ for obtaining a reproducing system of continuous shearlets on L2(C (1))∨ .

Proposition 2.1. Consider the shearlet group Λ(1) = {(Mas1s2 , p): 0 � a � 1
4 ,− 3

2 � s1 � 3
2 ,− 3

2 � s2 � 3
2 , p ∈ R

2}, where

Mas1s2 =
⎛
⎝ a −a1/2s1 −a1/2s2

0 a1/2 0

0 0 a1/2

⎞
⎠ .

For ξ = (ξ1, ξ2, ξ3) ∈ R
3 , ξ1 
= 0, let ψ(1) be defined by

ψ̂(1)(ξ) = ψ̂(1)(ξ1, ξ2, ξ3) = ψ̂1(ξ1)ψ̂2

(
ξ2

ξ1

)
, ψ̂2

(
ξ3

ξ1

)
,

where:
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Fig. 1. Support of the shearlet ψ̂
(1)
as1 s2 p , in the frequency domain, for a = 1/4, s1 = s2 = 0 (darker [blue] region) and for a = 1/16, s1 = 0.7, s2 = 0.5 (lighter

[magenta] region). (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

(i) ψ1 ∈ L2(R) satisfies the Calderòn condition

∞∫
0

∣∣ψ̂1(aξ)
∣∣2 da

a
= 1 for a.e. ξ ∈ R, (1)

and supp ψ̂1 ⊂ [−2,− 1
2 ] ∪ [ 1

2 ,2];
(ii) ‖ψ2‖L2 = 1 and supp ψ̂2 ⊂ [−

√
2

4 ,
√

2
4 ].

Let ψ
(1)
as1s2 p(x) = |det Mas1s2 |−

1
2 ψ(1)(M−1

as1s2
(x − p)). Then, for all f ∈ L2(C (1))∨ ,

f (x) =
∫
R3

3
2∫

− 3
2

3
2∫

− 3
2

1
4∫

0

〈
f ,ψ(1)

as1s2 p
〉
ψ

(1)
as1s2 p(x)

da

a4
ds1 ds2 dp,

with convergence in the L2 sense.

If the assumptions of Proposition 2.1 are satisfied, we say that the functions

Ψ (1) =
{
ψ

(1)
as1s2 p: 0 � a � 1

4
, −3

2
� s1 � 3

2
, −3

2
� s2 � 3

2
, p ∈ R

2
}

(2)

are continuous shearlets for L2(C (1))∨ and that the corresponding mapping from f ∈ L2(C (1))∨ into S H(1) f (a, s1, s2, p) =
〈 f ,ψ(1)

as1s2 p〉 is the continuous shearlet transform on L2(C (1))∨ with respect to Λ(1) . The index label (1) used in the notation
of the shearlet system Ψ (1) (and the corresponding shearlet transform) indicates that the system in the expression (2)
has frequency support in the cone C (1) ⊂ R

3; other shearlet systems will be defined below with support in two other
complementary cone regions.

Observe that, in the frequency domain, a shearlet ψ
(1)
as1s2 p ∈ Ψ (1) has the form

ψ̂
(1)
as1s2 p(ξ1, ξ2, ξ3) = aψ̂1(aξ1)ψ̂2

(
a− 1

2

(
ξ2

ξ1
− s1

))
ψ̂2

(
a− 1

2

(
ξ3

ξ1
− s2

))
e−2π iξ p.

Thus, the functions ψ̂
(1)
as1s2 p have supports in the sets{

(ξ1, ξ2, ξ3): ξ1 ∈
[
−2

a
,− 1

2a

]
∪

[
1

2a
,

2

a

]
,

∣∣∣∣ξ2

ξ1
− s1

∣∣∣∣ �
√

2

4
a

1
2 ,

∣∣∣∣ξ3

ξ1
− s2

∣∣∣∣ �
√

2

4
a

1
2

}
.

That is, the frequency support of each function ψ̂
(1)
as1s2 p is a pair of hyper-trapezoids, symmetric with respect to the origin,

with orientation determined by the slope parameters s1, s2. The support region becomes increasingly elongated as a → 0.
Some examples of these support regions are illustrated in Fig. 1.

There are a variety of examples of functions ψ1 and ψ2 satisfying the assumptions of Proposition 2.1. In particular, one
can find a number of such examples with the additional property that ψ̂1, ψ̂2 ∈ C∞

0 [4,11]. For the kind of applications

which will be described in this paper, some further additional properties are needed. In particular, we will require that ψ̂1
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is a smooth odd function, and that ψ̂2 is an even smooth function which is decreasing on [0,
√

2
4 ). Hence, to summarize, in

the following we will assume that

ψ̂1: C∞
0 , supp ψ̂1 ⊂

[
−2,−1

2

]
∪

[
1

2
,2

]
, odd and it satisfies (1); (3)

ψ̂2: C∞
0 , supp ψ̂2 ⊂

[
−

√
2

4
,

√
2

4

]
, even, decreasing in

[
0,

√
2

4

)
, ‖ψ2‖ = 1. (4)

