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Abstract

In this paper we study existence and uniqueness of solutions to some cases of the followi
local elliptic problem:

−∆u = (g(x,u))α

(
∫
Ω f (x,u))β

with zero Dirichlet boundary conditions on a bounded and smooth domain ofR
N and also when

Ω = R
N , whereα andβ are real constants.

 2005 Elsevier Inc. All rights reserved.

Keywords:Nonlocal elliptic problems; Galerkin method

1. Introduction

In this paper we will study some questions related to the existence and uniquen
solutions of the nonlocal elliptic problem
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−∆u = (g(x,u))α

(
∫
Ω

f (x,u))β
in Ω, u = 0 on∂Ω, (1.1)

whereα,β are real constants,f,g : Ω × [0,∞) → [0,∞) are Caratheodory function
whose properties shall be timely introduced and either, in different results,Ω ⊂ R

N is
a bounded smooth domain orΩ = R

N . For the last case, boundary conditions are
considered.

As far as applications are concerned, the following class of equations:

−∆u = (f (u))α

(
∫
Ω

f (u))β
in Ω, u = 0 on∂Ω, (1.2)

arises in numerous physical models such as: systems of particles in thermodynamic
librium via gravitational (Coulomb) potential, 2− D fully turbulent behavior of real flow
thermal runaway in Ohmic Heating, shear bands in metal deformed under high strain
among others. References to these applications may be found in [1].

Mathematically, the presence of the nonlocal term(
∫
Ω

f (x,u))β in Eq. (1.1) poses
interesting questions and rises some outstanding difficulties in some standard meth
attacking elliptic problems. For instance, variational methods do not work when appl
prove existence results for a large class of these equations.

This kind of problem has been investigated by several authors including Carrill
Tzanetis–Vlamos [6], Stánczy [1], among others. In particular, forN = 1, Eq. (1.2) be-
comes an ordinary equation and it was studied by Stańczy in [1]. In that paper, the autho
uses theory of fixed point and Green function to prove existence of solutions und
hypotheses that the functionf is positive and nondecreasing (hence, bounded from
low). The author also stresses that his method works whenΩ is an annulus, but cannot b
employed whenΩ is a ball inR

N , N � 3, even in the radial case.
In this paper we study some classes of Eqs. (1.1) on both bounded and unbo

domains, we deal with (1.2) relaxing the above restrictions and have made substan
provements in the study of the problem. In part, this is possible thanks to a device ex
by Alves–de Figueiredo [8], in [7] and also in [3], which uses Galerkin method to atta
nonvariational elliptic system. We conveniently adapt this technique to our case. Fu
more, we also study the uniqueness question for the equation. In the caseΩ = R

N we were
inspired by Brezis–Kamin [4].

More references on nonlocal elliptic problems may be found in [9–12] among oth
The method we use depends on the following result whose proof may be F in Lio

p. 53] and it is a well-known variant of Brouwer’s Fixed Point Theorem.

Proposition 1.1. Suppose thatF : R
m → R

m is a continuous function such th
〈F(ξ), ξ 〉 � 0 on |ξ | = r , where〈·,·〉 is the usual inner product inRm and | · | its related
norm. Then, there existsz0 ∈ Br(0) such thatF(z0) = 0.

We remark that by a solution of (1.2) we mean aweak solution, that is, a function
u ∈ H 1

0 (Ω) such that
(∫

f (x,u)

)β ∫
∇u · ∇ϕ =

∫ (
g(x,u)

)α
ϕ for all ϕ ∈ H 1

0 (Ω).
Ω Ω Ω
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We point out that, depending on the regularity off (·, u) andg(·, u), a bootstrap argu
ment may be used to show that a weak solution is a classical solution, i.e., a func
C2

0(Ω̄).
This paper is organized as follows: Section 2 is devoted to the study of problem (1

bounded domains. In Section 3 we state and prove results of existence and unique
(1.1) in bounded domains forg(x,u) = uα andΩ bounded. Finally, in Section 4, we stud
a class of this problem forΩ = R

N .

