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Abstract

We study generalisations to totally real fields of the methods originating with Wiles and Taylor and
Wiles [A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. of Math. 141 (1995) 443–551;
R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995) 553–
572]. In view of the results of Skinner and Wiles [C. Skinner, A. Wiles, Nearly ordinary deformations
of irreducible residual representations, Ann. Fac. Sci. Toulouse Math. (6) 10 (2001) 185–215] on elliptic
curves with ordinary reduction, we focus here on the case of supersingular reduction. Combining these,
we then obtain some partial results on the modularity problem for semistable elliptic curves, and end by
giving some applications of our results, for example proving the modularity of all semistable elliptic curves
over Q(

√
2 ).

© 2007 Elsevier Inc. All rights reserved.

MSC: 11F41; 11F80; 11G05

1. Introduction

Let E denote an elliptic curve over a totally real number field F . We say that E is modular if
there is a Hilbert modular form f over F of parallel weight 2 (i.e., the corresponding automorphic
representation has weight 2 at every infinite place) such that the Galois representation associated
to E via its �-adic Tate module is isomorphic to an �-adic representation associated to f (see [1]
and [20]).
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The approach is now standard, and originated in [24] and [23]; one considers the case � = 3,
uses the Langlands–Tunnell theorem to show that the reduction ρ̄E,3 is modular, and then proves
that every (suitably constrained) lift to characteristic 0 is modular.

Historically, the easier case has been where ρ̄E,3 is irreducible. In this case, the deformation
theory is now well understood, and this was the only case needed by Wiles and Taylor and
Wiles [23,24]. Over totally real fields, Fujiwara circulated a manuscript [9] some years ago,
proving an important generalisation of the method of Taylor–Wiles, and announcing a proof
of the modularity of certain elliptic curves over totally real fields. However, there are several
hypotheses appearing in his main theorem which we hope partially to eliminate in this work.
Subsequently, Skinner and Wiles [19] have proven the modularity in many ‘nearly ordinary’
cases.

In the case where ρ̄E,3 is reducible, Skinner and Wiles [17] have developed new techniques to
demonstrate modularity of elliptic curves (and more general Galois representations) over totally
real fields, although these results depend on certain hypotheses on cyclotomic extensions of F .
Since the first version of this article was written (2002–2003), Kisin has also found stronger
results (see [11,12]).

1.1. Reduction to the semistable case

We first remark that the modularity of all elliptic curves over totally real fields may be reduced
to proving the modularity of all semistable elliptic curves over totally real fields. The argument
is simple; by an explicit version of the semistable reduction theorem (see, for example, [21,
Lemma 2.2]), an elliptic curve E over a totally real field F attains semistable reduction over
a finite soluble totally real Galois extension F ′/F . (Note that F ′/F will be ramified at any
prime of F at which E has additive reduction.) The modularity of E/F then follows from the
modularity of E/F ′ using base-change techniques. This argument is well known to experts, so
we omit it here.

For this reason, we restrict attention to semistable curves, and try to prove modularity. In
view of some of the applications in mind, we focus in this paper on the easiest case, where the
ramification conditions on the field are as strong as possible, but the methods should apply more
generally. Because of the results already obtained in the reducible and ordinary cases, we focus
on the supersingular case in this paper.

1.2. Applications

As we are able to prove the modularity of more elliptic curves than was previously known, we
can therefore improve certain results in the literature. Following Wiles’s methods [24], we try to
find fields for which we can prove modularity of all semistable curves. Wiles [24, Chapter 5] uses
a switch between the primes 3 and 5, which depends on the finiteness of X0(15)(Q); however
X0(15)(F ) will generally not be finite. Other restrictions on the field also become apparent in
generalising directly his methods. However, we are able to prove modularity of all semistable
elliptic curves for the quadratic fields Q(

√
2 ) and Q(

√
17 ). That we can prove such results for

the first of these fields is a piece of good fortune; the first author and Paul Meekin [10] have
shown that a generalisation of Fermat’s Last Theorem to Q(

√
2 ) would follow from such a

result. They also show that Q(
√

2 ) is the only real quadratic field for which an implication of the
form ‘modularity implies Fermat’ can be derived directly.
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1.3. Notation

The absolute Galois group of a field F is written either as Gal(F/F) or GF . The separable
algebraic closure of F is denoted by F . Given an extension of fields K ⊃ F and some represen-
tation ρ : GF → GL2(∗), we denote the restriction of ρ to the absolute Galois group of K by
either ρ|GK

or, simply, by ρ|K. If F is a number field, we denote the decomposition and inertia
groups at a place v by Dv and Iv , respectively.

Throughout, � is an odd prime. We denote the �-adic cyclotomic character by ε�, and its
reduction, the mod � cyclotomic character, by ε̄�. We denote by ω2 the second fundamental
character of Q�. Recall that ω2 : I� → F×

�2 is the unique character of the inertia subgroup I�

given by the rule

τ → τ(�1/(�2−1))

�1/(�2−1)
.

The notation suppresses the dependence on �, and it would be more appropriate to write ω2,�

instead; the context should be generally clear. One should recall that the notion of fundamental
character is not functorial; the restriction of ω2 to a local inertia group Iv is not the second
fundamental character of Fv when the ramification degree of Fv/Q� is greater than 1. We remark
that there is an injection F×

�2 ↪→ GL2(F�); it follows that we can view ω2 as a 2-dimensional
representation Ω2 over F�. This representation is irreducible over F�, but if we extend scalars
to a coefficient field of even degree over F�, then Ω2 becomes reducible, isomorphic over this
quadratic extension to the direct sum of the characters ω2 and ω�

2.
For an elliptic curve E over a field F, we denote by E[n] the kernel of the multiplication by

n map E
×n−−→ E. If n is coprime to the characteristic of F,

ρ̄E,n : GF → AutE[n](F ) ∼= GL2(Z/nZ)

is the mod n representation. If � is a prime different from the characteristic of F , we set

ρE,� : GF → lim← AutE
[
�n
]
(F ) ∼= GL2(Z�).

1.4. Summary of results

Let F be a totally real number field, and let � be an odd prime. Suppose that for all v | �, the
ramification index of Fv/Q� is at most � − 1. Consider continuous, irreducible representations

ρ : Gal(F/F ) → GL2(Q�)

with determinant the �-adic cyclotomic character, and having the same absolutely irreducible
residual representation ρ̄. We assume that all Artinian quotients of ρ are finite flat at primes
above �, and we assume further that

ρ̄|Iv ∼ Ω2|Iv for every v | �,

where Ω2 is the second fundamental character of Q�, as in the notation section above, regarded
as a 2-dimensional representation—as our coefficient field has residue field containing F�2 , the
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representation splits as ω2 ⊕ω�
2. This is the form of the local Galois representations associated to

an elliptic curve with good supersingular reduction at v, where Fv is unramified over Q�. (If Fv is
not unramified, however, the local Galois representation may take a different form; see Section 7
for an example.) The main applications of the results of the paper will be to such elliptic curves.

Our main result is then:

Theorem 1.1. Let ρ be a representation of the above form. Suppose that ρ̄ has a modular lift
which is finite flat at primes above �. Assume that

ρ̄|Gal(F/F(ζ�))

is absolutely irreducible, and furthermore assume that

• if � = 5 and Proj ρ̄|Gal(F/F(ζ�))
∼= A5, then [F(ζ�) : F ] = 4.

Then ρ is also modular.

We give two applications of the above. The first relates to Serre’s conjecture for mod 7 repre-
sentations; we extend the result in [13], and show that:

Theorem 1.2. Let ρ̄ : Gal(Q/Q) → GL2(F7) be an absolutely irreducible, continuous, odd
representation. Suppose that the projective image of inertia at 3 has odd order and that the
determinant of ρ̄ restricted to the inertia group at 7 has even order. Then ρ̄ is modular.

This theorem has been used by Dieulefait and the second author [7] to give a new criterion
for the modularity of rigid Calabi–Yau threefolds. Of course, it is largely subsumed within recent
work of Khare and Wintenberger; however, we need no hypothesis at 2.1

Our second application relates to the modularity of elliptic curves over totally real fields. For
general totally real fields, we prove modularity subject to quite a few restrictions. For the full
result, see Section 9. A particularly neat corollary is the following.

Theorem 1.3. Every semistable elliptic curve over Q(
√

2 ) is modular.

This has implications for the study of certain Diophantine equations, and notably the Fermat
equation, over Q(

√
2 ) (see [10]).

2. Local deformations and cohomology groups

Our objective in this section is to give good upper bounds on the size of certain local coho-
mology groups. We do this for representations of a certain shape (which can be achieved after
an unramified base change). But before that, we begin by setting out our notation. Apart from �

being the residue characteristic and λ being a uniformizer (instead of p and π ), our choice of
notation is meant to be consistent with [2].

1 Note added in proof: Khare and Wintenberger also no longer need a hypothesis at 2, so our result is now contained
within their very much stronger result.
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Throughout this section, we fix a finite field k of characteristic � � 3. We denote by A its Witt
ring W(k) and by K the fraction field of A. We fix a finite totally ramified Galois extension K ′
of K and denote by A′ its ring of integers. We assume that the absolute ramification index e =
[K ′ : K] is less than or equal to � − 1. The reason for this is that there is then a good notion
of Honda system associated to group schemes. We also fix throughout a uniformizer λ such that
λe = ε� with ε ∈ A× (as K ′ is a tamely ramified extension). Write m for the maximal ideal of A′.