Notice that the shearlet system Ψ (1) , given by (2), generates a reproducing system for only a proper subspace of L2(R3).
To extend this construction and the corresponding continuous shearlet transform to deal with the whole space L2(R3), we
can introduce similar systems defined on the complementary cone regions. Namely, let

C (2) =
{
(ξ1, ξ2, ξ3) ∈ R

3: |ξ2| � 2,

∣∣∣∣ξ2

ξ1

∣∣∣∣ > 1,

∣∣∣∣ ξ3

ξ1

∣∣∣∣ � 1

}

and

C (3) =
{
(ξ1, ξ2, ξ3) ∈ R

3: |ξ2| � 2,

∣∣∣∣ξ2

ξ1

∣∣∣∣ � 1,

∣∣∣∣ ξ3

ξ1

∣∣∣∣ > 1

}
,

so that
⋃3

i=1 C (i) = R
3, and, for i = 2,3, define the shearlet groups

Λ(i) =
{
(Mas1s2 , p)(i): 0 � a � 1

4
, −3

2
� s1 � 3

2
, −3

2
� s2 � 3

2
, p ∈ R

2
}
,

where

M(2)
as1s2 =

⎛
⎝ a1/2 0 0

−a1/2s1 a −a1/2s2

0 0 a1/2

⎞
⎠ , M(3)

as1s2 =
⎛
⎝ a1/2 0 0

0 a1/2 0

−a1/2s1 −a1/2s2 a

⎞
⎠ .

Next, let

ψ̂(2)(ξ) = ψ̂(2)(ξ1, ξ2, ξ3) = ψ̂1(ξ2)ψ̂2

(
ξ1

ξ2

)
ψ2

(
ξ3

ξ2

)
,

ψ̂(3)(ξ) = ψ̂(2)(ξ1, ξ2, ξ3) = ψ̂1(ξ3)ψ̂2

(
ξ1

ξ3

)
ψ2

(
ξ2

ξ3

)
,

where ψ̂1, ψ̂2 satisfy the same assumptions as in Proposition 2.1, and denote

ψ
(i)
as1s2 p = ∣∣det M(i)

as1s2

∣∣− 1
2 ψ(i)((M(i)

as1s2

)−1
(x − p)

)
, for i = 2,3.

Then an argument similar to the one from Proposition 2.1 shows that, for i = 2,3, the functions

Ψ (i) =
{
ψ

(i)
as122 p: 0 � a � 1

4
, −3

2
� s1 � 3

2
, −3

2
� s1 � 3

2
, p ∈ R

2
}

are continuous shearlets for L2(C (i))∨ . Also, for i = 2,3, the transforms S H(i)
ψ f (a, s1, s2, p) = 〈 f ,ψ(i)

as1s2 p〉 are the continuous

shearlet transform on L2(C (i))∨ with respect to Λ(i) . Finally, by introducing an appropriate smooth, bandlimited window
function W , we can represent the functions with frequency support on the set [−2,2]3 as

f =
∫
R3

〈 f , W p〉W p dp,

where W p(x) = W (x− p). As a result, we can represent any function f ∈ L2(R3) with respect to the full system of shearlets,
which consists of the systems

⋃3
i=1 Ψ (i) together with the coarse-scale isotropic functions W p . The decomposition we have

described generalizes a similar decomposition originally introduced in [11], for dimension n = 2.
Notice that, for the purposes of this paper, it is only the behavior of the fine-scale shearlets that matters. Indeed, the

continuous shearlet transforms S H(i)
ψ , i = 1,2,3, will be applied at fine scales (a → 0) to resolve and precisely describe the

boundaries of certain solid regions. Since the behavior of these transforms is essentially the same on each cone domain C (i) ,
in the following sections, without of loss of generality, we will only consider the continuous shearlet transform S H(1)

ψ . For
simplicity of notation, we will drop the upperscript (1) in the following.
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3. Analysis of singularities

As described above, the continuous shearlet transform is especially designed to deal with directional information at
various scales and was proved particularly effective to characterize the boundary curves of planar regions [7,6].

To illustrate the properties of the continuous shearlet transform in dimension n = 3, let us start by considering the most
basic model of surface discontinuity, which is given by the 3-dimensional Heaviside function H(x1, x2, x3) = χx1>0(x1, x2, x3).
We have the following simple characterization.

• If p = (p1, p2, p3), with p1 
= 0, then

lim
a→0+ a−N S Hψ H(a, s1, s2, p) = 0, for all N > 0.

• If s̄1 
= 0 or s̄2 
= 0, then

lim
a→0+ a−N S Hψ H(a, s̄1, s̄2, p) = 0, for all N > 0.

• If p1 = s1 = s2 = 0, then

lim
a→0+ a−1 S Hψ H(a,0,0, p) 
= 0.

That is, the continuous shearlet transform of H has rapid asymptotic decay as a → 0, unless p is on the plane x1 = 0 and
s1, s2 correspond to the normal direction to the plane.

To justify this result, notice that ∂
∂x1

H = δ1, where δ1 is the delta distribution defined by

〈δ1, φ〉 =
∫ ∫

φ(0, x2, x3)dx1 dx2,

where φ is a function in the Schwartz class S(R3) (notice that here we use the notation of the inner product 〈,〉 to denote
the functional on S ). Hence

Ĥ(ξ1, ξ2, ξ3) = (2π iξ1)
−1δ̂1(ξ1, ξ2, ξ3),

where δ̂1 is the distribution obeying

〈δ̂1, φ̂〉 =
∫ ∫

φ̂(ξ1,0,0)dξ1.

