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1. INTRODUCTION 

This article is primarily concerned with positive solutions for degenerate 
elliptic systems of the form 

d$(wr)+.fi(x, w1, w*)=” in D,i=l,2, (1.1) 

with homogeneous Dirichlet conditions w,=O on dD. The function $(s) 
satisfies the conditions rl/ E C’[O, oo), $(Q) =O, and $‘(s)>O for s>O. 
Problems of this nature are of interest in reaction-diffusion processes in 
biology and chemistry. For example, the case for $(u) = urn, m > 1, or 
m E (0, 1) .for single parabolic equations (i.e., U, = du” +f(x, u)) has been 
studied recently for porous medium analysis and population dynamics 
(cf. [2, 7, 15, 18, 191). As t -+ cc these solutions tend to a solution of the 
corresponding elliptic scalar equation. Studies have also been carried out in 
these and other papers (e.g., [3, 4, 16, 171) with urn replaced by $(u) 
satisfying the conditions described above. 

In this article, however, the hypotheses on f are quite different from 
those in the papers mentioned above. For example, f is not necessarily 
Lipschitz in u and may depend discontinuously on x. Thus even for the 
scalar case, the results here are not covered by the other papers, although 
there are some overlaps. Moreover, our emphasis here is on degenerate 
systems (Section 3) and their applications (Section 4). These results are 
quite different and generalize the papers mentioned above to practical 
interesting cases. Other relevant results for the nondegenerate cases can be 
found in [S, 9, 111. 

In Section 2, we discuss some existence and uniqueness theorems for 
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scalar equations, which we use in Section 4 for ecological models. 
Monotone iteration is used to obtain a sequence which converges in 
W*,P(D) n W$p(D) to a maximal solution. This procedure is used again in 
the proof of Theorem 4.2. In Section 3, we adapt the hypotheses in 
Section 2 to deduce an existence theorem for systems. We use Schauder’s 
fixed point theorem to find a positive solution in w*~~(D)n W,$p(D) for 
the system between appropriate upper and lower solutions. In Section 4, we 
apply the results to simple ecological prey-predator models of interest. 
Comparing the results with those for the nondegenerate case (m = 1) in 
[lo], we find that (4.3) in Theorem 4.1 is a much less stringent sufficient 
condition for coexistence in the degenerate case. For example, we do not 
assume that the intrinsic growth rates of the species are larger than the 
principal eigenvalue of the domain. In Theorem 4.2, although the equation 
is nondegenerate, we allow the intrinsic growth rate a(x) to be discon- 
tinuous and to have negative values somewhere. We obtain a sufficient 
condition for the existence of a nonnegative solution for this model, which 
is relevant in ecology (cf. [8, 13, 141). Finally, we note that when $(a) = u, 
our results in Sections 2 and 3 include the case of nondegenerate diffusion. 

2. EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR SCALAR EQUATIONS 
WITH SPATIAL DISCONTINUITIES 

Before discussing systems of equations, we study the existence and 
uniqueness problems for scalar equations of the type 

G(w) +f(x, w) = 0 in D, (2.la) 

w=o on aD. (2.lb) 

Here D is a bounded connected domain in RN (Na 2) with boundary 
aD E c2; A = CF=, a*/axf is the Laplacian operator. The functions 
IC/:[O,co)+[O,co),f:Dx[O,co)-+R’ are assumed to satisfy the follow- 
ing hypotheses: 

(Hl) $EC’[O, co), Il/(O)=O, and Il/‘(s)>O for s>O. 
(H2) There is a bounded interval [0, b] such that 

0) f~ L”(D x CO, bl); 
(ii) for any fixed x E D a.e., the function f(x, y) is continuous in 

y for all y E [0, b]; 
(iii) there is a constant M>O such that f(x, .~~)--f(x, yl) > 

-M(ll/(y2)-+(yl)) for XED ax., O<y,dy26b. 
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(H3) For each fixed x E D a.e., the function f’(x, JJ)/$(JJ) is a strictly 
monotonic increasing or decreasing function in y for y E [0, 61. 

The hypotheses and results in this section will lead to insights for the 
study of systems in the next section. For fixed ideas, we give the following 
definitions. 

DEFINITION 2.1. Let u be an integrable function in D and CI any multi- 
index. Then a locally integrable function v in D is called the ath weak 
derivative of 1.4 if it satisfies 

j” vd dx = ( - 1 )‘“I s uD”q5 dx, for all 4 E Ck’( D). 
D D 

We write v = D’u and note that Dau is uniquely determined up to sets of 
measure zero. 

DEFINITION 2.2. Let k be a nonnegative integer and let 1 <p < 00. The 
space WkxP(D) consists of all functions u in the real space L”(D) whose 
weak derivatives of all order d k exist and belong to LP(D). The space 
Wk’P(D) is normed by 

iiUiik,p = { c j” ID”4x)lp dx}“‘. 

lxl<k D 

Denote by W,k,P(D) the completion in the space WkxP(D) of the subset 
C;(D). It is well known that both Wk’p(D) and W,kxP(D) are Banach 
spaces. 