We denote by σ the Frobenius automorphism of A, and by Dk the Dieudonné ring. Recall
that Dk is the A-algebra generated by F and V subject to the usual relations FV = � = V F ,
Fα = σ(α)F , V α = σ−1(α)V (for α ∈ A). If there is no cause for confusion, we will abbreviate
Dk to simply D.

Various tensor products appear in this section. The unspecified − ⊗ − will simply mean
− ⊗Z�

−.

We shall be working with finite Honda systems over A′. For the various properties, see Con-
rad [2,3].

We now fix a second finite field F of characteristic � and a continuous representation

ρ̄ : GK ′ → GL2(F).

We will shortly impose a further restriction, but for the moment we assume that the representation
is finite—that is, there is a finite flat group scheme over A′ whose associated Galois module
(from the generic fibre) gives precisely our representation ρ̄. This allows us to introduce certain
cohomology groups H 1

f (GK ′ , ad ρ̄) and H 1
f (GK ′ , ad0 ρ̄). We recall the definitions (see [5] for

details): elements of H 1
f (GK ′ , ad ρ̄) are the deformations of ρ̄ to F[ε]/(ε2) which are finite, and

H 1
f (GK ′ , ad0 ρ̄) is the subspace of H 1

f (GK ′ , ad ρ̄) with determinant (of the deformation) equal
to the determinant of ρ̄.

We now impose a restriction on the shape of ρ̄:

Assumption 2.1. ρ̄ is equivalent to Ω2|GK ′ .

Let M be the Dk ⊗ F-module

(k ⊗ F)e1 ⊕ (k ⊗ F)e2

with F and V actions given by

F(e1) = 0, F (e2) = e1;
V (e1) = 0, V (e2) = −e1.

(To be more precise, these give the action on our basis elements which one then extends Frobe-
nius semi-linearly.) Let L be the subspace (k ⊗ F)e2. Then (L,M) is the finite Honda system
over A associated to Ω2|GK

. This follows, after base change (see [2, Section 4]), from the de-
scription of the Honda system over Z� associated to Ω2. (This is presumably well known.) We
reserve (L,M) for this particular Honda system throughout.

By the results of [2], calculating H 1
f (GK ′ , ad ρ̄) is the same as calculating extensions

of (L,M) by itself in the category of finite Honda systems over A′. As a first step to this calcu-
lation, we investigate the extensions of M by itself in the category of Dk ⊗ F modules.

We begin with a technical lemma which enables us to reduce calculations to one of linear
algebra.
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Lemma 2.2. Let R be a ring with finite cardinality. If

0 → Rm → U → Rn → 0

is an exact sequence of R-modules, then U is free and isomorphic to Rn+m.

Proof. The exact sequence implies that U can be generated by n + m elements. Hence there
is a surjective R-module homomorphism Rn+m � U. As R has finite cardinality, we get
Rn+m ∼= U. �
Proposition 2.3. The group of extensions Ext1

Dk⊗F
(M,M) is (non-canonically) isomorphic as

an F-vector space to

• (k ⊗ F) ⊕ (F� ⊗ F) if the degree [k : F�] is odd, and
• (k ⊗ F) ⊕ (F�2 ⊗ F) if the degree [k : F�] is even.

Proof. By Lemma 2.2, we can certainly take any extension class, as an A ⊗ F module, to be

M ⊕ M = ((k ⊗ F)(e1,0) ⊕ (k ⊗ F)(e2,0)
)⊕ ((k ⊗ F)(0, e1) ⊕ (k ⊗ F)(0, e2)

)
.

We need to specify the actions of F and V . In order to do this, we write down matrices using the
above choice of basis and compute (remembering to keep track of Frobenius semi-linearity).

To begin with, we can write

F =

⎛
⎜⎜⎜⎝

0 1 f1 f2

0 0 f3 f4

0 0 0 1

0 0 0 0

⎞
⎟⎟⎟⎠ and V =

⎛
⎜⎜⎜⎝

0 −1 v1 v2

0 0 v3 v4

0 0 0 −1

0 0 0 0

⎞
⎟⎟⎟⎠ .

Since FV = V F = � = 0, we must have the following equalities:(
0 1

0 0

)(
σ(v1) σ (v2)

σ (v3) σ (v4)

)
+
(

f1 f2

f3 f4

)(
0 −1

0 0

)
= 0,

(
0 −1

0 0

)(
σ−1(f1) σ−1(f2)

σ−1(f3) σ−1(f4)

)
+
(

v1 v2

v3 v4

)(
0 1

0 0

)
= 0.

Multiplying out, we find that

f3 = v3 = 0 and f1 = σ(v4), f4 = σ(v1).

We now reduce the number of variables further by applying appropriate k ⊗ F-linear auto-
morphisms of M ⊕ M. Let A be the endomorphism⎛

⎜⎜⎜⎝
1 0 a1 a2

0 1 a3 a4

0 0 1 0

⎞
⎟⎟⎟⎠ .
0 0 0 1
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To calculate AFA−1, we need to calculate(
a1 a2

a3 a4

)(
0 1

0 0

)
−
(

0 1

0 0

)(
σ(a1) σ (a2)

σ (a3) σ (a4)

)
+
(

f1 f2

0 f4

)

which is (−σ(a3) a1 − σ(a4)

0 a3

)
+
(

f1 f2

0 f4

)
.

We can thus assume that f4 = f2 = 0, which implies that v1 = 0. Under this assumption, our
choice of A is then restricted to

a3 = 0 and a1 = σ(a4).

To calculate AV A−1, we need to compute(
a1 a2

0 a4

)(
0 −1

0 0

)
−
(

0 −1

0 0

)(
σ−1(a1) σ−1(a2)

0 σ−1(a4)

)
+
(

0 v2

0 v4

)

which is (
0 −a1 + σ−1(a4)

0 0

)
+
(

0 v2

0 v4

)
.

Since we have a1 = σ(a4), our choice v2 ∈ k ⊗ F can further be restricted to a choice of repre-
sentative of an element of

k ⊗ F

(σ 2 − 1)(k ⊗ F)
,

while v4 can be chosen to be an arbitrary element of k ⊗ F. The proposition then follows. �
Theorem 2.4. The dimension of H 1

f (GK ′ , ad ρ̄) as an F-vector space is at most

• [K ′ : Q�] + 2 if [k : F�] is even, and
• [K ′ : Q�] + 1 if [k : F�] is odd.

Proof. As in [3], we have an F-linear map of vector spaces

t : H 1
f (GK ′ , ad ρ̄) → Ext1(M,M).

In words, the map t is just ‘take Dieudonné module of the special fibre of the associated finite
flat group scheme.’ We already have a bound for the Ext-group, thanks to Proposition 2.3. We
now start analysing the kernel of the above linear map.

We begin by describing the structure of the A′-module MA′ . We recall the definition (due
to Fontaine), and refer to [2] for the explicit description we need (see [2, Definition 2.1]). As
already set out in the beginning of this section, we have a fixed uniformizer λ of A′ satisfying
λe = ε� with ε ∈ A×.
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We have the standard identification of M(1) = (A,σ ) ⊗A M with M as an abelian group and
twisted A-action. The Dieudonné module structure then gives us two A-linear maps

F0 : M(1) → M and V0 : M → M(1).

(As in [2], we shall not abbreviate these to F and V.) There are A′-linear maps

FM : A′ ⊗A M(1) → A′ ⊗A M and V M : m ⊗A M → �−1m ⊗A M(1)

obtained simply by tensoring with the identity map on A′ and the map x → �−1x, respectively.
The A′-module MA′ is then the quotient of

(A′ ⊗A M) ⊕ (�−1m ⊗A M(1)
)

by the submodule

{(
φM

0 (u) − FM(w),φM
1 (w) − V M(u)

) ∣∣ u ∈ m ⊗A M, w ∈ A′ ⊗A M(1)
}

where φM
0 , φM

1 are the maps

φM
0 : m ⊗A M → A′ ⊗A M and φM

1 : A′ ⊗A M(1) → �−1m ⊗A M(1)

induced by the inclusions m ↪→ A′ and A′ ↪→ �−1m.

A basis of A′ ⊗A M as a free k ⊗ F-module is given by

λi ⊗ ej , i = 0, . . . , e − 1, j = 1,2.

For �−1m ⊗A M(1), we have the k ⊗ F basis

λ−i ⊗ ej , i = 0,1, . . . , e − 1, j = 1,2.

Note that for i � 1, the elements (λi ⊗ e1,0) are trivial in MA′ . Indeed, we have

(
λi ⊗ e1,0

)= (φM
0

(
λi ⊗ e1

)− FM(0),0 − V M
(
λi ⊗ e1

))
.

Furthermore, for i � 1, we have

(
0, λ−i ⊗ e1

)= (0,0 − V M
(
λe−i ⊗ e2

))
= (−λe−i ⊗ e2,0

)
.

