Schur-convexity and the Simpson formula

Iva Franjić a,∗, Josip Pečarić b

a Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
b Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia

ARTICLE INFO

Article history:
Received 4 December 2010
Received in revised form 25 March 2011
Accepted 28 March 2011

Keywords:
Schur-convexity
Simpson formula
4-convex functions

ABSTRACT

The main objective of this work is to give a necessary and sufficient condition for the function defined as the difference of the Simpson quadrature rule and the arithmetic integral mean to be Schur-convex.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most famous quadrature rules in numerical integration is the Simpson formula. Namely, for a function $f : [a, b] \to \mathbb{R}$ such that $f^{(4)}$ is continuous on $[a, b]$, the following identity is valid:

$$\frac{1}{b-a} \int_a^b f(t)dt - \frac{1}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right) = -\frac{(b-a)^4}{2880} f^{(4)}(\xi),$$

where ξ is some number between a and b (see for example [1]).

Throughout this work, let I be a non-empty open interval in \mathbb{R}. The aim of this work is to establish a necessary and sufficient condition for the function $S : I^2 \to \mathbb{R}$ defined as

$$S(x, y) = \begin{cases} \frac{1}{6}f(x) + \frac{2}{3}f\left(\frac{x+y}{2}\right) + \frac{1}{6}f(y) - \frac{1}{y-x} \int_x^y f(t)dt, & x, y \in I, x \neq y \\ 0, & x = y \in I \end{cases}$$

(2)

to be Schur-convex. Let us recall the definition of Schur-convexity (see for example [2] or [3]).

Definition 1. Function $F : A \subseteq \mathbb{R}^n \to \mathbb{R}$ is said to be Schur-convex on A if

$$F(x_1, x_2, \ldots, x_n) \leq F(y_1, y_2, \ldots, y_n)$$

for every $x = (x_1, x_2, \ldots, x_n), y = (y_1, y_2, \ldots, y_n) \in A$ such that $x < y$, i.e. such that

$$\sum_{i=1}^n x_{[i]} = \sum_{i=1}^n y_{[i]} \quad \text{and} \quad \sum_{i=1}^k x_{[i]} \leq \sum_{i=1}^k y_{[i]} \quad \text{for} \quad k = 1, 2, \ldots, n - 1$$

where $x_{[i]}$ denotes the ith-largest component in x. Function F is said to be Schur-concave on A if $-F$ is Schur-convex.

Note that every convex and symmetric function is Schur-convex.

∗ Corresponding author.
E-mail addresses: ifranjic@pbf.hr (I. Franjić), pecaric@hazu.hr (J. Pečarić).

0893-9659/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2011.03.047
Schur-convexity has aroused the interest of many researchers, and numerous papers have been devoted to it. For example, the following theorems were given in [4,5], respectively. Also, in [6] some related results were given.

Theorem 1. Suppose $f : I \rightarrow \mathbb{R}$ is a continuous function. Function

$$F(x, y) = \begin{cases} \frac{1}{y - x} \int_x^y f(t) dt, & x, y \in I, x \neq y \\ f(x), & x = y \in I \end{cases}$$

is Schur-convex (Schur-concave) on I^2 if and only if f is convex (concave) on I.

Theorem 2. Suppose $f : I \rightarrow \mathbb{R}$ is a continuous function. Function

$$M(x, y) = \begin{cases} \frac{1}{y - x} \int_x^y f(t) dt - f \left(\frac{x + y}{2}\right), & x, y \in I, x \neq y \\ 0, & x = y \in I \end{cases}$$

is Schur-convex (Schur-concave) on I^2 if and only if f is convex (concave) on I. Furthermore, function

$$T(x, y) = \begin{cases} \frac{f(x) + f(y)}{2} - \frac{1}{y - x} \int_x^y f(t) dt, & x, y \in I, x \neq y \\ 0, & x = y \in I \end{cases}$$

is Schur-convex (Schur-concave) on I^2 if and only if f is convex (concave) on I.