The continuous shearlet transform of H can now be expressed as

S Hψ H(a, s1, s2, p) = 〈H,ψas1s2 p〉
=

∫
R3

(2π iξ1)
−1δ̂1(ξ)ψ̂as1s2 p(ξ)dξ

=
∫
R

(2π iξ1)
−1ψ̂as1s2 p(ξ1,0,0)dξ1

=
∫
R

a

2π iξ1
ψ̂1(aξ1)ψ̂2

(
a− 1

2 s1
)
ψ̂2

(
a− 1

2 s2
)
e2π iξ1 p1 dξ1

= a

2π i
ψ̂2

(
a− 1

2 s1
)
ψ̂2

(
a− 1

2 s2
)∫

R

ψ̂1(u)e2π iu
p1
a

du

u
,

where p1 is the first component of p ∈ R
3.

Notice that, by the properties of ψ1, the function ψ̃1(v) = ∫
R

ψ̂1(u)e2π iuv du
u decays rapidly, asymptotically, as v → ∞.

Hence, if p1 
= 0, it follows that ψ̃1(
p1
a ) decays rapidly, asymptotically, as a → 0, and, as a result, S Hψ H(a, s1, s2, p) also has

rapid decay as a → 0. Similarly, by the support conditions of ψ̂2, if s1 
= 0 or s2 
= 0, it follows that the function ψ̂2(a− 1
2 s1)

or the function ψ̂2(a− 1
2 s2) approaches 0 as a → 0. Finally, if p1 = s1 = s2 = 0, then

a−1 S Hψ H
(
a,0,0, (0, p2, p3)

) = 1

2π i

(
ψ̂2(0)

)2
∫

ψ̂1(u)
du

u

= 0.
R
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In fact, using an appropriate change of variables, the result shown above can be extended to deal with discontinuities along
planes with arbitrary orientations. Namely, if the plane of discontinuity has normal vector (sin φ cos θ, sin φ sin θ, cosφ), then
the continuous shearlet transform has rapid decay, except for p on the plane and (s1, s2) satisfying:

s1 = tan θ, s2 = cot φ sec θ. (5)

Notice that the ideas of the arguments used above are similar to the 2-dimensional approach used in [1,11].
If the discontinuity occurs along a more general surface, the analysis becomes more involved and cannot be obtained by

a direct extension of the 2-dimensional arguments used in any of the references mentioned above. However, using a novel
approach, in the following we show that, for functions with discontinuities along smooth surfaces, the behavior of their
continuous shearlet transform is consistent with the situation of the Heaviside function. Specifically, consider the functions
B = χΩ , where Ω is a subset of R

3 whose boundary is smooth and has nonzero Gaussian curvature. The following theorem
shows that the continuous shearlet transform of B , denoted by S Hψ B(a, s1, s2, p), has rapid asymptotic decay as a → 0
for all locations p ∈ R

3, except when p is on the boundary of Ω and the orientation variables s1, s2 correspond to normal
direction with respect to the boundary surface. The statement given by this theorem is the analogue the corresponding 2D
result found in [7].

Theorem 3.1. Let Ω be a region in R
3 and denote its boundary by ∂Ω . Assume that ∂Ω is a C∞ smooth surface and has positive

Gaussian curvature at every point. Set B = χΩ .

(i) If p /∈ ∂Ω then

lim
a→0+ a−N S Hψ B(a, s1, s2, p) = 0, for all N > 0.

(ii) If p ∈ ∂Ω and (s1, s2) does not correspond to the normal direction of ∂Ω at p then

lim
a→0+ a−N S Hψ B(a, s1, s2, p) = 0, for all N > 0.

(iii) If p ∈ ∂Ω and (s1, s2) = (s̄1, s̄2) corresponds to the normal direction of ∂Ω at p, then

lim
a→0+ a−1 S Hψ B(a, s̄1, s̄2, p) 
= 0.

It is useful to observe that, if the normal orientation is expressed as the vector n(θ,φ) = (sin φ cos θ, sin φ sin θ, cosφ) in
spherical coordinates, then the values of (s1, s2) for the normal orientation are given by (5). Also notice that, if the boundary
curve ∂Ω is not C∞-regular but only C M -regular, for some M ∈ N , then Theorem 3.1 is still true with the difference that
statements (i) and (ii) will not hold for all N > 0, but only for all 0 < N < N∗(M), where N∗(M) is a number dependent
on M .

The proof of Theorem 3.1 will be given in Section 3.2, after some preparation which will be described below.

