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There is a wide range of routine skid resistance measurement devices on the market. All of

them are measuring the friction force between a rubber wheel and the wetted road surface.

Common to all of them is that they are relatively complex and costly because generally a

truck carrying a large water tank is needed to wet the surface with a defined water layer.

Because of the limited amount of water they can carry they are limited in range. Besides

that the measurement is depending on factors like water film thickness, temperature,

measurement speed, rubber aging, rubber wear and even road evenness and curviness. All

of these factors will affect the skid resistance and are difficult to control. We present a

concept of contactless skid resistance measurement which is based on optical texture

measurement and consists of two components: measurement of the pavement texture by

means of an optical measuring system and calculation of the skid resistance based on the

measured texture by means of a rubber friction model. The basic assumptions underlying

the theoretical approach and the model itself based on the theory of Persson are presented.

The concept is applied to a laboratory device called Wehner/Schulze (W/S) machine to

prove the theoretical approach. The results are very promising. A strong indication could

be provided that skid resistance could be measured without contact in the future.

© 2015 Periodical Offices of Chang'an University. Production and hosting by Elsevier B.V. on

behalf of Owner. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Wet road skid resistance is an important functional property

of road pavements. Pavements are designed to offer a safe ride

to the road users under different climatic conditions and over

a long service life. In order tomaintain a sufficient level of skid

resistance pavement monitoring is performed at regular

intervals.
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All of the measurement devices in use are based on the

principle of rubber friction; generally, the friction force be-

tween a measuring wheel, operated at a defined speed, verti-

cal load and transversal slip, and the pavement is measured.

Thosemeasurement devices are relatively complex and costly

because in most cases a truck carrying a large water tank is

needed to wet the surface with a defined layer of water.

Because of the limited amount ofwater they can carry they are

limited in range. Besides that the measurement is depending
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on factors like water film thickness, temperature, measure-

ment speed, rubber aging and wear and even road evenness

and curviness. All of these factors will affect the skid resis-

tance and are difficult to control.

For this reason several efforts have been undertaken in the

past to predict skid resistance solely from optical texture

measurements. Optical sensors are comparably cheap and

easy to combine with existing measurement equipment for

monitoring purposes. They are independent of rubber prop-

erties and the influence of an interfacial water film.

However, most of the approaches failed. One of the mis-

takes was to exclude the rubber properties from the approach.

Another reason was that the resolution of the texture mea-

surements was not high enough to capture the geometrical

features governing the rubber friction.

This paper is intended to make a contribution to contact-

less skid resistancemeasurement. It deals with the prediction

of skid resistance from texture measurements using a rubber

friction model. The approach, the investigations and results

are presented below. To begin with a brief literature review on

contactless skid resistance measurement and factors influ-

encing skid resistance shall be given.
2. Existing approaches and factors
influencing skid resistance

Recent advances on contactless skid resistance measurement

are reported by Dunford (2008, 2010) where skid resistance is

predicted from parameters directly extracted from images of

the road surface. Many approaches use 2-dimensional or 3-

dimensional topographical data of the surface collected by

means of laser displacement sensors or laser profile scanners

(Mu et al., 2003; Kebrle and Walker, 2007; Xie et al., 2008;

Meegoda, 2009; Cigada et al., 2010; Goubert et al., 2010).

Topographical data can also be generated by stereoscopic

imaging. Although not new in the application to pavement

texture analysis (Sabey and Lupton, 1967; Schonfeld, 1970)

recent work on algorithms for the extraction of surface

topography from image and the assessment of surface

roughness by means of image-based descriptors is described

(Ben Slimane et al., 2008; Xie et al., 2009; El Gendy et al., 2011).

Light scattering methods based on depolarization (Spring III

and King, 1981; Wambold et al., 1982) or back-scattering

pattern analysis (Kazakov, 1986; Iaquinta and Fouilloux,

2003) have been proposed in the past but obviously not per-

sued, presumably because optical pavement properties not

necessarily reflect tire-pavement interaction.

Basically, three approaches to predict skid resistance from

road surface data can be found in literature: prediction

through texture or texture-related parameters, which corre-

late with rubber friction, prediction through modeling of

rubber contact and rubber friction (partially including the

lubricant), and a combined approach comprising both texture

indicators and physical modeling as described in previous

studies (Do et al., 2004a,2004b; Do and Zahouani, 2005; Kane

and Do, 2006). The first approach can involve statistical

regression models (Zahouani et al., 2000; Ergün et al., 2005;

Shalaby and El Gendy, 2008; Schulze, 2011), fuzzy-logic

(Ustuntas, 2007) and artificial neural networks (Kebrle and
Walker, 2007; Xie et al., 2008; Wang et al., 2012). The second

one largely focuses on hysteresis friction since hysteresis is

the dominating mechanism during braking on wet road

pavements. However, other phenomena like adhesion and the

influence of water in the tyre/road interface are delt with as

well in related papers.