DEFINITION 2.3. A function w E C(D) is called a nonnegative solution of 
(2.1) if w(x)30 in D and u=$(w)E W2SP(D)n WASP(D) (p>N) satisfies 

Au +f(x, l/-‘(u)) = 0 a.e. in D, (2.2a) 

u=o on aD, (2.2b) 

where the derivatives of u are taken in the weak sense. A function w is 
called a positive solution of (2.1) if, in addition, w(x) > 0 in D. 

We first prove an existence result for a nonnegative solution between the 
“upper” and “lower” solutions in the sense of (2.3) below. 

LEMMA 2.1. Suppose that (Hl ), (H2, i) to (H2, iii) are satisfied. Assume 
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that there are functions p, W in C(D) with 0 < p Q W d b in D and that $(w), 
$(W) are in W’*p(D) (p > N) satisfying the inequalities 

- j W(kv)V4 dx + j” fb, wM dx 2 0, p=o on dD, (2.3a) 
D D 

- jDV~(KWdx+jDf(x, WMdxdO (2.3b) 

for all 4 E CA(D), +4 > 0. Then there exists at least one nonnegative solution 
w of (2.1) satisfying t_y < w < W in 4. 

Proof. For any given UE C(b) with 0 du< $(b), by hypothesis (Hl), 
we have O<t,k’(u)<b, @‘(u)EC(D); and f(x,@‘(u))~L~(D) by 
hypothesis (H2, i). Since D is a bounded domain, we obtain L”(D) c 
Lp(D) for all 1 dp< cc, and 

Mu+f(x, I,-‘(u))EL~(D). 

Here A4 is given in hypothesis (H2, iii). It follows from the linear elliptic 
LP-theory that the problem 

do-Mv+Mu+f(x, l+-‘(u))=0 a.e. in D, (2.4a) 

o=o on aD (2.4b) 

has a unique solution u, say S(U), in W*’ p(D) n W,$p(D) c C(D) satisfying 

(2.5) 

where C is a positive constant which depends only on D andp. 
Letting _u= Ii/(w), ii= $(W), we have by hypothesis (Hl) that Od_ud 

U < +(b) in 6, and u, U E C(b). Hence, as above, we obtain S(g), S(U) in 
W2vp(D) n Wisp(D) as the unique solution of (2.4) corresponding to g and 
ii, respectively. 

We now construct a monotonic sequence {ui} which will converge in 
W2,p(D) to a solution of (2.2). First, define uO= U in 6. From the 
arguments above, we can define ui+ i, i = 1,2, . . . . iteratively as the solution 
of 

AU-M~+kf#i+f(Xy I/-'(Ui))=O a.e. in D, (2.6a) 

v=o on aD (2.6b) 

provided that each successive ui > 0 in D so that f(x, tj - ‘(ui)) is defined. 
We then have u,+ I = S(U,)E W’,P(D)n Wisp(D)c C(b) for i= 1, 2, . . . . 
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We first show that these ui are properly defined and that 

o<g< “. 6u,du,~uu,=U in D. (2.7 ) 

1 by Since u,, 20, Eq. (2.6) is meaningful for i= 0. Multiplying (2.6a 
4 E CA(D) and integrating on D, we obtain for i = 0 that 

(2.8) j (AU;+,-MZli+,)ddX+j [MUi+f(X,$mm’(Uj))]#dX=O 
D D 

for all 4 E CA(D). Since 

I Au;+,qbdx= - Vu,+,Vddx I for all f$ E CA(D), 
D D 

(2.8) yields 

- 1 VUi+,VddX+J C-Mu;+, + MUi+f(Xy $p’(Ui))]4 dx=O (2.9) 
D D 

for all 4 E C;(D). From the definition of u0 = U= e(W) and hypothesis 
(2.3b), we have 

- j Vu,Vddx+j f(x, $-'(uo))qbdx<O (2.10) 
D D 

for all 4~ CA(D) with 4 20. Setting i=O (2.9) and subtracting (2.10), we 
obtain 

-jDV(~,--ll,,)V~dx-MjD(ul-uUo))dx~O (2.11) 

for all 4 E CA(D) with 4 2 0. It follows from the weak maximum principle 
(see [6, p. 1791) that 

sup(u,-u,)dsup(u,-u,)+ =05 
D ?D 

hence u1 < uO= U in D. Similarly, using (2.9) with i=O and hypothesis 
(2.3a), we deduce that _u<u,. We next inductively assume that 

_U<“,<uj-ldU in B (2.12) 
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for ja 1. Thus Eqs. (2.6), (2.8) and (2.9) are meaningful for i=j and j- 1. 
Letting i =j and j- 1 in (2.6), we subtract to obtain 

A(uj+ I -Uj)-M(uj+l-Uj)+M(uj-uj-I)+f(x,~~'(uj)) 

-fk II/-‘(~j-I))=o a.e. in D 

l’j + 1 - uj = 0 on aD. 
(2.13) 

Since 0 < I,-‘(uj) < t+-‘(ujp 1) G 6, we obtain from (H2, iii) that 

M("j-l-Uj)+f(X~ II/-‘(Uj-*))-f(X, Il/-'("j))20 a.e. in D, 

and (2.13) yields 

A(uj+ 1 
- 24,) - M( Uj + 1 - Uj) 2 O a.e. in D, 

(2.14) 
uj+l- uj= 0 on aD. 