Note also that

(
0,1 ⊗ e1

)= (φM
0 (0) − FM(1 ⊗ e1),φ

M
1 (1 ⊗ e1) − V M(0)

)
, and

(0,1 ⊗ e2) = (1 ⊗ e1,0) + (φM
0 (0) − FM(1 ⊗ e2),φ

M
1 (1 ⊗ e2) − V M(0)

)
.
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Thus any element in MA′ can be expressed as an k ⊗ F-linear combination of

(1 ⊗ e1,0),
(
λi ⊗ e2,0

)
and

(
0, λ−m ⊗ e2

)
with i = 0,1, . . . , e − 1 and m = 1, . . . , e − 1. Since the A′-length of MA′ is the same as the
A-length of M times e [2, Lemma 2.2], we deduce that the set of generators above is in fact a
basis.

Obviously, the A′-submodule of MA′ obtained by taking the A′-span of L is precisely A′ ⊗A

A⊗F(e2,0). Now let (L′,M ′) be the finite Honda system for an element in the kernel of t. Since
M ′ = M ⊕ M as a Dk ⊗ F-module, we can write M ′

A′ = MA′ ⊕ MA′ . We must therefore have,
by length considerations,

L′ = (A′ ⊗A A ⊗ F)
(
(e2,0),0

)+ (A′ ⊗A A ⊗ F)
(
x, (e2,0)

)
for some x ∈ MA′ . From our description of a basis of MA′ , it follows that we can take

x = a(1 ⊗ e1,0) + y

with a ∈ k ⊗ F and y an element in the A ⊗ F-span of (0, λ−m ⊗ e2), m = 1, . . . , e − 1. By
applying a Dk ⊗ F-linear automorphism of M ⊕ M of the type⎛

⎜⎜⎜⎝
1 0 0 ∗
0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

we can assume that a = 0. Hence the kernel has dimension, as an F-vector space, at most
(e − 1)[k : F�]; and this proves the theorem. �
Corollary 2.5. The dimension of H 1

f (GK ′ , ad0 ρ̄) as an F-vector space is at most

• [K ′ : Q�] + 1 if [k : F�] is even, and
• [K ′ : Q�] if [k : F�] is odd.

3. The deformation problem

We now set up the deformation problem we want to study. We begin by fixing a totally real
extension F of even degree (over Q), an odd prime �, a finite field k of characteristic �, and a
continuous homomorphism

ρ̄ : GF → GL2(k)

which is absolutely irreducible and odd. We assume that the ramification degree of F at all primes
over � is less than or equal to � − 1. Further, we suppose that ρ̄ has the following properties:

• The determinant of ρ̄ is the mod � cyclotomic character.
• ρ̄ restricted to the absolute Galois group of F(ζ�) is absolutely irreducible.
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• If � = 5 and Proj ρ̄|Gal(F/F(ζ�))
, then [F(ζ�) : F ] = 4.

• Let x be a prime of F above � and let Ix the inertia group of Fx. Then

ρ̄|Ix ∼ Ω2|Ix

where Ω2 is the second fundamental character.

We assume that the characteristic polynomial of ρ̄(σ ) is split over k for any σ ∈ GF . We fix a
finite extension K of Q� with ring of integers O, maximal ideal (λ) and residue field k.

Let CO be the category of complete, local, Noetherian O-algebras with residue field k. Given
(A,mA) ∈ CO, we call a continuous homomorphism

ρA : GF → GL2(A)

a finite flat deformation of ρ̄ if

• ρA is odd and unramified outside finitely many primes,
• ρA (mod mA) = ρ̄,
• ρA is finite flat at primes v | � (i.e., the restriction of ρA to GFv , for v | �, has the property

that for all n � 1, the Fv-group scheme associated to the GFv -module ρA mod mn
A is the

generic fibre of a finite flat group scheme over OF,v), and
• ρA has determinant the �-adic cyclotomic character.

Two such deformations are said to be strictly equivalent if one can be conjugated to the other by
a matrix which reduces to the identity modulo the maximal ideal mA.

Now let Σ be a finite set of (finite) primes of F not containing any places over � (and it could
be empty). We say a finite flat deformation is of type Σ if the representation is unramified outside
primes in Σ and outside the set of primes where ρ̄ is ramified. There is then a universal finite flat
deformation of ρ̄ of type Σ which we shall denote by (RΣ,ρΣ).

Given a finite flat deformation ρ : GF → GL2(O/λn) of type Σ, one defines the Galois co-
homology group H 1

Σ(GF , ad0 ρ) to be the deformations of ρ to (O/λn)[ε]/ε2 which are of
type Σ. Recall that ad0 ρ can be identified with the group of 2 × 2 trace zero matrices over O/λn

with GF action via conjugation (by ρ). The cohomology group H 1
Σ(GF , ad0 ρ) is then precisely

H 1
LΣ

(GF , ad0 ρ) where the local conditions LΣ = {Lx} are given by

• Lx = H 1(GFx /Ix, ad0 ρIx ) if x � �, x /∈ Σ and ρ̄ is unramified at x,

• Lx = H 1(GFx , ad0 ρ) if x � �, and either x ∈ Σ or ρ̄ is ramified at x,

• Lx = H 1
f (GFx , ad0 ρ) if x | �.

The universal deformation ring RΣ can be topologically generated as an O-algebra by
dimk H 1

Σ(GF , ad0 ρ̄) elements. If π : RΣ � O is an O-algebra homomorphism with correspond-
ing representation ρ, we have a canonical isomorphism

Hom
(
kerπ/(kerπ)2,K/O

)∼= H 1
Σ

(
GF , ad0 ρ ⊗ K/O

)
.
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The pairing ad0 ρ̄ × ad0 ρ̄ → k obtained by taking the trace is perfect. Using this pairing,
one defines H 1

Σ(GF , ad0 ρ̄(1)) to be given by local conditions {L⊥
x } where L⊥

x is the orthogonal
complement to Lx with respect to the perfect pairing

H 1(GFx , ad0 ρ̄
)× H 1(GFx , ad0 ρ̄(1)

)→ H 2(GFx , k(1)
) k.

From now onwards, we assume the following:

Assumption 3.1. For each prime x of F dividing �, the Honda system associated to ρ̄|Fx has the
particular form specified in Assumption 2.1.

Now we make some calculations of these cohomology groups, using similar arguments to
those of Wiles.

Theorem 3.2. As an O-algebra,

dimk H 1
Σ

(
GF , ad0 ρ̄(1)

)+ ∑
x∈Σ

dimk H 0(GFx , ad0 ρ̄(1)
)

elements are sufficient to generate the universal deformation ring RΣ topologically.

Proof. This is almost exactly the same as the proof of Corollary 2.43 in [5]. Using Theorem 2.19
of [5] (a full proof is given in [14, p. 440]), one finds that dimk H 1

Σ(GF , ad0 ρ̄) is the sum of
terms:

• dimk H 1
Σ(GF , ad0 ρ̄(1)).

• ∑x|� dimk H 1
f (GFx )−

∑
x|� dimk H 0(GFx )−

∑
x|∞ dimk H 0

Σ(GFx ), where H ∗∗ (GFx ) means

the cohomology group H ∗∗ (GFx , ad0 ρ̄). This term is less than or equal to 0 by Corollary 2.5.
• dimk H 1(GFx , ad0 ρ̄) − dimk H 0(GFx , ad0 ρ̄), which equals dimk H 0(GFx , ad0 ρ̄(1)), for

each x ∈ Σ. �
Theorem 2.49 of [5] still holds in our present setting; the proof, with trivial modifications,

remains valid. The result being of significant importance, we give a brief sketch of the proof.

Theorem 3.3. Let r = dimk H 1
∅ (GF , ad0 ρ̄(1)). For every positive integer n, we can find a finite

set primes Σn such that the following hold:

• Every prime in Σn has norm congruent to 1 modulo �n.
• The sets Σn all have size equal to r .
• If x ∈ Σn, then ρ̄ is unramified at x and the Frobenius (at x) has distinct eigenvalues.
• The universal deformation ring RΣn can be topologically generated as an O-algebra by r

elements.

Proof. As in the proof of Theorem 2.49 of [5], one reduces the result to showing that for ψ ∈
H 1(GF , ad0 ρ̄(1)) − {0}, we can find σ ∈ GF such that
∅
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• σ acts trivially on F(ζ�n),
• ad0 ρ̄(σ ) has an eigenvalue not equal to 1, and
• ψ(σ) /∈ (σ − 1) ad0 ρ̄(1).

(We remark that Theorem 3.2 is crucial in getting the right number of generators from this re-
duction.)

Let Fn be the minimal extension of F(ζ�n) on which ad0 ρ̄ acts trivially. The degree of the
extension F1/F0 is at most � − 1; the degree [Fn : F1] is of �-power order. It follows that

H 1(Gal(Fn/F0), ad0 ρ̄(1)
)GF ∼= Hom

(
Gal(Fn/F1), ad0 ρ̄(1)GF

)
is trivial (since ρ̄ restricted to the absolute Galois group of F(ζ�) is absolutely irreducible).