It is widely acknowledged that the microtexture (wave-

lengths below 0.5 mm) governs the peak value of the wet

friction coefficient-slip (or sliding speed) curve whereas the

macrotexture (wavelengths between 0.5 and 50 mm) governs

its decrease. The lower the macrotexture the steeper the

decrease. A high macrotexture (i.e. a high water drainage ca-

pacity) can improve the skid resistance over a wide range of

speeds. Pioneering studies on the role of micro/macrotexture

under wet braking conditions can be found (Giles, 1957, 1965;

Schulze, 1959, 1969, 1970; Moore, 1969, 1975; Geyer, 1972; Holla

and Yandell, 1973; Moore and Humphreys, 1973; Balmer, 1975;

Rhode, 1976; Holla, 1977; Taneerananon and Yandell, 1981;

Holt and Musgrove, 1982; Horne and Bühlmann, 1983). Size,

density and shape (slope) of the microasperities on top of the

aggregates are essential to overcome the thin water film and

to make direct contact with the rubber. A close relationship

between friction coefficient and average slope of the micro-

asperities in the contact zone can be observed and mathe-

matically explained (Yandell, 1971; Forster, 1981; Pinnington,

2009). More recent approaches to define texture descriptors

relevant to skid resistance can be found (Zahouani et al., 2000;

Ergün et al., 2005; Shalaby and El Gendy, 2008; Schulze, 2011)

as mentioned above. Other researchers emphasize the fractal

nature of pavement texture and use a fractal or spectral

description of the self-affine road surface (Majumdar and

Bhushan, 1990; Majumdar and Tien, 1990; Rad�o, 1994;

Kokkalis and Panagouli, 1998; Klüppel and Heinrich,

2000; Persson et al., 2001). Instead of a truncated Fourier se-

ries a combination of a Fourier series and a Weier-

strasseMandelbrot series is used (Rad�o, 1994; Pinnington,

2012), amongst others to allow for the asymmetry of worn

pavement surfaces. Recent theories on rubber friction

(Klüppel and Heinrich, 2000; Persson et al., 2001) assume a

smooth rubber surface and a rigid substrate with a self-affine

surface roughness that is described by the power spectral

density or the height-difference correlation function. Two and

three parameters respectively are needed to describe the

texture. Close relationships between these parameters and

wet tire traction have been observed (Heinrich, 1992a,1992b).

When skid resistance is measured, let's say with a

measuring speed of 60 km/h and a fixed slip of 20%, only a part

of the measured slip speed, which would be 12 km/h, is due to

actual sliding, the other one is due to deformation of the tread

elements. The amount of deformation slip depends on the tire

stiffness: a blank, “stiff” tire would exhibit only little defor-

mation implying that the measured slip speed almost equals

the actual slip speed, whereas a treaded tire would undergo a

higher deformation, depending on the elasticity of the tread

rubber and the geometry of the tread pattern. In most cases

the slip measured is just a mean value averaged over the

contact length and thus a simplification of the real slip con-

ditions within the contact area.

A three-zone model according to Moore (1966) can help to

illustrate the contact conditions in the tire-road interface

http://dx.doi.org/10.1016/j.jtte.2015.01.001
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during rolling or skidding on a wet surface from a tribology

point of view. The “sinkage” or “squeeze-film” zone is the first

zone when the tyre enters the contact patch. It corresponds to

the “elasto-hydrodynamic lubrication” regimewhere thewater

completely separates the two surfaces. The sinkage zone is

followed by the “draping” or “transition” zone. It corresponds

to the “mixed lubrication” regime where the tread elements,

having penetrated the squeeze-film, commence to “drape”

over the major asperities. The draping zone is followed by the

actual contact or traction zone which corresponds to the

“boundary lubrication” regime where in parts dry contact can

be established. The lengths of the zones depend on vehicle

speed and the amount ofwater that has to be expelled from the

interface. Due to partly the lubricant and partly the sliding

velocity used in skid resistance measurements adhesion is

largely inhibited and hysteretic friction dominates friction

mechanism (Klüppel and Heinrich, 2000; Persson et al., 2001).

Several models have been derived in the past to describe

the influence of the lubricant on the friction coefficient

(Moore, 1966; Schulze, 1979; Golden, 1981; Taneerananon and

Yandell, 1981; Horne and Bühlmann, 1983; Yandell et al.,

1983). Empirical approaches used within the context of

harmonizing skid resistancemeasurements include the water

influence indirectly by an exponential function characterized

by a speed factor which again is dependent on the macro-

texture. Different functions have been proposed to describe

the speed dependance (Leu and Henry, 1978; Rad�o, 1994;

Wambold et al., 1995; La Torre and Domenichini, 2001;

Descornet and Schmidt, 2006), and more recently the func-

tion is derived from the Stribeck curve which describes the

friction as a function of speed or a lubrication parameter in

different lubrication regimes (Do et al., 2004a,2004b).