It follows from the maximum principle (see [6, p. 2251) that uj+ i < uj in 
D. Analogously, using (2.9) for i=j and (2.3a) as before, we obtain by the 
maximum principle that _u < uj+ I in 4. By induction, we have 

g< ... <ui+l<ui< ... <u,<u,<u, in D. 

We can therefore define by pointwise convergence in D 

u(x)= lim ui(x) in 4. 
i-cc 

By the Lebesgue Convergence Theorem, {&&+f(x, Ic/-‘(ui))} must be a 
Cauchy sequence in Lp(D). From the equations satisfied by ui + 1 - uj+ i, we 
obtain the estimate as in (2.5) that 

IIui+l-uj+IIl2,pGC IIM(uj-Ui)+f(X, ICI-‘(Uj))-f(X, 6’(Ui))llp. (2.15) 

Consequently, (ZQ} is a Cauchy sequence in W2sp(D), and ui + u in 
W23p(D) as i + 00. Passing to the limit in (2.6), we have 

Au+f(x,$-l(u))=0 a.e. in D, 

u=o on dD, 

where the derivatives are taken in the weak sense and UE W2,p(D) (note 
that o = ui+ 1 in (2.6)). Furthermore, since the ui are in W,$p(D), which is 
a closed subspace of @j'(D), and ui + u in W'*p(D), we must also have 
u E Wt*p(D). Letting w = t+-‘(u), we obtain w as a nonnegative solution of 
(2.1) with w < w < W. 
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With the addition of hypothesis (H3) and the assumption that the lower 
solution t_t’ is positive in D we now deduce a uniqueness result. 

THEOREM 2.1. Assume all the hypotheses in Lemma 2.1. In addition, 
suppose that (H3) is valid and that w > 0 in D. Then there exists a unique 
positive solution w* of (2.1) satisfying 

o<~<w*<w in D. 

Proof: Let w be the solution of (2.1) obtained from the monotonic 
sequence in Lemma 2.1. Now w > 0 in D, since w 3 w > 0 in D. Let z be any 
positive solution of (2.1) with w 6 z < W in D. Then, u = ICI(w), v = $(z) are 
two positive solutions of (2.2) in W2,p(D) n W,$p(D) with O-C u <u< U, 
0 < _u < v < U in D. By applying the same argument as that used in the proof 
of Lemma 2.1, we obtain _u 6 v d ui 6 U in D for each i = 0, . . . . Hence, we 
have the inequality 

06g6v6u6U in D. (2.16) 

It remains to show that v = u in 6. Since both u, v are in W$p(D), there 
are two sequences {u,,}, {un} in C:(D) which converge to u, v, respec- 
tively, in W’*p(D). Since u, v are solutions of (2.2) in W23p(D), and (u,}, 
{v,> have compact support in D, we use the definition of the weak 
derivative to obtain 

I uAv,dx+ Df(x,t,-‘(u))u,dx=O 
s (2.17a) 

D 

J D 
uAu,dx+ Df(x,t,pl(u))u,dx=O 

1 
(2.17b) 

for n = 1, 2,.... Subtracting the two previous equations, we obtain 

j [uAu,,-uA~,]dx=j~[f(x,~~~(~))v,--f(x,~~’(v))~,Jdx. (2.18) 
D 

It follows from the definition of the weak derivative and UE W’,p(D), u,, 
v, E CT(D) that we have 

s uAv,dx= - VuVv,dx 
D s D 

s v Au, dx = - Vu Vu, dx. 
D D 
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Hence, the left side of (2.18) becomes 

1 [vdu,-udo,] dx=[ [VuVv,-VvVuJdx 
D D 

= j” Vv(Vu,, - Vu) dx. (2.19) 
D 

Vu(Vv, -Vu) dx - j 
D 

From the Schwarz inequality, we have 

Since u, + u in ~l,p(D), p > N> 2, it follows that 

I Vu(Vv, -Vu) dx + 0, as n-co. 
D 

Similarly, one also has 

s Vv(Vu, -Vu) dx + 0, as n+co. 
D 

Consequently, it follows from (2.19) that 

s [v Au, - u Au,] dx + 0, as n-cc. 
D 

(2.20) 