Now consider H 1(Gal(F0/F ), ad0 ρ̄(1)GF0 ). If this is non-trivial, the order of Gal(F0/F )

must be divisible by � and Gal(F0/F ) must have Gal(F (ζ�)/F ) as a quotient. Note that
Gal(F0/F ) is isomorphic to the projective image of ρ̄, and so from the list in Theorem 2.47
of [5] we see that the case � = 5 and Proj ρ̄|Gal(F/F (ζ�))

cannot occur. In the other cases the pro-

jective image of ρ̄ is a semi-direct extension of PSL2(F�r ) by a group of order prime to �, and
so H 1(Gal(F0/F ), ad0 ρ̄(1)) again vanishes on applying Lemma 2.48 of [5].

A straightforward application of the inflation–restriction sequence then implies that the group
H 1(Gal(Fn/F ), ad0 ρ̄(1)) is trivial, and it follows that ψ(GFn) is non-trivial.

Now ρ̄ restricted to GF(ζ�n ) is still absolutely irreducible. Thus the order of Gal(Fn/F (ζ�n)) is
not a power of �. The group Gal(Fn/F (ζ�n)) also acts (non-trivially) on {0} �= ψ(GFn) ⊂ ad0 ρ̄.
Therefore we can find a non-trivial element g ∈ Gal(Fn/F (ζ�n)) of order prime to � and fixing a
non-zero element of ψ(GFn). Let g̃ ∈ GF(ζ�n ) be a lift of g. As ψ(GFn) �⊂ (g − 1) ad0 ρ̄(1), we
can find h ∈ GFn such that

ψ(hg̃) = ψ(h) + ψ(g̃) /∈ (g̃ − 1) ad0 ρ̄(1).

Finally, take σ =hg̃. Then σ acts trivially on F(ζ�n), and (σ −1)ad0 ρ̄(1)= (g̃ −1)ad0 ρ̄(1) �⊃
ψ(σ). Since the order of σ is prime to � (and is not 1), it follows that ad0 ρ̄(σ ) has an eigenvalue
not equal to 1. �
4. Hecke algebras and �-adic modular forms

We fix a totally real field F of even degree and an odd rational prime �. We write D for the
division algebra with centre F and ramified exactly at the set of infinite places of F . Write Z

for the algebraic group defined by Z(R) = (D ⊗F R)× if R is an F -algebra. We also fix the
following:

• A maximal order OD, and isomorphisms OD,x
∼= M2(OF,x) for all finite places x of F.

These isomorphisms give us an identification of GL2(A
∞
F ) with (D ⊗Q A∞)×.

• A uniformiser �x of OF,x for each finite place x.

We write A for a topological Z�-algebra which is one of the following: a finite extension of Q�,

the ring of integers in such an extension, or a quotient of such a ring of integers.
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Definition 4.1. For a compact open subgroup U ⊂ (D ⊗Q A∞)× and a topological ring A as
above, we define SA(U) to be the space of continuous functions

f : D× \ (D ⊗Q A∞)×/U.Z
(
A∞

F

)→ A.

We define SA to be the direct limit of SA(U) as U varies over open compact subsets of
(D ⊗Q A∞)×.

For a compact open U , the finite double coset decomposition

(
D ⊗Q A∞)× =

∐
D×tiU.Z

(
A∞

F

)
shows that

SA(U) →
⊕

i

A

f → (
f (ti)

)
i

is an isomorphism. In particular, for any A-algebra B, we have

SA(U) ⊗A B ∼= SB(U).

We denote by [ti] the function in SA(U) which is 1 on D×tiU.Z(A∞
F ) and 0 elsewhere.

Definition 4.2. For an ideal n of OF and quotients Hx of (OF,x/nx)
×, we set H =∏x Hx . We

define UH (n) to be the compact open subgroup
∏

x UH (n)x ⊂ (D ⊗Q A∞)× where

UH (n)x =
{(

a b

c d

)
∈ GL2(OF,x) ∼= O×

D,x

∣∣∣ c ∈ nx, ad−1 = 1 in Hx

}
.

Now let n and Hx be as in the above definition. We recall the definitions of the various Hecke
operators on SA(UH (n)):

• If x does not divide �n, we denote the Hecke operators

[
UH (n)

(
�x 0

0 1

)
UH (n)

]
and

[
UH (n)

(
�x 0

0 �x

)
UH (n)

]

by Tx and Sx , respectively.
• If x divides n, we set

〈h〉 =
[
UH (n)

(
h̃ 0

0 1

)
UH (n)

]

for h ∈ Hx and h̃ a choice of lift of h to O× .
F,x
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• If x divides n, the Hecke operators

[
UH (n)

(
�x 0

0 1

)
UH (n)

]
and

[
UH (n)

(
1 0

0 �x

)
UH (n)

]

are denoted by U�x and V�x , respectively. We also denote by Sx the Hecke operator

[
UH (n)

(
�x 0

0 �x

)
UH (n)

]
.

Definition 4.3. Let n,Hx and A be as in the preceding paragraphs. We define the Hecke algebra
TA(UH (n)) to be the A-subalgebra of EndA(SA(UH (n))) generated by Tx (for x not dividing �n)
and U�x (for x | n but not dividing �).

A maximal ideal m of TA(UH (n)) is said to be Eisenstein if it contains Tx − 2 and Sx − 1 for
all but finitely many primes with Nx (mod �) = 1.

The Hecke algebra TA(UH (n)) is always commutative. Also, TZ�
(UH (n)) is semi-local and

�-adically complete, and we have the identification

TZ�

(
UH (n)

)∼=
∏

TZ�

(
UH (n)

)
m

where the product is over all maximal ideals m.

If either � is invertible in A, or if Q(ζ + ζ−1) �⊂ F where ζ is a primitive �th root of unity,
we have a perfect pairing on SA(UH (n)) defined by

(f1, f2)UH (n) =
∑

i

f1(ti)f2(ti)

(
#
UH (n).Z(A∞

F ) ∩ t−1
i D×ti

F×

)−1

where

(
D ⊗Q A∞)× =

∐
D×tiUH (n).Z

(
A∞

F

)
.

We call this the standard pairing. The Hecke operators are not necessarily self-adjoint with
respect to this pairing; the general behaviour of operators is given by

([
UH ′(n′)gUH (n)

]
f1, f2

)
UH ′ (n′) = (f1,

[
UH (n)g−1UH ′(n′)

]
f2
)
UH (n)

.

Now fix a finite set of primes Σ , none lying above �, and let nΣ =∏x∈Σ x2. Let K be a finite
extension of Q� which contains all embeddings F ↪→ Q�, and let O be its ring of integers. We
fix a decomposition

(
D ⊗Q A∞)× =

∐
D×giU1(nΣ).Z

(
A∞

F

)�∐D×hiU1(nΣ).Z
(
A∞

F

)
where the gi ’s and hi ’s are such that
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� /

∣∣∣ #
U1(nΣ).Z(A∞

F ) ∩ g−1
i D×gi

F× and �

∣∣∣ #
U1(nΣ).Z(A∞

F ) ∩ h−1
i D×hi

F× .

We denote by SO(U1(nΣ))∗ the O-submodule of SO(U1(nΣ)) generated by the [gi] and �[hi].

Lemma 4.4. Keep the notation of the preceding paragraph, and suppose that the ramifica-
tion index at all primes over � of F is at most � − 1. Then � exactly divides the order of
(U1(nΣ).Z(A∞

F ) ∩ h−1
i D×hi)/F

×.

Proof. One easily reduces the statement to showing that finite subgroups of D× having �-power
order must have order exactly 1 or � (use the two exact sequences in the proof of Lemma 1.1
of [22]). Further, there can be a non-trivial finite subgroup of �-power order if and only if ζ +ζ−1

is in F. Since any group of order �2 is abelian, the only possible non-trivial finite subgroup has
to have order exactly �. �
Lemma 4.5. With the notation as above, let f ∈ SO(U1(nΣ)). Then Tx(f ) ∈ SO(U1(nΣ))∗ for
any prime x /∈ Σ with Nx ≡ −1 (mod �).

Proof. Let U(0) be the subgroup of U1(nΣ) consisting of elements whose xth component is
congruent to

( ∗ 0
∗ ∗
)

(mod �x). Let ζ ∈ h−1D×h ∩ U1(nΣ).Z(A∞
F ) have order exactly � in the

quotient (h−1D×h ∩ U1(nΣ).Z(A∞
F ))/F×. We need to compute Tx(f )(h) and check that it is a

multiple of �. Starting with a double coset decomposition given by
∐�−1

i=0 ζ i ∗ U(0) and using the
fact that ζ /∈ U(0), we get a disjoint decomposition

U1(nΣ) =
�∐

i=1

(Nx+1)/�∐
j=1

ζ iujU
(0).

This shows that, by index considerations,

U1(nΣ)

(
�x 0

0 1

)
U1(nΣ) =

�∐
i=1

(Nx+1)/�∐
j=1

ζ iuj

(
�x 0

0 1

)
U1(nΣ).