In spite of the extensive knowledge on the relationship

between pavement texture and wet skid behavior gained over

the past decades, a reliable method to predict skid resistance

solely from texture measurements is still missing.
3. Rubber friction

Rubber friction is the predominant physical phenomenon

behind skid resistance measurements. It involves several

components (Kummer, 1968; Geyer, 1972): 1) the hysteretic

component which results from internal friction of the rub-

ber. During sliding over a rough surface the asperities exert

oscillating forces on the rubber resulting in energy dissipa-

tion due to internal damping of the rubber. Grosch (1963)

found the energy dissipation to be coupled with character-

istic length scales of the substrate, confirming that the

texture is a main factor inducing friction; 2) the adhesion

component which results from attractive binding forces

between the rubber surface and the substrate. It is important

only for clean, smooth surfaces and small sliding velocities.

Schallamach (1953) assigned adhesion friction to an intrinsic

length scale of the rubber, i.e. the distance a rubber chain

end jumps forward during sliding. Persson (2000) attributed

adhesion friction to the roughness of the substrate as well

and argued that even smooth surfaces (like glass) are not

smooth on nanoscales. He showed that, due to the low

elastic modulus, the interfacial free energy forces the rubber
to fill out the cavities on a nano-scale, leading to oscillating

forces on the rubber during sliding. Klüppel and Heinrich

(2000) adopted this view of “adhesion induced hysteretic

friction” in their theory of rubber friction on self-affine road

tracks; 3) the cohesion component of rubber friction which

represents the energy required to produce new surfaces. It is

associated with grooving of the rubber and abrasive wear; 4)

the viscous friction component which arises from shearing

of a viscous layer between tire and road surface. It can occur

only on wet roads. The shearing generates a hydrodynamic

pressure that tends to lift the tire from the pavement

leading to an increased hydroplaning risk depending on the

speed and water film thickness. Hysteresis and adhesion

have been identified to contribute most to rubber friction

(Kummer and Meyer, 1960; Greenwood et al., 1961; Savkoor,

1965; Bowden and Tabor, 1966; Kummer, 1966; Ludema and

Tabor, 1966; Tabor, 1967; Moore, 1972, 1980; Moore and

Geyer, 1974; Barquins, 1985; Barquins and Roberts, 1986;

Roberts, 1992).

In recent years extensive work has been done, namely by

Persson et al. on mathematical models which allow to quan-

titatively determine the kinetic friction coefficient of rubber

sliding against a hard, rough substrate (Le Gal and Klüppel,

2008; Heinrich et al., 2000; Klüppel and Heinrich, 2000;

Persson, 2001a, 2001b). The theories focus on the hysteresis

component of rubber friction but adhesion can optionally be

included. The models have been extended to include tire dy-

namics as well (Heinrich and Klüppel, 2008; Persson, 2011a,

2011b). Other phenomena like anisotropy of surface texture

(Carbone et al., 2009), role of the flash temperature (Persson,

2006a, 2006b), heat transfer between the elastic solid and the

rough surface (Persson et al., 2010), interfacial separation

(Persson, 2007; Yang and Persson, 2008) and the influence of

water in the rubber/substrate interface in terms of sealing

effect (Persson et al., 2004, 2005) and squeeze-out (Persson,

2011a, 2011b) have been treated as well.

Both Persson's model and the model of Heinrich and

Klüppel have a physical foundation and need input informa-

tion about the complex modulus of the rubber, the statistical

roughness of the substrate, the contact pressure, sliding speed

and temperature. The general approach is quite similar.

However, Heinrich and Klüppel use a contact model based on

the theory of Greenwood and Williamson (1966) which they

extended to multiple-scale roughness surfaces while Persson

developed a new three-dimensional contact mechanics the-

ory (Persson, 2006a, 2006b) which can be applied to elasto-

plastic contact as well. Both models consider the surface

roughness on multiple length scales and thus need the

viscoelastic properties of the elastomer to be known over a

wide frequency range. Heinrich and Klüppel calculate the

hysteresis friction coefficient based on a two-dimensional

approach while Perssons model is fully 3D and based on

three-dimensional data (i.e. the pavement surface). It takes

into account how the rubber, on each length scale, is able to

follow the hard substrate. The predictive capabilities of both

models have been investigated (Westermann et al., 2004) by

comparing the results with friction experiments. Good

agreement was found. The results demonstrate that the

“flash” temperatures (local hot spots) need to be considered

for dry friction prediction.

http://dx.doi.org/10.1016/j.jtte.2015.01.001
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Fig. 1 e Two-dimensional power spectral density of a

pavement surface.