3.1. Useful lemmata

Let Ω ⊂ R
3 be a solid region whose boundary surface S = ∂Ω is smooth with nonvanishing Gaussian curvature and let

B = χΩ . By the divergence theorem, we can write the Fourier transform of B as

B̂(ξ) = χ̂S(ξ) = − 1

2π i|ξ |2
∫
S

e−2π iξxξ · �n(x)dσ(x), (6)

where �n is the normal vector to S at x (we follow here the approach used in [8]).
By representing ξ ∈ R

3 using spherical coordinates as ξ = ρΘ , where ρ ∈ R
+ and Θ = Θ(φ, θ) = (sin φ cos θ, sinφ sin θ,

cosφ) with 0 � φ � π and 0 � θ � 2π , expression (6) can be written as

B̂(ρ,φ, θ) = − 1

2π iρ

∫
S

e−2π iρΘ·xΘ · �n(x)dσ(x). (7)

For an ε > 0, let Bε(p) be the ball with radius ε and center p and let Pε(p) = S ∩ Bε(p). Hence we can break up the
integral (7) as

B̂(ρ,φ, θ) = T1(ρ,φ, θ) + T2(ρ,φ, θ),

where
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T1(ρ,φ, θ) = − 1

2π iρ

∫
Pε (p)

e−2π iρΘ·xΘ · �n(x)dσ(x),

T2(ρ,φ, θ) = − 1

2π iρ

∫
S\Pε (p)

e−2π iρΘ·xΘ · �n(x)dσ(x).

It follows that

S Hψ B(a, s1, s2, p) = 〈B,ψas1s2 p〉 = I1(a, s1, s2, p) + I2(a, s1, s2, p),

where, for i = 1,2, we have

Ii(a, s1, s2, p) =
2π∫
0

π∫
0

∞∫
0

Ti(ρ,φ, θ)ψ̂as1s2 p(ρ,φ, θ)ρ2 sinφ dρ dφ dθ. (8)

The following lemma shows that the asymptotic decay of the shearlet transform S Hψ B(a, s1, s2, p), as a → 0, is only
determined by the values of the boundary surface S which are “close” to the location variable p.

Lemma 3.1. For any positive integer N, there is a constant CN > 0 such that∣∣I2(a, s1, s2, p)
∣∣ � CNaN ,

asymptotically as a → 0, uniformly for all s1, s2 ∈ [− 3
2 , 3

2 ].

Proof. By direct computation, we have that:

−2π i I2(a, s1, s2, p) =
∫

S\Pε (p)

2π∫
0

π∫
0

∞∫
0

e−2π iρΘ·xΘ · �n(x)ψ̂as1s2 p(ρ,φ, θ)ρ sinφ dρ dφ dθ dσ(x)

= a

∫
S\Pε (p)

2π∫
0

π∫
0

∞∫
0

ψ̂1(aρ sinφ cos θ)ψ̂2
(
a− 1

2 (tan θ − s1)
)

× ψ̂2
(
a− 1

2 (cot φ sec θ − s2)
)
e2π iρΘ(φ,θ)·(p−x)Θ · �n(x)ρ sinφ dρ dφ dθ dσ(x)

= 1

a

∫
S\Pε (p)

2π∫
0

π∫
0

∞∫
0

ψ̂1(ρ sinφ cos θ)ψ̂2
(
a− 1

2 (tan θ − s1)
)

× ψ̂2
(
a− 1

2 (cot φ sec θ − s2)
)
e2π i ρ

a Θ(φ,θ)·(p−x)Θ · �n(x)ρ sinφ dρ dφ dθ dσ(x).

Notice that, by assumption, there exists an ε > 0 such that ‖p − x‖ � ε for all x ∈ S \ Pε(p). Let s1 = tan θ0 with |θ0| < π
2

and s2 = cotφ0 sec θ0 with |φ0 − π
2 | < π

2 . By the support condition of ψ̂2, it follows that, for a near 0, θ is away from π
2 or

3π
2 and φ is away from 0 or π . Let J be the set of these θ and φ. It is easy to see that {Θ(φ, θ),Θφ(φ, θ),Θθ (φ, θ)} form

a basis for R
3 for (φ, θ) ∈ J . It follows that there is a constant C p > 0 such that |Θ(φ, θ) · (p − x)| + |Θφ(φ, θ) · (p − x)| +

|Θθ(φ, θ) · (p − x)| � C p , where C p is independent of (φ, θ) ∈ J , and x ∈ S \ Pε(p).
Define

J1 =
{
(φ, θ): inf

x∈S\Pε (p)

∣∣Θ(φ, θ) · (p − x)
∣∣ � C p

3

}
,

J2 =
{
(φ, θ): inf

x∈S\Pε (p)

∣∣Θφ(φ, θ) · (p − x)
∣∣ � C p

3

}
,

J3 =
{
(φ, θ): inf

x∈S\Pε (p)

∣∣Θθ(φ, θ) · (p − x)
∣∣ � C p

3

}
.

We can express integral I2 as a sum of three integrals corresponding to J1, J2, and J3 respectively. On J1, we integrate by
parts with respect to the variable ρ; on J2 we integrate by parts with respect to the variable φ, and on J3 we integrate by
parts with respect to the variable θ . Doing this repeatedly, it yields that, for any positive integer n, |I2| � Cna

n
2 . This finishes

the proof. �
It is useful to recall the definition of nondegenerate critical point, which will be needed in the next lemma.
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Definition 3.1. Let Φ : R
2 → R be a smooth function and suppose that Φ has a critical point at u0, that is, �Φ(u0) = (0,0).