Equations (2.20) and (2.18) lead to the property that 

s D-(x> ti-‘(uh-.0x, ti-‘(4M dx-+O, as n + co. (2.21) D 

On the other hand, from Sobolev’s Imbedding Theorem, U, and u, are 
uniformly bounded in D, so the Lebesgue Convergence Theorem leads to 

s Cfh ICI-‘Wvn-f(x, ICI-‘Wunl dx D 

+ s D U-(x, II/-‘(u))v-f(x, $-‘(~))ul dx, as n --+ co. (2.22) 

From (2.21) and (2.22), we deduce that 

s Cfk II/-‘(u)b-.0x, $-‘(u))ul dx=O. (2:23) D 
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Suppose that u & u in B. The set 

D, Ef {x ED 1 u(x) < u(x)} 

then has measure greater than zero. From assumption (H3), we have 

l-b, Ic/-‘(u))o -fk $ -‘(u)b 

.I-(4 II/-‘w-f(& $- ‘(0)) >. (or <o) 
u t’ 1 a.e. in D, (2.24) 

(recall that u(x) 3 t&a(x)) > 0 for all x in D). This leads to 

i[ 
DI fix, II/p’(u))v-f(X, $p’(U))u] dx>O (or CO), (2.25) 

which contradicts Eq. (2.23), since 

Q= j Cf(x, $-‘(4b-j-(x, ll/-‘(u))ul dx 
D 

= J U-(x, ~-‘(+w-(x, ti-‘(u))ul dx+O. (2.26) D, 

This completes the proof of the theorem. 

3. SYSTEMS 

In this section, we study the existence of positive solutions for elliptic 
systems of the type 

~lcl(wl)+fl(x~ Wl? w2)=0 a.e. in D, 

44%) +fz(-% Wlr WA = 0 a.e. in D, (3.1) 

wI=w2=o on aD, 

where the derivatives are taken in the weak sense; D is a bounded domain 
in RN (Nb2) with boundary aDEC2; and I& [0, co) -+ [0, co), fj: Dx 
[0, co) x [0, co) + R’ are functions satisfying the following assumptions: 

(Rl) $EC’[O, co), $(O)=O, and $‘(s)>O for s>O. 
(R2) There are two positive constants 6i, b, such that 

(i) f, E Lm(D x [0, b,] x [0, b2]) for i = 1,2; 
(ii) for any fixed XE D a.e. the functions fi(x, y,, y2) are con- 

tinuous in (y,, y2) for all (yi, Y~)E [0, b,] x [0, b,], i= 1, 2; 
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(iii) there is a constant M>O such that 

f,(x, t, Y2) -f,k ‘I> Y2) 2 -Wti(5) - ti(rl)) 

for XED a.e., y,E[O,b,], 06~<5<b,. 

f2(4 Y,, 5)-fit-% Yl, 9)3 -WNO-ICI(?)) 

for XED a.e.,y,E[0,61], O<?<t<bz. 

DEFINITION 3.1. A pair of continuous functions ( wl, w2) in C(4) is 
called a positive solution of (3.1) if II/( w,) E W2Sp(D) n W,$p(D) (p > N) and 
(3.1) holds. 

THEOREM 3.1. Assume hypotheses (R 1) and (R2). Suppose that there are 
finCtiOHS W;(X), W;(X) (i= 1, 2) in C(B) with Il/(~i), $(Wi) (i= 1, 2) in 
W’T~(D) (p > N) satisfying the inequalities 

- j v~(~,)v~dx+~~f,(x,M.I,w2)~dx~O for ?!J2Gw2<+2 Wa) 

D 

- jDV$(w,)V~dx+jDfI(x, w,, w,)ddx<O for “-o,dw,<W, (3.2b) 

-j ~~(~,)v~dx+~Df,(x,wI,w2)~dx~o for ~,dw~~w, (3.24 
D 

- ~DVI//(s~)V/dx+~Df~(x,wl.W~)Cdx~O for w,<w,dW, (3.2d) 

for all 4 E CA(D), IJ~ > 0. Here wi = w;(x) are assumed to be continuous in 4, 
and O<wi<wi<Gi<bi in 6, wi>O in D, and pi=0 on dD. Then there 
exists at least one positive solution (w 1*, wz*) of (3.1) satisfying wi< wr < Wi 
in 6. 

Proof Let gi=$(wi), Ui=$(Wi), Xi= {uEC(D), gi<ui<Ui in D}, 
i = 1, 2, and let M be described as in (R2, iii). The set X, x X2 is a bounded 
closed convex set in C(a) x C(a). We define the map T: X, x X, -+ X, x X, 
as 

T(u, > ~2) = (~1, ~2) for (u1,u2)~XIxX2, 

where vr, VIE W2-p(D)n W$p(D)cC(D) (p>N) and (vlr v2) is uniquely 
determined as the solution of the (decoupled) system 

dvi-Mui+fi(x, $-l(q), l+-1(u2))+Mui=0 in D, i= 1, 2. (3.3) 

(Here the derivatives are meant in the weak sense.) 