Since hζ i = dih for some di ∈ D×, we have

Tx(f )(h) =
�∑

i=1

(Nx+1)/�∑
j=1

f

(
hζ iuj

(
�x 0

0 1

))

=
�∑

i=1

(Nx+1)/�∑
j=1

f

(
huj

(
�x 0

0 1

))

= �

(Nx+1)/�∑
j=1

f

(
huj

(
�x 0

0 1

))
.

The lemma follows. �
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Now we discuss various properties of the modular forms and Hecke operators.

Theorem 4.6. Keeping the assumptions of the two preceding lemmas, we have the following:

(1) The O-module SO(U1(nΣ))∗ is invariant under the action of Hecke operators.
(2) The pairing on SK(U1(nΣ)) induces a perfect pairing

SO
(
U1(nΣ)

)× SO
(
U1(nΣ)

)∗ →O.

(3) Let m be a non-Eisenstein maximal ideal of the Hecke algebra TO(U1(nΣ)). Then
SO(U1(nΣ))m = SO(U1(nΣ))∗m. As a consequence, the pairing on SK(U1(nΣ)) induces
a perfect pairing on SO(U1(nΣ))m.

Proof. The first part is easily checked using the given pairing on SK(U1(nΣ)). The second part
follows from Lemma 4.4. The third part is a direct consequence of Lemma 4.5. �
5. Deformations in the minimal case

In this section, we show that the universal deformation ring in the minimal case is isomorphic
to a Hecke algebra, and we show that these are complete intersection rings of relative dimension
zero over Zp .

Recall that we are given a continuous representation

ρ̄ : GF → GL2(k)

satisfying the various properties listed in the beginning of Section 3, and also satisfying As-
sumption 3.1. In this and the next section, we shall assume the following additional modularity
condition.

Assumption 5.1. Let U0 denote U{1}(n∅). Then we assume that there is a continuous homomor-
phism φ : TO(U0) → k with non-Eisenstein kernel which gives our representation ρ̄. We write
m∅ for the kernel.

Our aim is to show that the natural map R∅ � TO(U0)m∅ is an isomorphism of complete
intersection rings.

Fix a finite set of primes Σ of F not dividing � such that for every x ∈ Σ, we have

• Nx ≡ 1 (mod �),

• ρ̄ is unramified at x and has distinct eigenvalues αx �= βx.

We denote the maximal �-power quotient of (OF /x)×, for x ∈ Σ, by Δx and set ΔΣ =∏Δx.

We define the following objects (all products are over x ∈ Σ ):

(1) An ideal nΣ =∏x2.
(2) Compact open subgroups U0,Σ = U{1}(nΣ) and U1,Σ = UΔΣ (nΣ).
(3) An ideal mΣ of either T(U0,Σ ) or T(U1,Σ) generated by � and

• Tx − tr ρ̄(Frobx) for x � �nΣ, and
• U�x − αx for x ∈ Σ.
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Note that Lemmas 2.1 and 2.2 of [22] remain true in the present situation (and we will write
them down again in a moment). We also have the fact that SO(U1,Σ) is an O[ΔΣ ]-module via
h → 〈h〉. But slight care is required for the critical Lemma 2.3 and Corollary 2.4 of [22]: it is no
longer obvious that SO(U1,Σ)mΣ is free over O[ΔΣ ]. Nonetheless, we can still get the ‘patching
modules’ technique of [6] to work.

We first present a trivial reformulation of Theorem 2.1 of [6].

Theorem 5.2. Fix a positive integer r, a finite field k; set A = k[[S1, . . . , Sr ]] and B =
k[[X1, . . . ,Xr ]]. We denote the maximal ideal of A by n. We are given: a k-algebra R, a non-zero
R-module H which is finite-dimensional over k. For each positive integer n, we suppose that we
have k-algebra homomorphisms φn : A → B and ψn : B → R, a B-module Hn and a B-linear
homomorphism πn : Hn → H such that:

• ψn is surjective and ψnφn = 0,
• πn induces an isomorphism between Hn/nHn and H, and
• there is an unbounded sequence of positive integers (an)n�1 such that Hn/n

anHn is free over
A/nan .

Then R is a complete intersection, and H is free over R.

We now begin analysing and comparing the O[ΔΣ ]-module structures of SO(U0,Σ) and
SO(U1,Σ). Denote the augmentation ideal of O[ΔΣ ] by IΔΣ . Obviously, functions in SO(U0,Σ)

are precisely the elements of SO(U1,Σ) which are invariant under the action of ΔΣ ; there is a
‘norm’ map

∑
h∈ΔΣ

〈h〉 : SO(U1,Σ)ΔΣ → SO(U0,Σ),

where the subscript denotes coinvariants.

Proposition 5.3. The norm map

∑
h∈ΔΣ

〈h〉 : SO(U1,Σ ) → SO(U0,Σ)

has kernel IΔΣ SO(U1,Σ ) and surjects onto SO(U0,Σ)∗.
The T(U1,Σ)-module

( ∑
h∈ΔΣ [�]

h

)
SO(U1,Σ)

is free over O[ΔΣ/ΔΣ [�]]; and the norm map factorizes, in an obvious way, as the composite of

∑
h∈ΔΣ [�]

〈h〉 and
∑

h∈ΔΣ/ΔΣ [�]
〈h〉.
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Proof. We have a decomposition

(
D ⊗Q A∞)× =

∐
D×tiU0,Σ .Z

(
A∞

F

)
.

For h ∈ ΔΣ, we have a lift h̃ ∈ (A∞
F )× which gives the coset decomposition

U0,Σ =
∐

h∈ΔΣ

(
h̃ 0

0 1

)
U1,Σ .

There is an obvious transitive action of ΔΣ on this coset decomposition.
For each ti , we define

Stabi =
{
h ∈ ΔΣ

∣∣∣D×tiU1,Σ .Z
(
A∞

F

)= D×ti

(
h̃ 0

0 1

)
U1,Σ .Z

(
A∞

F

)}
.

Obviously, the definition is independent of the representatives ti and depends only the double
coset decomposition. We get the double coset decomposition

(
D ⊗Q A∞)× =

∐
i

∐
h∈ΔΣ/Stabi

D×ti

(
h̃ 0

0 1

)
U1,Σ .Z

(
A∞

F

)
.

In particular, we see that the set

⋃
i

{〈h〉[ti]
∣∣ h ∈ ΔΣ/Stabi

}

is a basis for the free O-module SO(U1,Σ).

It is now clear that the image of the map

∑
h∈ΔΣ

〈h〉 : SO(U1,Σ) → SO(U0,Σ)

is free over O with basis {|Stabi |[ti]}i . The fact that the kernel is the image of the augmentation
ideal is obvious once we show that it is enough to consider elements in the kernel having the
form

x =
∑

h∈ΔΣ/Stabi

ah〈h〉[ti] with ah ∈O and
∑

h∈ΔΣ/Stabi

ah = 0.

It suffices to consider such x because we can write x =∑xi , where xi lies in the kernel and has
the form |Stabi |(∑ah)[ti].

We now show that the image of the norm map is SO(U0,Σ)∗ by proving that the order of Stabi

is equal to the power of � that divides the order of (t−1D×ti ∩ U0,Σ .Z(A∞))/F×.
i F
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We claim that the order of (t−1
i D×ti ∩ U1,Σ .Z(A∞

F ))/F× is not divisible by �. Indeed, let
α ∈ t−1

i D×ti ∩ U1,Σ .Z(A∞
F ) be such that α� ∈ F×. Fix a place x ∈ Σ. We can write the xth

component of α ∈ U1,Σ .Z(A∞
F ) as uxzx where zx ∈ Kx and ux ∈ GL2(Ox) satisfies

ux ≡
(

h ∗
0 1

)
(mod ωx)

with h having order prime to �. Raising ux to the �th power, one deduces that ux reduces to the
identity mod ωx, and hence that ux is trivial. This then implies that α ∈ F×.

Let m be the prime to � part of the order of (t−1
i D×ti ∩ U0,Σ .Z(A∞

F ))/F×. We define
a map θ : Stabi → (t−1

i D×ti ∩ U0,Σ .Z(A∞
F ))/F× as follows: If h ∈ Stabi , we must have

t−1
i dti = hu1a = x (say) for some d ∈ D×, u1 ∈ U1,Σ and a ∈ (A∞

F )×. Thus x ∈ t−1
i D×ti ∩

U0,Σ .Z(A∞
F ), and we set θ(h) = xm (mod F×). By the claim established in the previous para-

graph, it follows that θ is a well-defined injective homomorphism from Stabi to the �-primary
part of (t−1

i D×ti ∩ U0,Σ .Z(A∞
F ))/F×. Since by Lemma 4.4 the order of the �-primary part

of (t−1
i D×ti ∩U0,Σ .Z(A∞

F ))/F× is exactly � or 1, it is then simple to verify that θ is an isomor-
phism between Stabi and the �-primary part of (t−1

i D×ti ∩ U0,Σ .Z(A∞
F ))/F×. It follows that

the image of the norm map is exactly SO(U0,Σ )∗.
The last part of the proposition follows since Stabi ⊂ ΔΣ [�]. �
The following is Lemma 2.2 of [22]. The proof given in [22] works verbatim in our case

(thanks to Theorem 4.6).