Fig. 2 e Loss and storage modulus of rubber (schematic).
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4. Persson's model of rubber friction

The model used for the prediction of skid resistance is based

on the theory of Persson. Because road surfaces are relatively

rough and skid resistance is measured under wet conditions

and comparatively high sliding velocities the adhesion

component can be neglected and hysteresis is considered to

be dominating friction mechanism. In the following the the-

ory of Persson is summarized in terms of the key equations.

For a deeper understanding of the underlying assumptions we

refer to the original papers (Persson, 2001a, 2001b).

The kinetic coefficient of friction (mk) under steady-state

conditions is the result of hysteresis contributions from

multiple scales of roughness as expressed by the following

equations

mk ¼ 1
2

Zq1
qL

q3CðqÞPðqÞdq
Z2p
0

cosðfÞIm
�
Eðqv cosðfÞÞ
ð1� n2Þs0

�
df (1)

PðqÞ ¼ 2
p

Z∞
0

sinðxÞ
x

exp
�� x2GðqÞ�dx ¼ erf

 
1

2
ffiffiffiffiffiffiffiffiffiffi
GðqÞp

!
(2)

GðqÞ ¼ 1
8

Zq
qL

q3CðqÞdq
Z2p
0

����Eðqv cosðfÞÞ
ð1� n2Þs0

����
2

df (3)

l ¼ 2p=q (4)

q ¼ �
qx;qy

� ¼ ðqcosðfÞ; qsinðfÞÞ (5)

where q is the spatial angular frequency or magnitude of the

wave vector corresponding to the wavelength l, qL is the lower

integration limit where L is of order the length of a tread block,

q1 is the upper cut-off frequency corresponding to a short

distance cut-off wavelength which is depending on the oper-

ating conditions such as road contamination, wet or dry fric-

tion, measuring velocity and amount of water that has to be

expelled from the interface. For dry friction the short distance

wavelength can be of order onemicrometer. However, surface

contamination like dust and rubber particles will determine

the smallest wavelength since the rubber cannot penetrate

into surface cavities smaller than the typical particle diameter

(Persson, 2001b). On a wet surface the short distance cut-off

wavelength is determined by the smallest asperities which

can penetrate the water film and the size of water “pools”

trapped in small surface cavities.

The function C(q) denotes the two-dimensional power

spectral density (PSD) of the pavement surface

CðqÞ ¼ 1

ð2pÞ2
Z

hðxÞhð0Þe�iqxd2x (6)

where h(x) is the surface height measured from the average

plane with x ¼ (x,y) and h ¼ 0. The statistical properties of the

texture are assumed to be isotropic so that C(q) only depends

on the magnitude q ¼ jqj of the wave vector q. A typical

example for a road surface is shown in Fig. 1. Many roughness

spectra exhibit fractal properties, that is, their power spectral
density can be characterized by a straight line in the logelog

scale. Via the sliding velocity v, frequencies f ¼ qvcosðfÞ are
excitedwhich act on the tread block and depend on the sliding

direction which is given by the angle f between sliding di-

rection and particular wave vector. They determine the ma-

terial behavior via the loss modulus ImðEðqvcosðfÞÞÞ in the

“friction” Eq. (1) and the absolute value jEðqvcosðfÞÞj in Eq. (3)

which determines the contact conditions during sliding.

Fig. 2 shows the frequency dependent modulus of rubber

schematically in terms of its storage (red) and loss modulus

(blue). For low frequencies the rubber is relatively soft. With

increasing frequency it stiffens and finally reaches a

maximum which in this case exceeds the low-frequency

stiffness by a factor of 200 (in case of the storage modulus).

In the transition zone the loss tangent ðImðEÞ=ReðEÞÞ passes

through its maximum (not shown). This is where the most

energy is dissipated. s0 is the macroscopic contact pressure

and n Poisson's ratio which for rubber can be set to 0.5.

The contact function PðqÞ ¼ AðqÞ=A0 describes the ratio of

real and nominal (macroscopic) area of contact where contact

occurs when the surfaces are smoothened on spatial fre-

quencies higher than q. Via Eq. (3) P(q), again, is dependent on

the contact pressure, the sliding velocity, the surface texture

C(q) and the material properties of the rubber (Young's
modulus and Poisson's ratio). The real contact area A(q) nor-

mally is only a fraction of the macroscopic contact area

because contact only occurs on the top of the surface asper-

ities. The top of an asperity, in turn, would revealmany small-

scale asperities if observed under magnification which in turn

would exhibit even tinier asperities. P(q) accounts for this

http://dx.doi.org/10.1016/j.jtte.2015.01.001
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Fig. 3 e Normalized area of contact P(q) as a function of the

spatial angular frequency q.
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scale dependent or fractal behavior. An example of a contact

function P(q) is given in Fig. 3.

We conclude that the friction coefficient according to Eqs.