2. Existence results for bounded Ω

In this section we state and prove the main theorems of existence of solutions t
whenΩ is bounded.

For simplicity, these theorems are stated forf (x,u) = g(x,u) = f (u). We remark tha
the general case follows if we assume convenient and similar hypotheses onf andg that
shall appear in the proofs below. Writing them down would just enlarge the enunciat
the these theorems.

The first theorem deals with a positive bounded functionf , and the second one, th
functionf may vanish and has not to be bounded from below.

Before starting, in what follows, we are going to consider the extensionf (t) = f (0),
t < 0, of the functionf to the wholeR and denote it by the same letterf .

Theorem 2.1. Suppose that

f (t) � k0 > 0, ∀t ∈ [0,∞), (2.1)

f (t) < k∞, ∀t ∈ [0,∞), (2.2)

wherek0 andk∞ are real constants.
Then for any realα andβ, problem(1.2)possesses a positive weak solution.

Proof. The proof is based on the Galerkin method which works as follows. Let{ϕ1, . . . ,

ϕm, . . .} be an orthonormal basis of the Hilbert spaceH 1
0 (Ω) endowed, respectively, wit

the inner product and norm

〈〈u,v〉〉 =
∫
Ω

∇u∇v, ‖ u‖2 =
∫
Ω

|∇u|2.

For each fixedm ∈ N consider the finite-dimensional Hilbert space

Vm = span{ϕ1, . . . , ϕm}.
Since(Vm,‖ · ‖) and(Rm, | · |) are isometric and isomorphic (here, the Euclidean norm
R

m is | · | and〈·,·〉 is its corresponding usual inner product), we shall make the identific

u =
m∑

ξjϕj ←→ ξ = (ξ1, . . . , ξm), ‖u‖ = |ξ |.

j=1
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Case 1. α,β � 0.

Let us rewrite problem (1.2) as

−
(∫

Ω

f (u)

)β

∆u = (
f (u)

)α in Ω, u = 0 on∂Ω

and consider the functionF : R
m → R

m defined by

F(ξ) = (
F1(ξ), . . . ,Fm(ξ)

)
,

Fi(ξ) =
(∫

Ω

f (u)

)β

ξi −
∫
Ω

(
f (u)

)α
ϕi,

wherei = 1, . . . ,m andu = ∑m
j=1 ξjϕj .

So that with the above identifications one has

Fi(ξ) =
(∫

Ω

f (u)

)β ∫
Ω

∇u · ∇ϕi −
∫
Ω

(
f (u)

)α
ϕi

and

〈
F(ξ), ξ

〉 =
(∫

Ω

f (u)

)β

‖u‖2 −
∫
Ω

(
f (u)

)α
u.

Using (2.1), (2.2), Hölder and Poincaré inequalities, we get〈
F(ξ), ξ

〉
� k

β

0 |Ω|β‖u‖2 − Ckα∞‖u‖ > 0,

if ‖u‖ = r , for r large enough, independently ofm, where|Ω| is the Lebesgue measure
the setΩ .

Thus, by Proposition 1.1, there isum ∈ Vm, ‖um‖ � r such that(∫
Ω

f (um)

)β ∫
Ω

∇u · ∇ϕi =
∫
Ω

(
f (um)

)α
ϕi, i = 1, . . . ,m,

which implies that(∫
Ω

f (um)

)β ∫
Ω

∇u · ∇ϕ =
∫
Ω

(
f (um)

)α
ϕ, ∀ϕ ∈ H 1

0 (Ω). (2.3)

Let us prove that the sequence(um) ⊂ H 1
0 (Ω) has a convergent subsequence wh

converges to a solution of (1.2). Indeed, since(um) is a bounded there exists a subseque
still denoted by(um), such that

um ⇀ u in H 1
0 (Ω), um → u in L2(Ω) and

um(x) → u(x) a.e. inΩ. (2.4)

Hence, using (2.4) and passing to the limit in Eq. (2.3), we get thatu is a weak solution

of (1.2). The Maximum Principle assures thatu > 0.
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Case 2. α > 0, β = −γ < 0.