If the matrix AΦ(u0) = (Φui u j (u0))1�i, j�2 is invertible, then u0 is a nondegenerate critical point of Φ .

The following result is a special 2-dimensional case of the method of stationary phase, which can be found in [15,
Prop. 6, p. 344].

Lemma 3.2. Let Φ : R
2 → R be a C∞ function which has a nondegenerate critical point at u0 ∈ R

2 . If ψ is supported in a sufficiently
small neighborhood of u0 , then

I(λ) =
∫
R2

eiλΦ(u)ψ(u)du = eiλΦ(u0)
[
a0λ

−1 + O
(
λ−2)],

as λ → ∞, where

a0 = 2πψ(u0)
(−det

(
AΦ(u0)

))− 1
2 .

We also recall the following formulation of the Implicit Function Theorem for n = 2.

Lemma 3.3. Let t = (t1, t2) ∈ R
2, u = (u1, u2) ∈ R

2 . Suppose that F (t, u) = (F1(t, u), F2(t, u)) is a C∞ function from T × U to R
2 ,

where T and U are open sets in R
2 . Assume that, for some t0 ∈ T and u0 ∈ U , we have F (t0, u0) = (0,0) and that Jacobian of F

satisfies: Ju(F )(t0, u0) 
= 0. We then have the following:

(i) there exists an open set T0 ⊂ T with t0 ∈ T0 and a smooth function u = u(t) such that F (t, u(t)) = (0,0) for all t ∈ T0;
(ii) for j = 1,2, ut j = 1

Ju(F )(t,u)
(F2t j F1u2 − F1t j F2u2 , F1t j F2u1 − F2t j F1u1 ).

The following lemma is a generalization of Lemma 4.4 in [6].

Lemma 3.4. For α ∈ [0,2π), y > 0, let

g(α, y) = 2y

1∫
0

ψ̂2(r cosα)ψ̂2(r sinα) sin
(
π yr2)r dr,

where ψ2 satisfies the assumptions given by (4). Then g(α, y) > 0.

Proof. Let fα(r) = ψ̂2(r cosα)ψ̂2(r sinα). By the assumption on ψ̂2, it follows that, for each α ∈ [0,2π), fα(r) is decreasing
on [0, 1

2 ), that fα(0) > 0 and fα(r) = 0 for r � 1
2 . We can write g(α, y) as

g(α, y) =
y∫

0

fα

(√
v

y

)
sin(π v)dv.

If y � 1, it is trivial to see that g(α, y) > 0 since fα(0) > 0, fα(r) � 0 on [0,1] and sin(πx) > 0 on (0,1). Now consider
the case where 1 < y � 2. Since fα(r) is decreasing on (0, 1

2 ) and ψ̂2(r) = 0 for r � 1
2 , it follows that

g(α, y) =
1∫

0

fα

(√
v

y

)
sin(π v)dv +

y∫
1

fα

(√
v

y

)
sin(π v)dv

=
1∫

0

fα

(√
v

y

)
sin(π v)dv −

y−1∫
0

fα

(√
v + 1

y

)
sin(π v)dv

�
1∫

0

(
fα

(√
v

y

)
− fα

(√
v + 1

y

))
sin(π v)dv > 0.

For y > 2, one can find k � 1 and 0 < ζ � 2 such that y = 2k + ζ . In this case, we have
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g(α, y) =
2k∫

0

fα

(√
v

y

)
sin(π v)dv +

y∫
2k

fα

(√
v

y

)
sin(π v)dv

= g0(α, y) + gζ (α, y),

where

g0(α, y) =
k−1∑
j=0

1∫
0

(
fα

(√
v + 2 j

y

)
− fα

(√
v + 2 j + 1

y

))
sin(π v)dv;

gζ (α, y) =
ζ∫

0

fα

(√
v + 2k

y

)
sin(π v)dv.

By the support assumption on fα , it follows that there exists at least one j with 0 � j � k − 1 such that fα(

√
2 j
ρ ) −

fα(

√
2 j+1

ρ ) > 0. It follows that g0(α, y) > 0 and gζ (α, y) � 0. Hence g(α, y) > 0. �
3.2. Proof of main theorem

We can now prove Theorem 3.1.

Proof of Theorem 3.1. Part (i) of the theorem follows directly from the localization Lemma 3.1.
Also by Lemma 3.1, in order to estimate the asymptotic decay of S Hψ B(a, s1, s2, p), as α → 0, it is sufficient to examine

the asymptotic decay of I1(a, s1, s2, p), where p ∈ S . Recall that this integral is defined only for x ∈ S ∩ Bε(p), where ε > 0.
Without loss of generality, we may assume that S = {(G(u), u): u ∈ U }, where U is a small neighborhood of u0 ∈ R

2 and
p = (G(u0), u0). We may also assume that ∇G(u0) = (0,0) (see remarks at the end of the proof for case ∇G(u0) 
= (0,0)).
Let AG(u) be the matrix (Gui u j (u0))1�i, j�2 and let K (u) be the Gaussian curvature of S at (G(u), u), that is,

K (u) = det(AG(u))

(1 + ‖∇G(u)‖2)
3
2

. (9)

By (9) and the assumption that K (u0) > 0, it follows that the matrix AG(u0) is either positive definite or negative
definite. Without loss of generality, we may assume that AG(u0) is negative definite so that G has a local maximum at u0
(the situation where AG(u0) is positive definite can be treated similarly).