(1)e(3) is the result of hysteresis contributions from a wide

band of frequencies q limited by the smallest asperities the

rubber can follow on the one hand and the size of a tread block

on the other hand. It is dependent on the contact pressure, the

sliding velocity, the surface texture and the material proper-

ties of the rubber (Young's modulus and Poisson's ratio).

In case of dry friction the so-called flash temperatures have

to be considered. Fig. 4 shows an infrared photograph of a tire

as it is leaving the contact patch. The red and yellow colors

indicate hot spots arising from tire-pavement contact. The

temperatures are highest at the micro-asperity contact points

and decrease radially from there. The hot spots are a function

of time and location and overlap thermally with other micro-

asperity contact regions in the vicinity. Besides that they are

thermally coupled over many length scales. For surfaces with

roughness on many length scales the temperature will in-

crease with increasing magnification of the heat source.

Persson describes the scale-dependent behavior by a tem-

perature function T(q) by analogy with the contact function

P(q) (Persson, 2006a, 2006b).

The deduction of T(q) is based on the heat equation

vT
vt

� DV2T ¼ Q
:

ðx; tÞ
rCV

(7)

where Q is the energy production per unit volume and time

arising from hysteresis friction of the rubber, D is the heat
Fig. 4 e Infrared photograph of a tire leaving the contact

patch.
diffusivity, r is the mass density, CV is the specific thermal

capacity.

The key equations for the evaluation of the flash temper-

atures are given below. For a deeper understanding of the

underlying assumptions we refer to the original paper

(Persson, 2006a, 2006b).

TðqÞ ¼ T0 þ
Z∞
0

gðq;q0Þfðq0Þdq0 (8)

with

fðqÞ ¼ vq4

r CV
CðqÞ PðqÞ

P
�
qm

� Z cosðfÞImEðqv cosðfÞ;TðqÞÞ
1� n2

df (9)

and

gðq; q0Þ ¼ 1
p

Z
1

Dk2

�
1� e�Dk2t0

	 4q0

k2 þ 4q'2

4q2

k2 þ 4q2
dk (10)

where T0 denotes the background temperature q is the spatial

angular frequency and v the sliding velocity, t0 z R/v, is about

half the time the rubber is in contact with a macro-asperity of

typical (average) radius R, qm is the corresponding angular

frequency of the macro-asperities, the function f represents

the energy production term whereas the function g describes

its decay into the solid. Note that the visco-elastic modulus is

depending on the temperature T(q) and the temperature, in

turn, on the visco-elastic modulus. For unfilled rubber the

WilliamseLandeleFerry (WLF) equation can be used to

approximately describe the temperature dependence of E(u,T)

(Williams et al., 1955)

Eðu;TÞ ¼ E
�
uaT



aT0

;T0

�
(11)

lg ðaTÞ ¼
�8:86

�
T� Tg � 50

�
51:5þ T� Tg

(12)

The shift factor aT determines the shift of the master curve

towards increasing frequencies for increasing temperatures.

It is valid for temperatures T greater than the glass transition

temperature Tg. Fig. 5 qualitatively demonstrates the influ-

ence of temperature on the modulus of elasticity.

In Fig. 6 the flash temperatures T(q) calculated according to

Eq. (8) for a rubber sliding with a constant speed over a rough

hard substrate are shown. On a macroscopic scale the tem-

perature in the rubber corresponds to the background
Fig. 5 e Effect of temperature increase on the modulus of

elasticity.
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Fig. 6 e Flash temperatures T(q) for different sliding

velocities.

Fig. 7 e Friction coefficient as a function of sliding velocity

with and without flash temperature.
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temperature T0 (30 �C in that particular case). With increasing

magnification the temperatures T(q) in the micro-asperity

contact regions increase. The increase is depending on the

sliding velocity (v): the higher the velocity the higher the en-

ergy production and hence the increase in temperature.

Fig. 7 demonstrates the influence of the flash temperature

on the friction coefficient for an example calculation. Without

flash temperature the coefficient of friction would rise pro-

gressively with increasing speed and according frequency

because the excitation spectrum would be shifted towards

higher hysteresis losses in the rubber. With the flash tem-

perature considered the friction coefficient-sliding speed

curve exhibits a degressive shape featuring a maximum and a

subsequent decline in this example. Here, the friction curve is

the result of two opposing effects: the effect due to the in-

crease in velocity is reversed by the effect due to the increase
Fig. 8 e Dynam
in (flash) temperature which shifts the viscoelastic modulus

towards lower hysteresis losses and causes a decrease of the

friction coefficient for high sliding velocities.
5. Concept of contactless skid resistance
measurement

The traction between tire and road pavement amongst other

things is depending on five major influencing factors: 1) the

vehicle (axle load distribution, split-up of brake power, center

of gravity, wheel alignment etc.); 2) the tire (dimension, con-

struction, material, tread depth, tread design, inflation pres-

sure, tire temperature etc.); 3) the driving mode (braking,

acceleration, cornering, speed, ambient temperature etc.); 4)

the surface conditions (dry, wet, water depth, contamination,

snow, ice etc); 5) the pavement (material, microtexture, mac-

rotexture, drainage capacity etc.).