In this case, problem (1.2) becomes

−∆u = (
f (u)

)α
(∫

Ω

f (u)

)γ

in Ω, u = 0 on∂Ω. (2.5)

The functionF is defined as

Fi(ξ) = ξi −
(∫

Ω

f (u)

)γ ∫
Ω

(
f (u)

)α
ϕi

and

〈
F(ξ), ξ

〉 = ‖u‖2 −
(∫

Ω

f (u)

)γ ∫
Ω

(
f (u)

)α
u.

Again, using (2.1), (2.2), Hölder and Poincaré inequalities, we get〈
F(ξ), ξ

〉
� ‖u‖2 − C‖u‖ > 0,

if ‖u‖ = r , for r large enough, where

C = k
α+β∞ |Ω|γ+ 1

2
1√
λ1

> 0.

The rest proof follows the previous case and sincef (0) > 0, we may guarantee a pos
tive solution for (2.5).

Other cases. The proof is similar to the previous cases.�
Remark 2.2. In the first case of Theorem 2.1, with similar proof, assertion (2.1) ma
replaced by a more general hypothesis:

f (t) � a|t |σ + b,

wherea andb are real constants, andσ < 1
α

.

Now let us state and prove our second theorem.

Theorem 2.3. Suppose that

0< β < α <
N + 2

2N
< 1, (2.6)

f (0) > 0 (2.7)

and that(2.2)holds.

Then problem(1.2)possesses a positive weak solution.
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Proof. Let us suppose that the hypothesis of Proposition 1.1 does not hold. Then
fixedm and for eachr > 0, there isur ∈ Vm such that

〈
F(ur), ur

〉
< 0, ‖ur‖ = r,

which implies that

(∫
Ω

f (ur)

)β ∫
Ω

∇ur · ∇ϕ <

∫
Ω

(
f (ur)

)α
ϕ, ∀ϕ ∈ Vm. (2.8)

On the other hand, by Hölder inequality and (2.6), we have
∫
Ω

(
f (ur)

)α
ur �

(∫
Ω

f (ur)

)α

‖ur‖ 1
1−α

. (2.9)

Therefore, takingϕ = ur in (2.8), using (2.9) and Sobolev embeddings, we deduce

(∫
Ω

f (ur)

)β

‖ur‖2 < C

(∫
Ω

f (ur)

)α

‖ur‖

and consequently, by (2.2) and (2.6),

r < C

(∫
Ω

f (ur)

)α−β

� C1

for all r > 0, which is a contradiction.
Thus, for eachm there isr > 0 such that

〈
F(ξ), ξ

〉
� 0, ‖ur‖ = r, ξ ∈ R

m.

By Proposition 1.1, there isum ∈ Vm such that

(∫
Ω

f (um)

)β ∫
Ω

∇um · ∇ϕ =
∫
Ω

(
f (um)

)α
ϕ, ∀ϕ ∈ Vm. (2.10)

In this case, observe that, a priori, nothing indicates that thisr does not depends onm.
Nevertheless, we are going to prove that this really occurs.

Pickingϕ = um in (2.10) and proceeding as before,

(∫
Ω

f (um)

)β

‖um‖2 = C

(∫
Ω

f (um)

)α

um �
(∫

Ω

f (um)

)α

‖um‖ 1
1−α

and, as previously, it is forward to conclude that‖um‖ � C, as desired.
The rest of the proof follows the lines of the proof of Theorem 1. Since (2.7) holds
have thatu � 0, u ≡ 0 and by the Maximum Principle,u > 0 in Ω . �
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3. The case g(x,u) = ρ(x)(u+)α and Ω bounded

In this section, forρ ∈ C(Ω̄), ρ � 0, ρ ≡ 0, 0< α < 1 andΩ a bounded smoot
domain, we are going to consider problem (1.1) withg(x,u) = ρ(x)(u+)α and study exis-
tence and uniqueness of the problem

−
(∫

Ω

f (u)

)β

∆u = ρ(x)(u+)α in Ω,

u > 0 onΩ and u = 0 on∂Ω, (3.1)

whereu+(x) = max{u(x),0}.
The central theorem of this section is

Theorem 3.1. Suppose that

0< α < 1, (3.2)

f is an increasing function fort ∈ [0,∞] (3.3)

and that(2.1)holds.
Then problem(3.1)has a unique solution.