Using this representation for S and p, we can express I1(a, s1, s2, p), given by (8), as

I1(a, s1, s2, p) = − 1

2π ia

∫
U

J (a, s1, s2, p, u)
(
1 + ∥∥∇G(u)

∥∥2) 1
2 du, (10)

where

J (a, s1, s2, p, u) =
2π∫
0

π∫
0

∞∫
0

ψ̂2
(
a− 1

2 (cot φ sec θ − s2)
)
ψ̂2

(
a− 1

2 (tan θ − s1)
)

× ψ̂1(ρ sinφ cos θ)e2π i ρ
a Θ(φ,θ)·(p−(G(u),u))Θ(φ, θ) · �n(u)ρ sinφ dρ dφ dθ.

Proof of (ii). Case Θ(φ0, θ0) 
= ±�n(p).
Since the tangent plane of S at p is generated by the two tangent vectors (Gu1 (u0),1,0) = (0,1,0) and (Gu2 (u0),0,1) =

(0,0,1) (so that �n(p) = (1,0,0)), we must have either Θ(φ0, θ0) · (0,1,0) 
= 0 or Θ(φ0, θ0) · (0,0,1) 
= 0.
Since I1 is defined for x ∈ S ∩ Bε(p), with any ε > 0, we can take ε sufficiently small and, as a consequence, U sufficiently

small, so that, for all φ, θ , and u ∈ U , one has Θ(φ, θ) · (Gu1 (u),1,0) 
= 0 or Θ(φ, θ) · (Gu2 (u),0,1) 
= 0.
Let Q 1(φ, θ) = {u: Θ(φ, θ) · (Gu1 (u),1,0) 
= 0} and Q 2(φ, θ) = {u: Θ(φ, θ) · (Gu2 (u),0,1) 
= 0}.
By the localization Lemma 3.1, in order to estimate I1, we may insert a function F (u) ∈ C∞

0 (U ) into the integral (10),
with F (u) = 1 on a sufficiently small compact subset of U , so that for u ∈ Q j(φ, θ), j = 1,2, we can integrate by parts
with respect to u repeatedly. This shows that, for any positive integer N , there is a positive constant CN such that:
|I1(a, s1, s2, p)| � CNaN .

Proof of (iii). Case Θ(φ0, θ0) = ±�n(p).
Since this part of the proof is rather involved, we first give a brief outline of the arguments which will be used. As

a first step, we apply the method of stationary phase (Lemma 3.2) to the integral I1 (in formula (10)), which produces
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a factor a canceling the factor 1
a . Our second step is to apply the change variables t1 = a− 1

2 tan θ and t2 = a− 1
2 cot φ sec θ

into I1 in order to apply Lemma 3.4. This allows us to compute the limits, as a → 0, for many auxiliary functions needed
to analyze I1. In addition, since the variable u is also involved, we apply the Inverse Function Theorem to express u as a
function of φ and θ . From all this, using the assumption of positive Gaussian curvature for the surface and Lemma 3.4, we
show that lima→0 a−1 S Hψ B(a, s1, s2, p) must have a positive real part.

Let Hφ,θ (u) = Θ(φ, θ) · (p − (G(u), u)), and F (φ, θ, u) = (F1(φ, θ, u), F2(φ, θ, u)), where

F1(φ, θ, u) = Θ(φ, θ) · (Gu1(u),1,0
)
,

F2(φ, θ, u) = Θ(φ, θ) · (Gu2(u),0,1
)
.

Since �n(p) = (1,0,0) and Θ(φ0, θ0) = ±�n(p), it follows that φ0 = π
2 and θ = 0 or π . We will only consider the case

θ0 = 0 since the argument for the case where θ0 = π is similar.
By the assumption on Θ(φ0, θ0), it follows that F (φ0, θ0, u0) = (0,0). It is also easy to verify that the Jacobian

Ju(F )(φ0, θ0, u0) = det(AG(u0)) = K (u0) 
= 0. By part (i) of Lemma 3.3, it follows that there exists a smooth function
u = (u1, u2) = (u1(φ, θ), u2(φ, θ)) in a small neighborhood J of (φ0, θ0) such that F (φ, θ, u(φ, θ)) = (0,0) in J . This means
that, for each fixed (φ, θ) ∈ J , u(φ, θ) = (u1(φ, θ), u2(φ, θ)) is a critical point of Hφ,θ (u). Hence, from (9) we have that, for
(φ, θ) ∈ J ,

det
(

AHφ,θ

(
u(φ, θ)

)) = (sinφ cos θ)det
(

AG
(
u(φ, θ)

)) = sinφ cos θ K
(
u(φ, θ)

)(
1 + ∥∥∇G

(
u(φ, θ)

)∥∥2) 3
2 
= 0.