Lemma 5.4. There is an isomorphism SO(U0,∅)m∅ → SO(U0,Σ)mΣ inducing an isomorphism
T(U0,Σ)mΣ → T(U0,∅)m∅ .

Using the fact that the rings in consideration are semi-local, reduced and complete (they are
finite flat Z�-algebras), and Theorem 4.6, we get the following:

Corollary 5.5.

(1) There is an isomorphism SO(U1,Σ)mΣ,ΔΣ → SO(U1,∅)m∅ . This isomorphism is compatible
with the map on Hecke algebras T(U1,Σ)mΣ → T(U0,∅)m∅ which sends:
• Tx to Tx for x not dividing �nΣ,

• 〈h〉 to 1 for h ∈ ΔΣ, and
• U�x to Ax for x ∈ Σ where Ax is the unique root of X2 − TxX + Nx in T(U0,∅)m∅

congruent to αx (mod m∅).
(2) The surjection SO(U1,Σ)mΣ � SO(U1,∅)m∅ given by composing the norm map with the

isomorphism of the preceding lemma factorizes as the composite of

SO(U1,Σ)mΣ,ΔΣ � HΣ and HΣ → SO(U1,∅)m∅

where
• HΣ is a T(U1,Σ)mΣ -algebra and the maps are compatible with the algebra structures,

and
• HΣ is a free O[ΔΣ/ΔΣ [�]] module.
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We apply the above corollary to the sets Σn produced by Theorem 3.3. Applying the ‘patching
modules’ result of Diamond [6] and Fujiwara [9] (Theorem 5.2 above), we get the following
result.

Theorem 5.6. The natural map

R∅ → T(U0)m∅

is an isomorphism of complete intersection rings and the module SO(U0)m∅ is free over
T(U0)m∅ .

6. Non-minimal level

The proof of the result in the non-minimal case given in [22] remains valid in our case. We
shall only give a sketch. Throughout this section, we keep the various assumptions (and notation)
of the last section.

Fix a homomorphism π∅ : R∅ � O. We now let Σ be a finite set of primes of F not containing
any primes above �. We denote by πΣ the surjection RΣ � O obtained by taking the composite
of

RΣ � R∅ � O

where the first map is the one given by the universal property of RΣ and the second map is π∅.
We shall denote the kernel of πΣ by PΣ.

Let nΣ =∏x∈Σ x2, and let UΣ = U{1}(nΣ). Also, let mΣ be the maximal ideal of TO(UΣ)

corresponding to our residual representation ρ̄. We denote by TΣ the localization TO(UΣ)mΣ ,

and write SΣ for the TΣ -module SO(UΣ)mΣ .

We then have the following.

Theorem 6.1. The natural map RΣ � TΣ is an isomorphism of complete intersection rings and
SΣ is free over TΣ.

To prove the theorem, one needs to check (by Theorem 2.4 of [6]) that the order of PΣ/P2
Σ

divides the order of

ΩΣ
def= SΣ

SΣ [P] ⊕ SΣ [AnnTΣ
P] .

A standard computation shows that the order of PΣ/P2
Σ divides

#
(
P∅/P2

∅
) ∏

x∈Σ

#
(
O/(1 − Nx)

(
T 2

x − (1 + Nx)2)O),
and we shall prove that this expression is the order of ΩΣ .

Note that SΣ [PΣ ] is a free O-module of rank 1. Fix a perfect symmetric O-valued O-bilinear
pairing {,}Σ on SΣ [PΣ ], and let jΣ : SΣ [PΣ ] ↪→ SΣ be the natural inclusion. Also, define a
pairing 〈,〉Σ on SΣ by

〈f1, f2〉Σ = (f1,wΣf2)



F. Jarvis, J. Manoharmayum / Journal of Number Theory 128 (2008) 589–618 609
where (,) is the standard pairing, and wΣ ∈ GL2(A
∞
F ) ∼= (D ⊗Q A∞)× is the element defined by

wΣ,x =
⎧⎨
⎩

identity if x /∈ Σ,(
0 1

� 2
x 0

)
if x ∈ Σ.

This new pairing is perfect, and the Hecke operators are self-adjoint with respect to 〈,〉Σ.

Now let x be a prime not dividing nΣ�. There is a well-defined map

ix : SΣ → SΣ∪{x}

which is obtained from the map sending f ∈ SO(UΣ) to

(Nx)f −
(

1 0

0 �x

)
Txf +

(
1 0

0 � 2
x

)
f ∈ SO(UΣ∪{x}).

Under this map, the image of SΣ [PΣ ] is contained in SΣ∪{x}[PΣ∪{x}]. We denote by ĩx the
resulting map from SΣ [PΣ ] to SΣ∪{x}[PΣ∪{x}].

We then have the following.

• Let i∗x be the adjoint of ix with respect to the pairings 〈,〉Σ and 〈,〉Σ∪{x}. The composite
i∗x ◦ ix is equal to

Nx(1 − Nx)
(
T 2

x − (1 + Nx)2).
• ix(SΣ [PΣ ]) = SΣ∪{x}[PΣ∪{x}]. This follows from Ihara’s lemma (see [22, Lemma 3.1]).
• Let j∗

Σ be the adjoint of jΣ with respect to the pairings {,}Σ and 〈,〉Σ. It induces an isomor-
phism

j∗
Σ : ΩΣ

∼−→ SΣ [PΣ ]
j∗
ΣSΣ [PΣ ] .

• Let ĩx
∗

be the adjoint of ĩx with respect to the pairings {,}Σ and {,}Σ∪{x}. It is an isomor-
phism, and we have ĩx

∗ ◦ j∗
Σ∪{x} = j∗

Σ ◦ i∗x .

It follows that

#ΩΣ = #Ω∅
∏
x∈Σ

#
(
O/(1 − Nx)

(
T 2

x − (1 + Nx)2)O).
The result in the minimal case implies that #Ω∅ = #(P∅/P2

∅), and hence that

#
PΣ

P2
Σ

∣∣∣ #ΩΣ.
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7. Modularity of Galois representations and elliptic curves

We now collect the results of the preceding two sections.
Let F be a totally real, finite extension of Q. Let O be the ring of integers in a finite extension

of Q� where � is an odd prime, and let k be its residue field. We suppose that we are given
continuous representations

ρi : GF → GL2(O), i = 1,2,

satisfying the following properties:

• ρi (i = 1,2) is an odd representation unramified outside finitely many primes;
• detρ1 = detρ2 = ε� where ε� is the �-adic cyclotomic character.
• The residual representations ρ̄i : GF → GL2(k) are equivalent and are absolutely irre-

ducible. We denote the residual representation by ρ̄.

Theorem 7.1. With notations as in the preceding paragraph, we make the following assumptions.

• The restriction of ρ̄ to the absolute Galois group of F(ζ�) is absolutely irreducible; further-
more, if � = 5 and Proj ρ̄|Gal(F/F(ζ�))

, then [F(ζ�) : F ] = 4.

• (Conditions at �.) Let v be any prime of F dividing �, and let Iv be the inertia group of Fv.

We assume:

(1) ρ̄|Iv ∼ Ω2|Iv , where Ω2 is the second fundamental character of the inertia group of Q�.

(2) Let m be the maximal ideal of O, and let ρ̄i,n be the reduction of ρi modulo mn. Then
ρ̄i,n|Fv is finite flat.

• The ramification index of F at any prime above � is less than or equal to � − 1.

Under these assumptions, the modularity of ρ1 implies the modularity of ρ2.

Proof. We can find a totally real, finite soluble extension F ′/F such that:

• The extension F ′/F is unramified at primes dividing �.

• ρ̄|GF ′ satisfies Assumption 5.1. (For this, we need to use the modularity of ρ1 along with the
base change results in [18].)

It follows that ρ2|GF ′ is modular. Langlands’ cyclic base change then shows that ρ2 is modu-
lar. �

In Section 9, we will give some applications to the modularity of elliptic curves. However,
let us remark here that Theorem 7.1 will not apply in general to all supersingular curves, as the
first condition at � will not be satisfied in general. Indeed, let F = Q(

√
3 ), and let E denote the

elliptic curve

y2 = x3 + √
3x2 + x + 1.
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The curve has discriminant 32(3
√

3−14), and hence has good reduction at the prime
√

3 above 3.
On the other hand, it is easy to show that multiplication by 3 on the group law of an elliptic curve

y2 = x3 + a2x
2 + a4x + a6

is given by

[3]t = 3t − 8a2t
3 + · · · ,

so that the curve above has supersingular reduction at
√

3, as v3(a2) = v3(
√

3 ) > 0, showing that
the formal group at 3 has height 2. As in Serre [15, Proposition 10], the action of tame inertia on
the 3-torsion points is given by 2 copies of the fundamental character of level 1, rather than by
the fundamental character of level 2.

Serre’s argument also shows that in order that the mod 3 representation of the curve E be
given (on tame inertia) by the fundamental character of level 2, it is necessary and sufficient
that the Newton polygon of the multiplication-by-3 map on the formal group should consist of a
single line from (1, e) to (9,0). This is automatic when e = 1, but if e > 1, then other situations
may arise, as above.

It follows that our main result can apply to all supersingular curves defined over fields F

unramified at 3, as well as to many examples of curves defined over more general fields.