Proof.

Existence of solution: For this theorem,

Fi(ξ) =
(∫

Ω

f (u)

)β

ξi −
∫
Ω

ρ(x)(u+)αϕi

and
〈
F(ξ), ξ

〉 =
(∫

Ω

f (u)

)β

‖u‖2 −
∫
Ω

ρ(x)(u+)αu.

Hypothesis (3.3) assure the embeddingH 1
0 (Ω) ⊂ Lα+1(Ω) and the estimate∫

Ω
ρ|u+|α+1 � C‖ρ‖∞‖u‖α+1.
The rest of the proof is similar to the previous ones.

Uniqueness of solution: Let us suppose thatu1 andu2 are solutions of Eq. (3.1). After a
algebraic manipulation it is readily seen that

−∆

((∫
Ω

f (ui)

) β
1−α

ui

)
= ρ(x)

((∫
Ω

f (ui)

) β
1−α

ui

)α

in Ω,

u = 0 on∂Ω.

In this way, both functionsUi = (
∫
Ω

f (ui))
β

1−α ui are positive solution of the equation

−∆U = ρ(x)Uα in Ω, U = 0 on∂Ω,
which, by [4] has a unique positive solution.
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Therefore, we have

(∫
Ω

f (u1)

) β
1−α

u1(x) =
(∫

Ω

f (u2)

) β
1−α

u2(x), ∀x ∈ Ω. (3.4)

If u1(x0) = u2(x0) for somex0 ∈ Ω , Eq. (3.4) yields that

(∫
Ω

f (u1)

) β
1−α =

(∫
Ω

f (u2)

) β
1−α

and consequentlyu1 ≡ u2.
If u1 ≡ u2 in Ω , by the afore reasoning,u1(x) < u2(x) or u1(x) > u2(x), ∀x ∈ Ω .
But this fact with (3.3) contradicts (3.4). Hence, problem (3.1) has a unique

tion. �

4. The case g(x,u) = uα,f (x,u) = u and Ω = RRR
N

This section shall be devoted to the study the following problem on the wholeR
N :

−∆u = ρ(x)

( ∫

RN

u

)β

uα in R
N, u > 0 in R

N. (4.1)

We prove an existence result for this problem by using a device due to Brezis–K
[4].

For that purpose it is important to study the problem in bounded domains. More
cisely, we shall consider the problem

−∆u = ρ(x)

(∫
Ω

u

)β

uα in Ω, u > 0 in Ω, u = 0 on∂Ω. (4.2)

Concerning the above problem, we have the following theorem whose proof is s
to the proof of Theorem 3.1.

Theorem 4.1. If ρ ∈ L∞(Ω), ρ � 0, ρ ≡ 0, andα,β are real constants satisfyingβ � 0,
α > 0, α + β < 1, then problem(4.2)possesses only a solution.

Let us go back to the global problem (4.1). We begin with a definition.

Definition. We say that the functionρ ∈ L∞
loc(R

N), ρ � 0, ρ ≡ 0, satisfies condition(H1)

if the problem

−∆u = ρ(x) in R
N (4.3)

1 N
possesses a bounded andL (R ) positive solution.
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Theorem 4.2. Problem(4.1) possesses a bounded andL1(RN) solution if the functionρ
satisfies property(H1).

A partial converse holds: if (4.1)possesses a bounded andL1(RN) solution, then(4.3)
has a bounded solution.