These results provided the motivation for the investigation in this work. In order to prove our result, we shall need the following lemma which gives a useful characterization of Schur-convexity (see [2] or [3]).

Lemma 1. Let $f : I^n \rightarrow \mathbb{R}$ be a continuous symmetric function. If f is differentiable on I^n, then f is Schur-convex on I^n if and only if

$$(x_i - x_j) \left(\frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial x_j} \right) \geq 0$$

for all $x_i, x_j \in I, i \neq j, i, j = 1, 2, \ldots, n$. Function f is Schur-concave if and only if the reversed inequality sign holds.

Another result vital in our proof was derived in [7].

Theorem 3. If $f : [a, b] \rightarrow \mathbb{R}$ is such that $f^{(n-1)}$ is a continuous function of bounded variation on $[a, b]$ for some $n \geq 1$, then

$$\int_a^b f(t) dt - \frac{b - a}{2} [f(a) + f(b)] + \sum_{k=1}^{(n-1)/2} \frac{(b - a)^{2k}}{(2k)!} B_{2k}[f^{(2k-1)}(b) - f^{(2k-1)}(a)]$$

$$= \frac{(b - a)^n}{n!} \int_a^b \left(B_n \left(\frac{b - t}{b - a} \right) - B_n \right) df^{(n-1)}(t),$$

where $B_n(x)$ are the Bernoulli polynomials and $B_n = B_n(0)$ Bernoulli numbers.

For details on Bernoulli polynomials, one can see for example [1]. One of their properties which is going to be needed is the following:

$$(-1)^k (B_{2k}(x) - B_{2k}) \geq 0 \quad \text{for } 0 \leq x \leq 1 \text{ and } k \in \mathbb{N}. \quad (4)$$

Finally, we recall the definition of n-convexity.

Definition 2. Function $f : [a, b] \rightarrow \mathbb{R}$ is said to be n-convex on $[a, b]$ for some $n \geq 0$ if for any choice of $n + 1$ mutually different points $x_0, \ldots, x_n \in [a, b]$, we have $[x_0, \ldots, x_n] f \geq 0$, where $[x_0, \ldots, x_n] f$ is the nth-order divided difference of f.

If $f^{(n)}$ exists, then f is n-convex if and only if $f^{(n)} \geq 0$. For more details see for example [3].
2. The main result

Theorem 4. If \(f \in C^4(I) \) then the following statements are equivalent:

(a) The function \(S \) defined by (2) is Schur-convex on \(I^2 \).

(b) For all \(x, y \in I, x < y \), we have

\[
\frac{1}{y-x} \int_x^y f(t) \, dt \leq \frac{1}{6} f(x) + \frac{2}{3} f \left(\frac{x+y}{2} \right) + \frac{1}{6} f(y).
\]

(c) The function \(f \) is 4-convex on \(I \).

Proof. First, we prove (a) \(\Rightarrow \) (b) \(\Rightarrow \) (c). Assume \(S \) is Schur-convex on \(I^2 \). Since \(\left(\frac{x+y}{2} \right) \prec (x, y) \), we have

\[
0 \leq \frac{1}{6} f(x) + \frac{2}{3} f \left(\frac{x+y}{2} \right) + \frac{1}{6} f(y) - \frac{1}{y-x} \int_x^y f(t) \, dt,
\]

for all \(x, y \in I, x \neq y \), so (b) is valid. Now, applying (1) implies

\[
0 \leq \frac{(y-x)^4}{2880} f^{(4)}(\xi), \quad \xi \in (x, y)
\]

and so, since \(f \in C^4(I) \) and \(x \) and \(y \) are arbitrary, we conclude that \(f \) is 4-convex.

Note that the implication (c) \(\Rightarrow \) (b) also follows immediately from (1).