8. Applications I

Theorem 8.1. Let ρ̄ : Gal(Q/Q) → GL2(F7) be an absolutely irreducible, continuous, odd rep-
resentation. If the projective image of ρ̄ is insoluble, we also assume that:

• the projective image of inertia at 3 has odd order,
• the determinant of ρ̄ restricted to the inertia group at 7 has even order,

then ρ̄ is modular.

Sketch of proof. Of course, we need only consider the case when the image of ρ̄ is insoluble.
Moreover by [13], we can assume that the restriction of ρ̄ to a decomposition group at 7 is
irreducible. Twisting by a quadratic character, we can also assume that ρ̄|I7 is equivalent to
ω2 ⊕ ω7

2 or ω13
2 ⊕ ω7.13

2 where ω2 : I7 → F×
49 is the second fundamental character. Applying

the axiomatic formulation of Ramakrishna’s result in [21], together with Theorems 3.2.1, 4.2.1
of [3], one deduces the existence of a continuous, odd representation

ρ : Gal(Q/Q) → GL2(Z7)

lifting ρ̄, unramified outside finitely many primes, determinant the cyclotomic character times
a finite order character, and such that the Artinian quotients ρ (mod 7n) are finite flat when
restricted to the absolute Galois group of Q7(71/4). Assuming the existence of a totally real
soluble extension F/Q such that ρ̄|GF

is modular and the ramification index of F/Q at 7 is at
most 6, one deduces the modularity of ρ by Theorem 7.1 and Langlands’ cyclic base change.

We now explain how to find such a field F. Firstly, we can find a finite soluble, totally real
extension F1/Q and a quadratic twist of ρ̄|GF1

, which we denote by ρ̃, such that the following
conditions are satisfied.
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• The determinant of ρ̃ is the mod 7 cyclotomic character.
• Conditions at 3: Let v be any prime of F1 above 3, and let Dv be a decomposition group

at v.

◦ ρ̃ is trivial on Dv .
◦ The ramification index of F1,v/Q3 is odd.

• Conditions at 7: Let v be any prime of F1 above 7, and let Dv , Iv be the decomposition and
inertia groups at v. Then, the ramification index of F1,v/Q7 is exactly 4. Furthermore, we
have ρ̃|IF1,v

∼= (ω2 ⊕ ω7
2)|IF1,v

.

We denote by X(ρ̃) the (completed) moduli space of elliptic curves with mod 7 representation
symplectically isomorphic to ρ̃ (see [13] for details). The canonical divisor embeds X(ρ̃) as a
quartic curve in P2

/F1
.

For each prime v of F1 dividing 3∞, we can find a finite unramified extension Fv/F1,v and a
line Lv defined over F1,v such that Lv cuts X(ρ̃)/Fv at four distinct points all of which are defined
over Fv. Moreover, the elliptic curves corresponding to these four points all have good ordinary
reduction when v | 3. (See the fourth paragraph in Section 5 of [13].) For primes above 7, we
have the following lemma:

Lemma 8.2. Let v be a prime of F1 above 7. We can find a finite Galois extension Fv/F1,v and
an Fv-rational line Lv such that the following holds.

• Lv cuts X(ρ̃)/Fv at four distinct points all of which are defined over Fv.

• The ramification index of Fv/Q7 is at most 4. The four points of intersection are all elliptic
curves with good supersingular reduction.

Assuming the above lemma, intersecting X(ρ̃) with a line over F1 which is v-adically close
to Lv for each v | 3.7.∞ gives the following: There is a finite, soluble, totally real F ⊃ F1 ⊃ Q,

and an elliptic curve E/F satisfying the following conditions.

• ρ̄E,7 ∼ ρ̃|GF
and ρ̄E,3 : GF � GL2(F3) is surjective.

• Conditions at primes v dividing 3: E has good ordinary reduction at every prime above 3
and the ramification index of F at 3 is odd.

• Conditions above 7: F/F1 is unramified at every prime above 7 and E has good supersingu-
lar reduction at every prime above 7.

The elliptic curve E is modular by a result of Skinner and Wiles [19], and therefore ρ̄ is also
modular. �
Proof of Lemma 8.2. The modular curve X(ω2 ⊕ω7

2)/Qnr
7

is isomorphic to X(ρ̃) over Qnr
7 (

4
√

7 ).

The elliptic curve y2 = x3 + x has j -invariant 1728 and so has supersingular reduction. Taking
a cyclic degree 3 isogeny of E if necessary, we can assume that X(ω2 ⊕ ω7

2)(Q
nr
7 ) contains an

elliptic curve E having good supersingular reduction and with j -invariant 1728. Let us denote
this point by P. From the geometry of the Klein quartic (see the proposition in Section 2 of [8]),
we see that there is a unique involution (in the automorphism group) fixing P. The normalizer
of this involution is a Sylow 2-subgroup, and the orbit of P when acted on by the normalizer has
size exactly 4. Furthermore, they (the points in the orbit) lie on a unique line.
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We can thus find a unique line L passing through P such that:

• L is defined over Qnr
7 ,

• L passes through four distinct points of X(ω2 ⊕ ω7
2) whose j -invariants are 1728.

We claim that two of these points are already defined over Qnr
7 . We have the point P with

corresponding elliptic curve E. Note that E has complex multiplication by Z[i] (and the endo-
morphism ring is already defined over Qnr

7 ). We now check that the isogeny E
2−2i−−−→ E gives us

another point of intersection (which is obviously defined over Qnr
7 ). This can be checked over C,

and follows from the following observations.

• The involution
( 0 1

−1 0

) ∈ PSL2(F7) fixes

({1/7, i/7},C/Z + iZ
) ∈ X(7)(C).

• ( 2 2
−2 2

)
is in the normalizer of

( 0 1
−1 0

)
and sends

({1/7, i/7},C/Z + iZ
)

to
({2 − 2i/7,2 + 2i/7},C/Z + iZ

)
.

Thus each of the four points of intersection are defined over Qnr
7 (

√
7 ). The Sylow 2-subgroup

which acts transitively on these four points is dihedral; in terms of generators and relations, it is
given by

〈
α,β

∣∣ α4 = β2 = e, βαβ = α3〉.
The unique involution which stabilizes P is α2, and it is defined over Qnr

7 . The other three points
are given by α(P ),β(P ) and αβ(P ).

We now check that α,β are defined over Qnr
7 (

4
√

7 ). If σ ∈ GQnr
7 (

√
7 ), we have

(σ ∗ β)(P ) = σ
(
β
(
σ−1P

))= β(P ).

Therefore, we have σ ∗ β = α2i(σ )β where

i : GQnr
7 (

√
7 ) → Z/2Z

is a continuous homomorphism which necessarily factors through Qnr
7 (

4
√

7 ). Similarly for α.

We can thus conclude that all the four points of intersection have good supersingular reduction
Qnr

7 (
4
√

7 ).

Finally, it follows that we can find a line defined over an extension of F1,v with absolute
ramification index 4 which cuts X(ρ̃) at four distinct supersingular points, all defined over that
extension. Take Fv to be the Galois closure of the extension thus constructed, and take Lv to be
the line L/Fv . �
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9. Applications II

The aim of this section is to study the modularity of elliptic curves over certain totally real
fields, using Theorem 7.1. Our main results are given by Propositions 9.2 and 9.3. For the partic-
ular example of the field Q(

√
2 ), we can prove more; the analogue of the switch between p = 3

and p = 5 used by Wiles [24, §5] holds, and we can use existing results, together with the new
results in this paper, to deduce the modularity of all semistable elliptic curves over Q(

√
2 ).

In [10], it is explained that this implies a version of Fermat’s Last Theorem over Q(
√

2 ).
Further calculations in [10] show that Q(

√
2 ) is the only real quadratic field for which one can

hope to generalise the methods of Ribet and Wiles to prove such a result. It seems remarkable
to us that there are any fields other than Q for which all the numerology allows us to prove
generalisations of Fermat’s Last Theorem.

We begin by proving results for more general fields. We start with a preliminary lemma.

Lemma 9.1. Let p be equal to 3 or 5, and let F be a totally real number field in which p is
unramified. Let E be an elliptic curve over F with good supersingular reduction at some place
v | p. Then

ρ̄E,p|
Gal(F/F(

√
(−1)(p−1)/2p ))

is absolutely irreducible.

Proof. The presence of a non-trivial complex conjugation shows that irreducibility is the same as
absolute irreducibility for odd GL2(Fp)-valued representations of totally real fields. The lemma
then follows easily when p = 5.

We now do p = 3. Suppose, for a contradiction, that the conclusion of the lemma fails. Let Iv

be a decomposition group at v. Since the image ρ̄E,3(Iv) is cyclic of order 8, it follows that the
image ρ̄E,3(Gal(F/F )) is the full Sylow 2-subgroup of GL2(F3). Denoting by K the splitting
field of ρ̄E,3, it follows that the image ρ̄E,3(Gal(K/F(

√−3 ))) is an abelian group of order 8.

The Sylow 2-subgroup of GL2(F3) is the group

〈
c, τ

∣∣ c2 = τ 8 = 1, cτ = τ 3c
〉
,

and we may suppose that

c =
(

1 0

0 −1

)
, τ =

(
1 1

−1 1

)
.