Proof. Suppose thatρ satisfies property(H1). By Theorem 4.1, for eachR > 0 letuR > 0
be the only positive solution of

−∆uR = ρ(x)

( ∫
BR

uR

)β

uα
R in BR, uR > 0 in BR and

uR = 0 on∂BR. (4.4)

Let us fixR for a moment. For eachR′ < R one has

−∆uR′ = ρ(x)

( ∫
BR′

uR′
)β

uα
R′ in Ω, uR′ > 0 in BR′ and

uR′ = 0 on∂BR′ ,

which implies

−∆uR′ � ρ(x)

( ∫
BR

uR′
)β

uα
R′ in BR, uR′ > 0 in BR and

uR′ > 0 on∂BR

and soū = uR′ is a supersolution of the problem (4.4).
Now let us construct a subsolution to problem (4.4). For, takeε > 0, to be chosen late

and letλ1 be the first eigenvalue andϕ1 > 0 the positive eigenfunction associated to
problem

−∆ω = λρ(x)ω in BR, ω = 0 on∂BR.

If we takeϕ1 normalized as
∫
BR

ϕ1 = 1, standard calculations show that

−∆(εϕ1) � ρ(x)

( ∫
BR

εϕ1

)β

(εϕ1)
α in BR, εϕ1 = 0 on∂BR,

for small ε and it is standard that takingε positive and small enough one getsεϕ1 < uR′
in BR . This shows thatu

¯
= εϕ1 is a subsolution of problem (4.4) satisfying

u
¯
= εϕ1 < ū = uR′ .

Thus, since the solutions of (4.4) are betweenu
¯

and ū, the only solutionuR of (4.4)
must satisfy

u
¯
= εϕ1 � uR � ū = uR′ in BR,
that is,ur increases with respect toR asR → ∞.
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Despite the above facts, we have to show thatuR remains bounded. For, letU be a
bounded andL1(RN) solution of

−∆U = ρ(x) in R
N.

Let K > 0 so that

K1−(α+β) �
( ∫

RN

U

)β

‖U‖α∞.

This is possible because the right-hand side of the above inequality is finite. ForR > 0,
after some calculations we get

−∆(KU) � ρ(x)

( ∫
BR

KU

)β

(KU)α in BR, KU > 0 on∂BR.

HenceKU is a supersolution of (4.4) and so

uR � KU in BR,

for all R > 0 andKU does not depend onR. Let u(x) = limR→∞ uR(x) and since

−∆uR = ρ(x)

( ∫
BR

uR

)β

uα
R in BR,

one getsu(x) � KU(x) for all x ∈ R
N and so, passing to the limit in the last equat

whenR → ∞, we conclude that

−∆u = ρ(x)

( ∫

RN

u

)β

uα in R
N.

Thenu is a bounded andL1(RN) solution of (4.1) which completes the first part of t
proof.

To prove the other part of the theorem, suppose thatu is a bounded andL1(RN) solution
of (4.1), that is,

−∆u = ρ(x)

( ∫

RN

u

)β

uα in R
N.

Set

v = 1

1− α

( ∫

RN

u

)−β

u1−α,

which implies, after some standard calculations, that

−∆v = α

( ∫
u

)−β

u−1−α|∇u|2 + ρ(x) � ρ(x).
RN



F.J.S.A. Corrêa, D.C. de Morais Filho / J. Math. Anal. Appl. 310 (2005) 177–187 187

uthier–

ms via

d heat

uctiv-

erator,

ction
äuser,

ect. A

1–441.

991)
So, the solutionωR of the problem

−∆ωR = ρ(x) in BR, ωR = 0 on∂BR,

satisfiesωR � v and soωR → ω, asR → ∞, whereω is a bounded andL1(RN) solution
of

−∆u = ρ(x) in R
N,

which completes the proof of the theorem.�
Remark. Condition(H1) is satisfied, for example, if and only if the convolutionc

|x|N−2 ∗
ρ ∈ L∞(RN), for some real constantc. See [4].

References
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