409/151/2-15 
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We first show that (u,, u2) E X, x X,. From Eq. (3.3), and hypotheses 
(Rl), (R2, iii) and (3.2b), we have, for any 4 E CA(D), 4 3 0, 

-fi(x,~-l(UI).~~l(UZ))lidY--M~D(Il(--UI)~~o. (3.4) 

Hence the weak maximum principle implies that U, >, u, . Analogously, 
since 

- j V(_u,-~,WX-~~ (_u,-u1M~x3 -j cfi(x,Icl~‘(ul)~lcI-‘(u2)) 
D D D 

for any 4~ CA(D), 4 > 0, we deduce that uI GO,. We apply the same 
procedure to prove that uz E X,. 

We next show that T is a continuous operator from X, x X, into itself. 
Let (uy), z$)) be a sequence in X, x X,, which converges to (u, , u2) in 
X, x X,. Define (uy’, u?‘) = T(u(ln),uF)), and (ul, u2) = T(u,, u2) as in (3.1). 
By the classical LP-estimate for the linear problem (3.3), we have 

IIuyq*,p< ci Ilfi(x, *-‘(u’,“‘), $-‘(U:“‘))+MUyllp (3.6) 

with gi < vi”) 6 Ui for n = 1, 2, . . . . where Ci are positive constants. By (A2, i), 
there exist constants M; > 0 such that 

I.hbG Yl? Ydl <M, for almost all (x, y,, y2) E D x [0, b,] x [0, 6,]. 

(3.7) 

Since D is a bounded domain in RN, (3, 7) implies that {fi(x, I,-‘(a), 
I,-‘(@‘))} are bounded sequences in Lp(D). It follows from (3.6) that 
(vi”)} is a bounded sequence in W'T~(D) n WA- p(D) (p > N). Applying 
Sobolev’s theorem, we can select a subsequence {u~“~‘} from { uj”‘} such 
that { uiflk’} converges in C(d) to, say, u. ,*. To see whether { u{“~} actually 
converges to UT in W2*"(D), we first deduce from (R2, ii) that 

fi(x, V1(Uyq, Il/-‘($9)+fifi(x, V’(%), FYu2)) (3.8) 

pointwise in D. Since D is bounded, the Lebesgue Convergence Theorem 
implies that the convergence in (3.8) is true in the Lp(D) norm 
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(N<p < co). The estimate (3.6) hence implies that { ZJ~“~‘} converges to u,* 
in W2’p(D). By the definition of {u!“~‘}, we have, for k= 1,2, . . . . that 

A@“) -M@) +fi(x, I+-‘(Uyq lp(u:““‘)) + A4uy = 0 in D, i= 1, 2. 

(3.9) 
Passing to the limit in (3.9) we obtain 

Av~-Mu~+~(x, $-‘(u,), IC/p1(U2))+MUi=0 in D, i= 1, 2. (3.10) 

From (3.3) and (3.10), we see that both (o:, 0;) and (oi, 02) are positive 
solutions of the same linear problem. We conclude by uniqueness of the 
positive solution of the linear problem (3.3) that (UT, u,*)= (u,, u2). Hence 
we have {vi”“‘} + ui in C(b). Finally, we claim that the full sequence 
{vj”‘} + vi in C(4) as i -+ co. Suppose not; then there exist a subsequence 
{ ui”‘} and a constant .sO > 0 such that 

jlup’ - Uill > Eg for j= 1, 2, . . . . (3.11) 

Here the norm is taken in C(B). Using the same argument as that used 
above, by replacing {vi”‘] with {ui?‘}, we can select a subsequence of 
{ v~“~)} which converges to ui in C(D). This contradicts the inequality (3.11). 
Consequently, {us”‘} converges to vi in C(d) as i-+ co. This leads to the 
conclusion that T is a continuous operator from X, x X2 into itself. 

We finally show that T is a compact operator. From (3.6), T maps a 
bounded set in X, xX2 to a bounded set in W,$p(D) x Wi,p(D). By the 
Sobolev Compact Imbedding Theorem, the identity map from W;,“(D) to 
C(b) is compact. Hence, we can view T as a composition of a bounded 
map from X, x X2 to Wisp(D) x W,$p(D) followed by a compact identity 
map from WASP(D) x Wivp(D) to X, x X2 ; and we conclude that T is a 
compact operator from X, x X, into itself. Schauder’s fixed point theorem 
asserts that T has a fixed point (u:, u:) in X, xX2. It follows from (3.3) 
that 

Au: +fi(x, $-‘(u:), Il/-‘(u:))=O a.e. in D, 

Au: +fz(x, V’(G9, Il/-‘W))=O a.e. in D, (3.12) 

u,*=u,*=o on i?D. 