Since the image of Gal(K/F(
√−3 )) is in SL2(F3), it must in fact be the subgroup generated by

τ 2 and cτ. This subgroup is non-abelian, giving the desired contradiction. �
The next two propositions prove modularity of many elliptic curves over certain totally real

fields, using Theorem 7.1.

Proposition 9.2. Let F be a totally real number field in which 3 is unramified, and let E be an
elliptic curve over F with good supersingular reduction at primes above 3. Then E is modular.
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Proof. We proceed in several steps. By the result of Langlands and Tunnell, we know that
ρ̄E,3 is modular. However, in order to apply Theorem 7.1 we need to produce a modular lift
with level coprime to 3.

Step I: By Langlands’ cyclic base change, we need only prove the result over a totally real
soluble extension. In particular, making an appropriate base change if necessary, we can assume
that ρ̄E,3|Dv is trivial for any prime v | 5.

Step II: We can find an elliptic curve E′ over F such that

• ρ̄E,3 ∼ ρ̄E′,3,
• ρ̄E′,5 has insoluble image,
• E′ has good ordinary reduction at every prime above 5 and

ρ̄E′,5|Dv
∼=
(∗ ∗

0 ∗
)

for any v | 5

with distinct characters on the diagonal,
• E′ has good reduction at primes above 3.

If we can show that E′ is modular, then ρE′,3 will be a modular lift of ρ̄E,3 of the ‘right level’;
we can then use Theorem 7.1 to conclude that ρE,3 is modular.

In order to show that E′ is modular, we want to make use of its 5-adic representation and
apply the results in [19]. For this, we need to produce a nearly ordinary modular lift of ρ̄E′,5.
Again, we can work over totally real soluble extensions.

Step III: We can assume that ρ̄E′,5 is trivial when we restrict to primes above 3. We can then
find a second elliptic curve E′′ such that

• ρ̄E′,5 ∼ ρ̄E′′,5,
• ρ̄E′′,3 : GF → GL2(F3) is surjective,
• E′′ has split multiplicative reduction at every prime above 3 and

ρ̄E′′,3|Dv
∼=
(∗ ∗

0 ∗
)

for any v | 3

with distinct characters on the diagonal,
• E′′ has good ordinary reduction at primes above 5.

By Theorem 7.1, E′′ is modular.
Since ρE′′,5 is a nearly ordinary modular lift, it follows that ρE′,5 is modular. �

Proposition 9.3. Let F be a totally real number field in which 3 and 5 are unramified. Let E be
an elliptic curve over F with semistable reduction at primes above 3 and 5. Further, assume that
E has good supersingular reduction at primes above 5 and that ρ̄E,5|Gal(F/F (

√
5 ))

is irreducible.
Then E is modular.

Proof. Going up to a soluble totally real field (without changing ramification at 3 and 5) if
necessary, we can assume that ρ̄E,5|Dv is trivial for places v | 3 where E has good reduction.
Then using the twisted modular curve X(E[5])/F , we can find an elliptic curve E′/F such that
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• ρ̄E′,5 ∼ ρ̄E,5,
• E′ has the same reduction type as E at primes above 5,
• E′ is a Tate curve at primes above 3, and
• ρ̄E′,3 : GF → GL2(F3) is surjective.

It follows that ρE′,3 is modular, and ρE′,5 is a modular lift of ρ̄E,5 of the ‘right level.’ Therefore,
using either Theorem 5.1 of [19] or Theorem 7.1 of this article, it follows that ρE,5 is modu-
lar. �

Having proven some results over general fields, we now specialise to the case F = Q(
√

2 ),
for which, as we shall see, there is also a version of the switch between 3 and 5 used by
Wiles [24, §5]. In particular, this allows us to prove the modularity of all semistable elliptic
curves over Q(

√
2 ).

Proposition 9.4. Let E be a semistable elliptic curve over Q(
√

2 ). Let p be either 3 or 5. If ρ̄E,p

is irreducible, then

ρ̄E,p|
Gal(F/F(

√
(−1)(p−1)/2p ))

is absolutely irreducible.

Proof. Suppose the proposition fails to hold. Then p does not divide the order of
ρ̄E,p(Gal(F/F)), and so the semistability condition implies that ρ̄E,p is unramified at primes not
dividing p. Further, by Lemma 9.1, we see that E has good ordinary or multiplicative reduction
at p. Therefore, we must have

ρ̄E,p|Ip ∼
(

ε̄p 0

0 1

)

where ε̄p is the mod p cyclotomic character. (Note also that 3 and 5 are inert in Q(
√

2 ).)
Let K be the splitting field of ρ̄E,p, and let ζp be a primitive pth root of unity. Then K is an

everywhere unramified abelian extension of Q(
√

2, ζp). The class number of Q(
√

2, ζp) is then
checked to be equal to 1 for both p = 3 and p = 5 (we used PARI to verify this), giving the
required contradiction. �
Proposition 9.5. The modular curve X0(15) has exactly eight Q(

√
2 )-rational points. Four of

these are cusps. The remaining four are elliptic curves with additive reduction at 5.

Proof. X0(15) is an elliptic curve, and, using Cremona’s tables [4], we can find an explicit
equation for it. The rank of X0(15) regarded as an elliptic curve over Q(

√
2 ) is the sum of

its rank over Q and the rank (over Q) of its quadratic twist. An equation of X0(15) over Q is
y2 + xy + y = x3 + x2 − 10x − 10, and its quadratic twist over (

√
2 ) is y2 = x3 + x2 − 641x −

3105, which is curve 960G3 in Cremona’s tables. Both curves have rank 0 over Q, and it follows
that X0(15) has rank 0 over Q(

√
2 ). Thus all of its points over Q(

√
2 ) are torsion points, and

we can count them by considering the number of points in various residue fields of Q(
√

2 ) (as
in [16, VII.3]). Note that 7 splits in Q(

√
2 ), so Q(

√
2 ) has a residue field isomorphic to F7. Now

X0(15) has good reduction at the primes above 7, and |X0(15)(F7)| = 8. By [16, VII.3.1(b)],
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we see that the size of the torsion group over Q(
√

2 ) divides 8. However, we know that X0(15)

has 8 points over Q, all of which are torsion, and so these can be the only points on X0(15)

defined over Q(
√

2 ). Of these, 4 are cusps, and the remaining 4 correspond to elliptic curves
over Q which have additive reduction at 5 (curves 50A1, 50A2, 50A3 and 50A4 in Cremona’s
tables). Since 5 is unramified in Q(

√
2 )/Q, these curves continue to have additive reduction at 5

over Q(
√

2 ), and so are also not semistable. It follows that none of the Q(
√

2 )-rational points
on X0(15) correspond to semistable elliptic curves. �
Theorem 9.6. Any semistable elliptic curve over Q(

√
2 ) is modular.

Proof. Let E be a semistable elliptic curve over Q(
√

2 ). By Proposition 9.5, one of ρ̄E,3 or
ρ̄E,5 will be absolutely irreducible. The case where ρ̄E,3 is absolutely irreducible and E has
good ordinary reduction or multiplicative reduction at 3 follows from Theorem 5.1 of [19] (using
Proposition 9.4 to check the hypothesis that ρ̄E,3|Gal(F/F (

√−3 )) is absolutely irreducible). If ρ̄E,3

is absolutely irreducible and E has supersingular reduction, then the modularity of E follows
from Proposition 9.2. Otherwise ρ̄E,5 is irreducible, and modularity follows by switching to an
elliptic curve E′ as in the proof of Proposition 9.3. By the previous argument, E′ is modular,
so that ρ̄E′,5 ∼= ρ̄E,5 is modular. If E has good ordinary reduction or multiplicative reduction
at 5, modularity follows from Theorem 5.1 of [19], again using Proposition 9.4 to check that
the hypotheses of this theorem hold. Otherwise, E has good supersingular reduction at 5. As
remarked at the end of Section 7, since 5 is unramified in Q(

√
2 ), the Galois representation ρ̄E,5

has the form given in Theorem 7.1; this theorem now implies that E is modular, as required. �
Remark 9.7. In fact, Q(

√
2 ) is not the only real quadratic field for which all the numerology

is valid to deduce modularity. Indeed, let F = Q(
√

17 ). Note that 3 and 5 are inert in F . Again
using PARI, one can verify that the class numbers of F(ζ3) and F(ζ5) are both 1, so that the
analogue of Proposition 9.4 will hold also for F . (We suspect that this might be the only other
real quadratic field with this property.) Next, the quadratic twist of X0(15) to F is curve 4335D3
in Cremona’s tables, which has rank 0 (and 4 points defined over Q), so that X0(15) has rank 0
over F . We can count the Q(

√
17 )-rational points by counting the points in residue fields of F

whose characteristic is a prime of good reduction for X0(15). Since 13 and 43 both split in F ,
and X0(15) has 16 points in F13 and 40 points in F43, we see that the size of the torsion group
of X0(15) over F divides 8. Now one argues as in the case of Q(

√
2 ) to see that all semistable

elliptic curves over Q(
√

17 ) are modular.
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