To prove (c) \(\Rightarrow \) (a), assume \(f \) is 4-convex. Simple calculation gives

\[
(y-x) \left(\frac{\partial S}{\partial y} - \frac{\partial S}{\partial x} \right) = \frac{2}{y-x} \int_x^y f(t) \, dt - [f(y) + f(x)] + \frac{y-x}{6} [f'(y) - f'(x)].
\]

For \(n = 4 \), identity (3) yields

\[
\frac{1}{b-a} \int_a^b f(t) \, dt = \frac{f(a) + f(b)}{2} - \frac{b-a}{12} [f'(b) - f'(a)]
\]

\[
+ \frac{(b-a)^3}{4!} \int_a^b \left(B_4 \left(\frac{b-t}{b-a} \right) - B_4 \right) f^{(4)}(t) \, dt,
\]

so we deduce

\[
(y-x) \left(\frac{\partial S}{\partial y} - \frac{\partial S}{\partial x} \right) = \frac{(y-x)^3}{12} \int_x^y \left(B_4 \left(\frac{y-t}{y-x} \right) - B_4 \right) f^{(4)}(t) \, dt.
\]

Now, applying (4) with \(k = 2 \) and Lemma 1 with \(n = 2 \), we reach the conclusion that \(S \) is Schur-convex.

Thus, the proof is complete. \(\square \)

Remark 1. Results for a Schur-concave function \(S \) and a 4-concave function \(f \) follow easily from Theorem 4 for \(-S\) and \(-f\).

Remark 2. Since \(n \)-convex functions are continuous, they can be represented as a uniform limit of a sequence of the corresponding Bernstein polynomials (see for example [3]). The Bernstein polynomials of \(n \)-convex functions are also \(n \)-convex. Also, if the corresponding Bernstein polynomials are \(n \)-convex, so is the function \(f \). Having this in mind, the implications (c) \(\Rightarrow \) (a) \(\Rightarrow \) (b) in Theorem 4 can be proved without the assumption that \(f \in C^4(I) \). The conjecture is that implications (a) \(\Rightarrow \) (c) and (b) \(\Rightarrow \) (c) also remain valid without the regularity condition \(f \in C^4(I) \).

Remark 3. Note that for \(n = 2 \) and \(n = 3 \), identity (3) gives

\[
(y-x) \left(\frac{\partial S}{\partial y} - \frac{\partial S}{\partial x} \right) = \frac{2}{y-x} \int_x^y f(t) \, dt - [f(x) + f(y)] + \frac{y-x}{6} [f'(y) - f'(x)]
\]

\[
= (y-x) \int_x^y B_2 \left(\frac{y-t}{y-x} \right) f''(t) \, dt
\]

\[
= \frac{(y-x)^2}{3} \int_x^y B_3 \left(\frac{y-t}{y-x} \right) f'''(t) \, dt,
\]

since \(B_2 = 1/6 \) and \(B_3 = 0 \). Furthermore, since \(B_{n+1}(1) = (n+1)B_n(x) \), \(n \geq 1 \) and \(B_n(1) = B_n(0) \), \(n \geq 2 \) (see [1]), we have

\[
\int_x^y B_n \left(\frac{y-t}{y-x} \right) dt = \frac{y-x}{n+1} [B_{n+1}(1) - B_{n+1}(0)] = 0,
\]

so \(f \) being a convex function is not a sufficient condition for \(S \) to be Schur-convex. The same holds if \(f \) is a 3-convex function.
Remark 4. Consider function $G : I^2 \rightarrow \mathbb{R}$ defined as

$$G(x, y) = \frac{1}{6} f(x) + \frac{2}{3} f\left(\frac{x + y}{2}\right) + \frac{1}{6} f(y).$$

Since

$$(y - x) \left(\frac{\partial G}{\partial y} - \frac{\partial G}{\partial x} \right) = \frac{y - x}{6} [f'(y) - f'(x)],$$

by Lemma 1, G is Schur-convex if and only if f is convex.

Acknowledgements

We would like to express our gratitude to the referee for his/her valuable comments and suggestions which greatly improved the work.

The research of the authors was supported by the Croatian Ministry of Science, Education and Sports, under the Research Grants 058-1170889-1050 (first author) and 117-1170889-0888 (second author).

References