The fact that (UT, u;) is in X,x X2 implies that (UT, u;) is in 
W2’p(D) n Wixp(D) and that _uj < u,+ < Ui is in d for i = 1,2. Consequently, 

is a positive solution of (3.1) with wi< 
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The following corollary is sometimes more readily applicable than 
Theorem 3.1. 

COROLLARY 3.1. Assume hypotheses (fi 1) and (82). Suppose that there 
are functions pi(x), W,(x) (i= 1, 2) in C(D) with $(Mz;), $(W,) (i= 1, 2) in 
WzS p(D) (p > N) satisfying the inequalities 

Alc/(w,)+f,(x, WI, w21ao a.e. in D for w2 d w2 d W2 (3.13a) 

@(@I) +f1(4 “1, w2) 6 0 a.e. in D for u’, d w2 d W2 (3.13b) 

Mwz) +fzc5 Wl? Iv21 2 0 a.e. in D for ~ldwl<W1 (3.13c) 

M@,) +fz(x, Wl, @2) Q 0 a.e. in D for Y, < w1 < W,, (3.13d) 

where the derivatives are taken in a weak sense. Here wi = wi(x) are assumed 
to be continuous in D, and 0 6 vi 6 wi 6 Wi 6 6, in 4, wi > 0 in D, and v, = 0 
on 8D. Then there exists a’t least one positive solution (w:, w$) of (3.1) 
satisfying wi Q w,? d Wi in D. 

Proof This is an immediate result of Theorem 3.1 since (3.13) implies 
(3.2). To see this, we let 4 E CA(D), 4 > 0, and multiply (3.13a) by 4. We 
integrate over D to find 

j A~(~l)(dx+jnf,(x,M’I,w2)~dx~0 for WZGWZG%. (3.14) 
D 

It follows from the definition of the weak derivative that 

- j W(w,)Vddx+ jDf,k w,, WzMdxaO for rj2 < w2 < W,. (3.15) 
D 

Similarly, we can verify the rest of the inequalities in (3.2). By application 
of Theorem 3.1, the proof is completed. 

4. APPLICATIONS TO ECOLOGICAL MODELS 

In the first part of this section, we apply the results in Section 3 to a 
prey-predator ecological model with degenerate density-dependent 
diffusion 

Au” = u(a(x) - buk - cu) = 0 in D, (4.la) 

Au” = v(e(x) + fu - gvk) = 0 in D, (4.lb) 

u=u=o on aD. (4.lc) 
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Here D is a bounded connected domain in RN (Na 2) with boundary 
aD E C2, and m, k, b, c, f, g are positive constants with 1 + k > m > 1. We 
assume that a(x), e(x) are two positive functions in L”(D) with 

a 2’ ess inf a(x) > 0 
Y.ZD 

and (4.2) 

For convenience, we denote ti =def ess supIS D a(x) > 0 and e =def 
ess sup,, D e(x) > 0. The following theorem gives sufficient conditions for 
the coexistence of the two species. If one compares them with the results in 
[lo] for the nondegenerate case, we see that the conditions here are much 
more readily satisfied. For example, there is no need for the intrinsic 
growth rates a(x) and e(x) to be larger than the principal eigenvalue for 
the domain D. Other related references can be found in the Introduction 
and in [S, 11, 12, 13, 14, and 161. 

THEOREM 4.1. Assume 1 + k > m > 1, hypothesis (4.2), and 

g(g/c)k > e+f(ti/b)lik. (4.3) 

Then there exists a positive solution (u, v) of (4.1) with u, v E C(b) and u, 
v E W2tp(D) n W,$p(D) (p > N). Moreover, the solution satisfies 

0 < u < (ii/b)l’k, O<v< [g-l(q+f(ti/b)l’k]l’k in D 

Proof: We will apply Corollary 3.1. Let b, = (ti/b)‘lk, b, = 
[g-l(t?+f(ti/b)l’k]l’k. Define 

l)(s) = sm for ~30 

and 

f-,(x, Y,, y2)=Yl(a(x)--by’;-cy,), 
fk Y,, yd=y2(4x)+fyl-gy,k) for (x3 Y,, Y,)EDX CO, ~01~ CO, ~0). 