We notice that �n(u(φ, θ)) = Θ(φ, θ) for (φ, θ) ∈ J . Applying Lemma 3.2 and omitting the higher order decay term (as
a → 0), we have

I1(a, s1, s2, p) = i

2π

2π∫
0

π∫
0

∞∫
0

ψ̂1(ρ sinφ cos θ)ψ̂2
(
a− 1

2 (tan θ − tan θ0)
)

× ψ̂2
(
a− 1

2 (cotφ sec θ − cotφ0 sec θ0)
)
e2π i ρ

a Θ(φ,θ)·(p−(G(u(φ,θ)),u(φ,θ)))

× (sinφ)
1
2 (cos θ)−

1
2
(

K
(
u(φ, θ)

))− 1
2
(
1 + ∥∥∇G

(
u(φ, θ)

)∥∥2)− 1
4 dρ dφ dθ.

We write this expression as

I1(a, s1, s2, p) = Y1(a, s1, s2, p) + Y2(a, s1, s2, p),

where Y1 corresponds to θ ∈ (−π
2 , π

2 ) and Y2 corresponds to θ ∈ ( π
2 , 3π

2 ).

We start by examining the term Y1(a, s1, s2, p). Let t1 = a− 1
2 (tan θ − tan θ0) = a− 1

2 tan θ and t2 = a− 1
2 (cot φ sec θ −

cotφ0 sec θ0) = a− 1
2 cot φ sec θ. It follows that tan θ = a

1
2 t1, cot φ = a

1
2 t2 cos θ and, hence, lima→0 θ = 0, lima→0 φ = π

2 . From
(ii) of Lemma 3.3, a direct calculation gives that

lim
a→0

u1φ = −Gu1u2(u0)K (u0)
−1;

lim
a→0

u2φ = −Gu2
1
(u0)K (u0)

−1;
lim
a→0

u1θ = −Gu2
2
(u0)K (u0)

−1;
lim
a→0

u2θ = −Gu1u2(u0)K (u0)
−1.

Also, it is easy to verify that lima→0
φ−φ0

a 1
2

= −t2, lima→0
θ−θ0

a 1
2

= t1. Omitting the higher order decay terms, we have

u1(φ, θ) − u1(φ0, θ0) = u1φ(φ − φ0, θ) + u1θ (φ, θ − θ0),

u2(φ, θ) − u2(φ0, θ0) = u2φ(φ − φ0, θ) + u2θ (φ, θ − θ0).

It follows that

lim
a→0

u1(φ0, θ0) − u1(φ, θ)

a
1
2

= K (u0)
−1(Gu2

2
(u0)t1 − Gu1u2(u0)t2

);
lim
a→0

u2(φ0, θ0) − u2(φ, θ)

a
1
2

= K (u0)
−1(Gu1u2(u0)t1 − Gu2

1
(u0)t2

)
.

Using the fact that ∇G(u0) = 0 and omitting the higher order decay terms, we have that
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G(u) − G(u0) = 1

2

(
Gu2

1
(u0)(u1 − u01)

2 + 2Gu1u2(u1 − u01)(u2 − u02) + Gu2
2
(u0)(u2 − u02)

2), (11)

where we used the notation u10 = u1(φ0, θ0), u20 = u2(φ0, θ0). It follows that

lim
a→0

1

a
Θ(φ, θ) · (p − (

G
(
u(φ, θ)

)
, u(φ, θ)

)) = Q 1(t1, t2), (12)

where

Q 1(t1, t2) = 1

2

(
Gu2

1
(u0)q

2
1 + 2Gu1u2(u0)q1q2 + Gu2

2
(u0)q

2
2

) + q1t1 + q2t2,

q1 = K (u0)
−1(Gu2

2
(u0)t1 − Gu1u2(u0)t2), q2 = K (u0)

−1(Gu1u2(u0)t1 − Gu2
1
(u0)t2).

We finally have

lim
a→0

a−1Y1(a, s1, s2, p) = i√
K (u0)

∞∫
0

√
2

4∫
−

√
2

4

√
2

4∫
−

√
2

4

ψ̂1(ρ)ψ̂2(t1)ψ̂2(t2)e2π iρQ 1(t1,t2) dt1 dt2 dρ. (13)

It is easy to see that, for all φ near π
2 and θ near 0 (or, equivalently, for u near u0 = p), the matrix (AHφ,θ )(uφ,θ ) is positive

definite and, hence, by the definition of uφ,θ , it follows that Hφ,θ (u) has a local minimum at uφ,θ . Since it is clear that
Hφ,θ (u0) = 0, it follows that Hφ,θ (uφ,θ ) � 0. This implies that Q 1(t1, t2) � 0.

To examine the term Y2, let us first apply the change of variable: θ → θ + π . Then, using the same argument as for Y1
and the assumptions that ψ̂1 is odd and ψ̂2 is even, one obtains that

lim
a→0

a−1Y2(a, s1, s2, p) = −i√
K (u0)

∞∫
0

√
2

4∫
−

√
2

4

√
2

4∫
−

√
2

4

ψ̂1(ρ)ψ̂2(t1)ψ̂2(t2)e2π iρQ 2(t1,t2) dt1 dt2 dρ, (14)

where Q 2(t1, t2) � 0.