In Fig. 8(a) a typical deceleration curve from an ABS braking

test on a wet road surface is shown. After a short transition

phase a constant deceleration of, in this case, 9 m/s2 is

reached. Neglecting air, rolling and climbing resistance aswell

as the influence of rotating masses of wheels, engine and

transmission and assuming that the traction potential at the

front and rear axle is fully exploited we could draw a direct

connection between the deceleration reached and the traction

potential of a road/tire combination. Indeed, the traction po-

tential would reduce to mwet ¼ a=g with “a” being the decel-

eration and “g” the acceleration of gravity. We could call it the

traction potential “of the road” or the skid resistance of the

road since this would mark the optimum traction an “ideal”

vehicle could achieve under the given influencing factors tire,

driving mode and surface condition as described above. We

can go further and notice that in this particular case the

complex dynamic system reduces to a single mass or rather a

rubber block sliding on the pavement surface as demonstrated

in Fig. 8(b).

This analogy brings us to the idea that the traction poten-

tial of a pavement-alias its skid resistance-could be calculated

by means of a rubber friction model. In a further step this

would lead to the following concept of contactless skid resis-

tance measurement as shown in Fig. 9, 1) measurement of the

pavement texture by means of an optical measuring system

and; 2) calculation of the traction potential-alias skid

resistance-based on the measured texture by means of a

rubber friction model.
ic system.
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Fig. 9 e Concept of contactless skid resistance measurement.
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When we look at the deceleration curve in Fig. 8, we can

observe that the deceleration is virtually constant in the zone

where it has reached itsmaximum, in this case over a distance

of 35 m. This does not necessarily reflect the homogeneity of

the pavement surface. In fact, the reason for this behavior

which is not untypical for ABS braking is that the braked tire

sort of “averages” or “integrates” along the braking path. This

means that although locally the surface characteristics might

be rather inhomogeneous the performance of the pavement

(e.g. in terms of the achievable braking distance) might appear

homogeneous because it is the result of a sequence of pave-

mentetire interactions.accumulated over a certain length of

the road. The measurement of skid resistance hence should

be based on multiple measurements along the measuring

path rather than on a single (local)measurement as illustrated

in Fig. 10. A characteristic sampling or averaging length might

cover a length of 30 me40 m typical for braking distances.
6. Assumptions underlying the
experimental approach

The concept of contactless skid resistance measurement is

applied to a laboratory device called Wehner/Schulze (W/S)

machine to prove the theoretical approach. The W/S-device
Fig. 10 e Measurement of skid resistance based on

multiple measurements.
corresponds to a blocked-wheel braking test at a speed of

60 km/h and is described in the next chapter. The following

assumptions have been made: 1) hysteresis is the dominating

friction mechanism; 2) adhesion can be neglected due to the

sliding velocities, pavement roughness and water film; 3) the

contact conditions correspond to the boundary lubrication

regime where in parts dry contact can be established; 4)

viscous effects are insignificant compared to hysteretic ef-

fects; 5) the water acts as a coolant and ensures moderate tire

temperatures compared to dry friction; 6) the water acts as a

low-pass filter limiting the wavelengths the tire can follow in

the high frequency range (sealing and expulsion constraints).

For lack of appropriate information about the rubber used

in the W/S machine and as a first attempt to explore the po-

tential of the theory of rubber friction for skid resistance

predictionwe utilizedmeasured data of an actual tread rubber

assuming that for an appropriate frequency band-

temperature constellation a behavior similar to that of the

Wehner/Schulze rubber could be found. The results seem to

confirm this assumption. Nevertheless, further work should

be based on the master curves of the measuring rubber

instead. The master curves of the tread rubber are shown in

Fig. 11 in terms of the storage (G0) and loss modulus (G00). They
apply to a temperature of 20 �C and a strain of 0.2%. However,

the strain involved in skid resistance (e.g. W/S friction) mea-

surement is much higher. A strain of 8% is considered a more
Fig. 11 e Measured storage (G0) and loss modulus (G00) used
for the rubber friction model (T0 ¼ 20 �C, ε ¼ 0.2%).
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Fig. 12 e Measured strain dependence on storage and loss modulus for 10 Hz excitation frequency.

Fig. 13 e Wehner/Schulze (W/S) machine.
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realistic magnitude for the tire-road contact (Persson, 2001b;

Westermann et al., 2004). The modulus of elasticity is

strongly dependent on the strain as described by Payne (1964).