Then one can immediately verify that (81) and (R2, &l2, ii) are satisfied. 
Since 

f~(x, 5, YZ) -f~(x, ‘I, ~2) = 5(4x) - Nk - cy2) - rl(4-x) - brlk - cy2) 

=(a(x)-~y,)(5-rj)-b(5~+~ -qk+l) 

>(a-cb,)(&q)-b(5k+1-qk+‘) 

for x~Da.e., y,~[O,b,], O<q<r<b,, 

409/151/2-16 
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we can verify the first part of (A2, iii) by showing that there is a constant 
M > 0 such that 

(a-cb,)((-q)-b(<k+‘-Ijk+‘)> -M((“‘-?y), O<q<SYdb,. (4.4) 

From hypothesis (4.3), we have a - cb, > 0; thus (4.4) is satisfied if 

M(5”-~“)~b(5k+‘-rk+‘) for O<q<<Gb,. (4.5) 

However, (4.5) can be readily verified if we note that the function 
h(r)= MC”-- btk” is increasing in [0, b,] by choosing M> 
(b/m)&+ l)b:+lP”‘. Similarly, we verify the second part of (82, iii), 

.&(x3 yIy 4)-fk .vI, vl)=5(4x)+fvl -stk)-v(4x)+fyI -grlk) 

>g(i”-rl)-g(~k+‘-qk+‘) 

2 -M$(5) - $(ur)h (4.6) 

forx~Da.e.,y,~[O,bl],Od~~~db2ifM>(g/m)(k+1)b’;+‘~“. 
To construct upper and lower solutions (_u, -0) and (ii, U), we let A, > 0 be 

the principal eigenvalue for the problem 

Aw+%w=O in D, 

U’ = 0 on aD, 

and d(x) be the principal eigenfunction. Then we have 4(x) > 0 in D and 
4(x) = 0 on aD. We define u = _o = (S$)‘jm in D for a small 6 > 0 to be deter- 
mined. Thus they satisfy _u=_v=O on dD, _u=_o>O in D. Also, we define 
ii=b,, C=b,. We verify that 

AU” + ii(a(x) - bUk - cv) < u(a(x) - bUk) 

=(Z/b)l’k(a(x)-b(C/b))<O a.e. in D, for all _v<v<,<, (4.7) 

AC” + C(e(x) +fu - gCk) < $2 +fi - gCk) = 0 for all _u < u < il. (4.8) 

Moreover. we have 

Au” + da(x) - bgk - cu) = -A,(&) + (c%$)“~ (a(x) - b(&#)k’m - cv) 

~(6~)““(-~,(6~)‘~““+~-b(6~)k’“-cv)b0 

(4.9) 
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for x a.e. in D and all _v 6 u < V, when 6 is sufficiently small, since a - CV > 0 
by assumption (4.3). Finally 

A_v” +p(e(x) +fu-g#) = -n,(sqh) + (s(h)“m (e(x) +fu -g(6qqk’“) 

>/(6~)““(-~,(6~)1-1’“+_e+f~-g(6~)k’”)~0 
(4.10) 

for x a.e. in D all _u 6 u < U, when 6 is sufficiently small, since _e +fj > 0. 
From Corollary 3.1, the four inequalities above imply that there is a 
positive solution (u, u) of (4.1) with U, u in C(D); urn, PE W2~p(D)n 
W,$p(D); and 

0 < u < (a/by, o<u< [g-l(e+f(LZ/b)l’y in D. 

In the second part of this section, we consider a population model with 
possibly discontinuous growth rate of the following type: 

Aw + w(a(x) - bw) = 0 a.e. in D, 

w=o on aD, 
(4.11) 

where b is a positive constant, and a(x) is a function in L”(D), which is 
possibly discontinuous. Here D is a bounded connected domain in RN 
(N> 2) with boundary aD E C2. Suppose that 

a(x) > 1, a.e. in D. (4.12) 

We can construct W = G/b as an upper solution of (4.11), where a =def 
ess supxeD a(x) >O. Moreover, w = 64 is a lower solution, where 6 is 
sufficiently small and 4(x) > 0 is as defined in Theorem 4.1. Then, we apply 
Theorem 2.1 to obtain a unique positive solution of (4.11) which satisfies 
0 < w < Z/b in D. (Note that 1, and Li are used with the same meanings as 
those given in the first example of this section.) However, in a highly 
spatially heterogeneous habitat in ecological problems, hypothesis (4.12) is 
not commonly satisfied. Consequently, we assume that a(x) is relatively 
large in a subdomain D, of D, and may be small or even negative outside 
D,. Let A, be the principal eigenvalue for D,, i.e., the first eigenvalue for 
Au + Au = 0 in D,, u =0 on 8D,. More specifically, we write a(x) in the 
form 

a(x) = al(x), in D, 

a2(x), in D\D, 
(4.13) 
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and assume that D, has boundary ~D,E C*; moreover, we impose the 
hypothesis 

a,(x)>% a.e. for x E D,. (4.14) 

Again, we let 

ti = ess sup a(x). 
: E D 

(4.15) 

THEOREM 4.2. Assume that a(x)eL”(D) and that hypothesis (4.14) 
holds, Then the Dirichlet problem (4.11) has one and only one nonnegative 
nontrivial solution w (in the sense of Definition 2.3 with $(w) = w) satisfying 
0 < w < a/b in D. Moreover, w > 0 in D. 