For α ∈ [0,2π), let β1(α) = −2Q 1(cosα, sinα) and β2(α) = 2Q 2(cosα, sinα). It follows that β1(α) � 0 and, for some α,
β1(α) > 0. Similarly, we have that β2(α) � 0 and, for some α, β2(α) > 0. Combining (13) and (14) and applying Lemma 3.4,
we conclude that

�
(

lim
a→0

a−1 S Hψ B(a, s1, s2, p)
)

= �
(

lim
a→0

a−1(Y1(a, s1, s2, p) + Y2(a, s1, s2, p)
))

= 1√
K (u0)

∞∫
0

ψ̂1(ρ)

2π∫
0

1∫
0

ψ̂2(r cosα)ψ̂2(r sinα)

× (
sin

(
πβ1ρr2) + sin

(
πβ2ρr2))r dr dα dρ > 0.

This completes the proof of part (iii). �
Remarks about the proof

• At the beginning of the proof, we assumed ∇G(u0) = (0,0) so that Θ(φ0, θ0) = �np = (1,0,0). If ∇G(u0) 
= (0,0), then
we still have Θ(φ0, θ0) = �np . Then the proof proceeds in essentially the same way, up the following two minor dif-
ferences. First, in the proof of part (iii), using expression (9), Ju(F )(φ0, θ0, u0) = det(AG(u0)) = K (u0) is replaced by
Ju(F )(φ0, θ0, u0) = det(AG(u0)) = cK (u0) for c > 0. This has no effect on the rest of the argument. The other differ-
ence is in Eq. (11), where an additional term involving a ∇G(u0) factor must be added to the sum. However, since
Θ(φ0, θ0) · (Gu1 (u0),1,0) = 0 and Θ(φ0, θ0) · (Gu2 (u0),0,1) = 0, one can verify that Eq. (12) still holds with a slightly
different Q 1(t1, t2) (but still homogeneous of degree 2 with respect to (t1, t2)) and the rest of the argument is the
same.

• In the proof, we assumed that the surface is parametrized as (G(y, z), y, z), for (y, z) ∈ U , where U is a small neigh-
borhood of (0,0). In this situation, for (y, z) ∈ U there is an s = (s1, s2) which corresponds to the normal orientation
and this was considered in our argument. This parametrization covers the most general case for the horizontal shear-
let system we are considering here. For a different parametrization such as the surface (x, y, G(x, y)), (x, y) ∈ U , it is
possible that there is no s = (s1, s2) which corresponds to the normal orientation. In this case, the proof is significantly
simplified since one only needs to prove parts (i) and (ii).
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3.3. Comments and extensions

It is interesting to observe that the asymptotic behavior of the continuous shearlet transform found at the beginning
of Section 3 for the discontinuity along a plane is consistent with Theorem 3.1; in both cases the asymptotic decay rate
is rapid for all locations and orientations except at the singularity locations, for normal orientations, where the asymptotic
decay rate is O (a−1). However, the arguments used to prove the two cases are very different and not interchangeable. In
the case of a plane-discontinuity, the proof follows directly from the computation of the Fourier transform of a distribution.
This is similar to arguments used in [1,11] and can be generalized to deal with more general regions bounded by planes
using appropriate localization results as those developed in [6]. Conversely, the approach of Theorem 3.1, which is much
more involved, does not require the explicit computation of the Fourier transform of the function to be analyzed, but this
function is required have compact support and satisfy certain regularity assumptions.

It is natural to ask how the results presented in this work extend to situations where

• the function B = χΩ is replaced by a more general compactly supported function;
• the boundary surface ∂Ω contains irregular points such as cusps or wedges.

Unfortunately, in both cases, these extensions are significantly more complicated than the 2D case, and cannot be carried
over using directly the ideas from the 2D case from the 3D method introduced above.

Specifically, in dimension n = 2, it is shown in [7] that the function B = χD , where D is a bounded planar region with
smooth boundary, can be replaced by a smooth compactly supported function f in the following way. Let p be any point
on the boundary of D with f (p) 
= 0. Then one can replace B = χD with f χD at p and show that the asymptotic decay rate
for the error term ( f − f (p))χD , as a → 0, is faster than a3/4. Indeed a similar result holds in dimension n = 3. However,
when f (p) = 0, then one has to use P f (p)χD to replace f χD near p, where P f (p) is a suitable Taylor polynomial of f
at p. The estimates for the error term is still valid and one can still control the upper bound for P f (p)χD . The problem
is that now one cannot use the same idea as dimension n = 2 to control lower bound for P f (p)χD since Lemma 3.4 (the
analog of Lemma 4.4 in [7] for dimension n = 2) is not useful to deal with this case.

Finally, concerning the applicability of these results to discrete applications such as 3D edge detection, it is clear that
asymptotic estimates like those provided in Theorem 3.1 do not lead directly to efficient numerical algorithms. In dimension
n = 2, this issue was addressed by the authors and their collaborators in [16,17] where it was discussed how to apply these
types of theoretical results to obtain effective algorithms for edge analysis and detection. The extension of these discrete
applications to 3D is currently under investigation.
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