The effect of the strain on the modulus of elasticity of the

tread rubber we used is shown in Fig. 12, measured at an

excitation frequency of 10 Hz. The solid line is the so-called

Kraus model (Kraus and Lansinger, 1992) fitted to the data.

For our calculations we assumed that a characteristic strain of

8% and a softening effect according to Fig. 12 can be applied to

the whole frequency range relevant to skid resistance (in our

case about 103e106 Hz).
Fig. 14 e W/S
7. Experiments and results

The Wehner/Schulze (W/S) device (Fig. 13) was designed to

simulate accelerated wear on road surface samples and

measure the skid resistance before and after the accelerated

testing. For the purpose of our investigation only the skid

resistance measuring unit was used. It consists of a rotating

head equipped with 3 rubber pads which are arranged equi-

angular around a metal rim (Fig. 14(a)). For the skid resistance

measurement the head is lifted from the pavement sample

and accelerated to a rim speed of 100 km/h. When the desired

speed is reached thewater supply is activated and the rotating

head released. It drops onto the pavement sample where it is

decelerated due to the friction between rubber pads and

specimen. The friction is recorded as a function of speed

(Fig. 14(b)) and the friction coefficient at a speed of 60 km/h

denoted the Wehner/Schulze friction coefficient mws60. The

nominal contact pressure is 0.2 N/mm2 corresponding to a

passenger car tire.

In order to validate the contactless skid resistance mea-

surement the surface texture was measured under laboratory

conditions by a chromatic white light sensor (Fig. 15(a)). The

sensor features a lateral resolution of 1e2 um and a vertical

resolution of 20 nm. For our investigations we limited the

lateral resolution to 3.3 um. Because of the circular path of the

Wehner/Schulze skid resistance measurement we measured

the texture within or near the path of the Wehner/Schulze
machine.
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Fig. 15 e Measurement of surface texture.
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device. The locations where the friction is measured can be

seen from Fig. 15(b). 12 profiles with a length of 100 mm each

were measured on every specimen. The profiles were sub-

divided into lengths of 25mm (about 2e3 times, in some cases

5 times the wavelength of the macro-asperities) and then

Fourier transformed. The 1D power spectral densities calcu-

lated were converted to 2D-PSDs and averaged assuming 2D

isotropic surface roughness. Furthermorewe found that it was

crucial in this process that only the “summit texture” was

considered in the calculation which is reasonable since the

texture in the cavities does not contribute to hysteretic fric-

tion. For the surfaces investigated the “summit texture” con-

formed to the upper 33% of the surface texture on average but

could differ between 20% and 45% in the particular case. The

corresponding texture depths were found to be in close

agreement with the respective theoretical penetration depths

calculated according to Persson's contact theory.

In this study 33 different surfaces have been tested. 13 of

them were washed concrete slabs made in the laboratory

exhibiting different maximum aggregate sizes (8 and 11 mm)

and different polishing treatments. 20 of them were asphalt

cores obtained from actual road surfaces and parking lots

comprising maximum aggregate sizes between 8 and 11 mm.

Except for one sample which was an SMA, all of them were

asphalt concrete (AC) pavements. Examples of the specimens

are shown in Fig. 16. Two samples per surface were available

for testing on average. The surfaces and corresponding fric-

tion data are listed in Table 1. For lack of space only a few

photos are included in the table. They are just illustrative and
Fig. 16 e Examples of specimens tested: asph
represent only a part of the variety of surfaces tested. The

surfaces cover a wide range of friction coefficients from low-m

to high-m roughness. Note that a Wehner/Schulze friction

coefficient of around 0.6 marks a high-m pavement because of

the high sliding velocities and temperatures involved.

The concrete slabs made in the laboratory were subjected

to sandblasting and subsequent polishing in two stages in

order to enlarge the sample size. The respective surfaces are

denoted accordingly in Table 1. The polishing was performed

by the ARTe (Aachen rafeling tester) shown in Fig. 17. It fea-

tures a pair of passenger car wheels which are moved across

the specimen surface in a combined rotational and trans-

lational motion. The tires of dimension 165/75 R14 are oper-

atedwith a tire pressure of 2 bar. The load is 1.500N. Amixture

of polishing agents and water was applied to accelerate the

wear.

The results for the calculation of the W/S friction co-

efficients are given in Table 1. The comparison between

measured and calculated friction coefficients is shown in

Fig. 18(a). The macroscopic contact pressure was set to

s0 ¼ 0.2 N/mm2, Poisson's ratio to n ¼ 0.5 and the maximum

andminimumwavelengths to 25mm and 20 um respectively.

The best agreement between calculated and measured fric-

tion coefficients was obtained with a background tempera-

ture (in the rubber) of 57 �C and a linear fit of the power

spectral density in the logelog scale under the premise that

only the wavelengths between 1 mm and 60 um determine

the fit. This means that wavelengths between 25 mm and 20

umwere included in the calculation of the friction coefficient,
alt core and laboratory sample (concrete).
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Table 1 e Surface samples tested for the comparison with the W/S machine.

No. mWS60 mWS60 Number of samples Surface example Details/Origin

Measured Theory

1 0.43 0.42 2 Exposed aggregate concrete, initial state

2 0.62 0.61 2 Exposed aggregate concrete, sandblasted

3 0.42 0.44 2 Exposed aggregate concrete, polishing stage 1

4 0.43 0.41 2 Exposed aggregate concrete, polishing stage 2

5 0.45 0.44 2 Exposed aggregate concrete, initial state

6 0.64 0.64 2 Exposed aggregate concrete, sandblasted

7 0.47 0.47 2 Exposed aggregate concrete, polishing stage 1

8 0.45 0.48 2 Exposed aggregate concrete, polishing stage 2

9 0.36 0.31 2 Exposed aggregate concrete, initial state

10 0.53 0.52 2 Exposed aggregate concrete, sandblasted

11 0.32 0.34 2 Exposed aggregate concrete, polishing stage 1

12 0.37 0.38 2 Exposed aggregate concrete, polishing stage 2

13 0.24 0.25 4 Aachen, Goethestrabe 13

14 0.20 0.22 2 AC, Aachen, Boxgraben 22, initial state

15 0.18 0.17 2 AC, Aachen, Boxgraben 22, polishing stage 1

16 0.19 0.20 2 AC, Aachen, Boxgraben 22, polishing stage 2

17 0.17 0.20 4 AC, Aachen, Lütticher Strabe 21

18 0.30 0.28 1 AC, Aachen, Wallstrabe 57

19 0.30 0.29 2 AC, Aachen, Lütticher Strabe 56, right lane

20 0.24 0.23 4 AC, Aachen, Lütticher Strabe 56, left lane

21 0.28 0.28 1 AC, Aachen, Boxgraben 32

22 0.28 0.28 1 AC, Aachen, Lütticher Strabe 21, bicycle lane

23 0.33 0.35 3 AC, Aachen, Rüd. Ring, road surface

24 0.50 0.55 3 AC, Aachen, Rüd. Ring, adjacent areas

25 0.36 0.38 1 AC, Aachen, Madrider Ring

26 0.30 0.27 2 SMA, Eschweiler (36 þ 37), left and right lane

27 0.28 0.26 1 AC, Aachen, parking lot, coarse aggregate

28 0.31 0.29 2 AC, Aachen, parking lot, fine aggregate

29 0.32 0.30 2 AC, Aachen, parking lot

30 0.36 0.35 2 AC, Aachen, parking lot

31 0.33 0.34 2 AC, Aachen, parking lot

32 0.35 0.33 1 AC, Aachen, Schleidener Strabe

33 0.46 0.47 4 Exposed aggregate concrete
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however, wavelengths between 1 mm and 60 um were

considered decisive. As can be seen from the graph the

agreement between measured and calculated friction co-

efficients is very good (R2 ¼ 0.97). The blue dots mark the
mean values of the 33 surfaces, the white dots the single

values (70 in total). The 95% confidence bounds are shown in

Fig. 18(b). At the waist the 95% prediction interval is ±0.042
and the variance is 0.021.
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Fig. 17 e Aachen rafeling tester (ARTe).

Fig. 18 e Comparison of measured and calculated friction coefficients.
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The assumptions made seem to be quite reasonable; 60 �C
is a typical tire temperature during driving on a dry road; on a

wet road due to liquid cooling the temperature is typically

around 30 �C. Thus, a rubber temperature of 57 �C can be ex-

pected as an average in the vicinity of contact spots under wet

sliding conditions.
8. Conclusions

We have presented a concept of contactless skid resistance

measurement. It consists of two components: 1) measure-

ment of the pavement texture by means of an optical

measuring system and 2) calculation of the skid resistance

based on the measured texture by means of a rubber friction

model. We described the basic assumptions underlying the

theoretical approach and presented the model based on the

theory of Persson. Further, we described the measurement

devices and experiments conducted. For texture measure-

ment we used a chromatic white light sensor. For lack of

appropriate information about the particular measuring rub-

ber and as a first attempt to explore the potential of the

approach we utilized measured data of an actual tread rubber

assuming that a certain temperature and strain behavior (WLF

equation and Kraus model) could be attributed to the relevant

frequency range (approximately 103e106 Hz). The results are

promising. A close relation between measured and predicted

friction coefficients could be found. The 95% prediction
interval is ±0.042 and the variance is 0.021. Thus, a strong

indication could be provided by the investigations that skid

resistance could be measured without contact in the future.

As a next step the contactless skid resistance measurements

should be extended from laboratory environment to in-situ

applications. This involves the setup of a new optical sensor

and according data processing which is to be optimized in

extensive testing on the road.
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