Proof Let G(s) = s for s > 0 and f(x, w) = w(a(x) - bw). One readily 
verifies that (Hl ), (H2, i-H2, iii) are satisfied. We will apply Lemma 2.1 to 
prove the existence of the solution. Let w, W be defined as 

@=ti/b in D, m4, y= 
XED, 

0, x&\D,, 
(4.16) 

where 0(x) is a positive principal eigenfunction associated with the 
principal eigenvalue 2, of the domain D,, and 6 > 0 is to be determined. 
For 6 > 0 sufficiently small, we clearly have 0 < w < W in D. The constant 
function W is in W’9p(D), and we now verify that WE W’,p(D). By the 
definition of E, we have, for Ial = 1, $ E CA(D), 

-j wD”q5dx= - St9(x)D’ddx. 
D I D, 

(4.17) 

Integrating by parts, we obtain 

- j LyD”d dx = s 
SDV(x)q5 dx, (4.18) 

D D, 

since 13(x) = 0 on aD,. Hence the crth weak derivative of w is 

XED, 
XE D\D,. 

(4.19) 

Since D’w E Lp(D), we obtain w E W’%p(D). To see whether (2.3a) holds, we 
calculate 

- 1 Vlj.Vq4dx+j G(a(x)--b@)(dx<jDE(a(x)-bi)(dx<O (4.20) 
D D 
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for all 4 E CA(D), 4 > 0. To verify (2.3b), one has 

- VwV4dx+ s s ~44~) - bwM dx 
D D 

=- 1 SVW~dx+J* M(x)(a,-biW(x))q5dx 
DS DS 

= ib,6AB~dx-~~D~~~~dc+~D~bB(x)(a,-bBR(x))mdx 

(4.21) 

which is positive for 6 > 0 sufficiently small, by hypothesis (4.14) and the 
fact that aO/an < 0 on aD,. Applying Lemma 2.1, we conclude that (4.11) 
has a nonnegative solution w in W’s”(D) n W$J’(D) with 0 <w < ii/b in D 
and w>O in D,. 

To prove that w > 0 in D, let u(t, x) = ecfw(x) for (t, x) E [0, + co) x D, 
where c is a positive constant such that c > ess supXc D (bw(x) - a(x)). 
Thus, since w satisfies (4.11) (in the sense of distributions), we also have 
Au + u(a(x) - bw(x)) = 0 in [0, + co) x D; hence 

u, = cu = cu + Au + u(a(x) - bw(x)) 

= Au + u(c + u(x) - bw(x)) >, Au in (0, +m)xD, 

by the chaise of c. Thus u is an upper solution (in the sense of distribu- 
tions) to the problem 

v,= Au in (0, +m)xD 

v=o on (0, +co)xaD (4.22) 

v(0, x) = w(x) in D. 

Thus, if v is the solution to (4.22), we have u(t, x) > v(t, x) > 0 in 
(0, + co) x D (the last inequality follows from the maximum principle). 
Thus w(x)>0 in D, by the definition of u (here use has been made of 
comparison results for upper solutions in the sense of distributions; this 
result can be found in [2]). 

Finally, we prove that such a w is unique. Let w* be the solution 
of (4.11) obtained from the monotonic convergence sequence as in 
Lemma 2.1, using w. = ii/b as the first iterate and defining wj+, = S(wj), 
(recall I/(S) = s). Using the fact that w < wo, we can prove that w < wj in D 
by using the maximum principle as in (2.14) with uj+ r and uj respectively 
replaced by w and wj. This leads to the fact that 0 < w < w* in D. Let z be 
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any nonnegative (nontrivial) solution of (4.11) with z d Z/b in D. As above, 
we have z < w* in D. Let f(x, w) = w(a(x) - bw). We follow the proof of 
Theorem 2.1, with the role of u, u respectively replaced by ul*, I until 
(2.23). Then (2.23) implies that 

o=j- Cf( x, w*)z -f(x, z)w*] dx = 
s 

[f(x, w*)z -f(x, z)w*] dx 
D 

R, 

= n;Cf( s x, w*)z -f (x, z)w*] dx, (4.23) 

where Q2,= {x~DJz(x)<w*(x)} and Q,= {xED~O<Z(X)<W*(X)}. The 
last equality follows from the fact that f (x, 0) = 0 for x a.e. in D. However, 

f(x, w*)z-f(X, z)w* <o in Q2. (4.24) 

We therefore conclude that w* = z in the set Q = {XE DIO <z(x)}. We 
observe that the set Q is open in D. Moreover, the set Q is also closed in 
D for the following reason: Let x, E Q, x, + x ED. Then 

z(x)= lim z(x,)= lim w*(x,)= w*(x); (4.25) 
II-CC n-m 

however, w*(x) > 0 in D, therefore z(x) > 0, and x E Q. Consequently, we 
must have D = D. In Sz, we have concluded that w* =z. Thus every 
nonnegative nontrivial solution bounded above by ii/b must be identically 
equal to the same w* in D. This completes the proof. 

Remark4.1. If the function a(x) is in C”(D), 0~ a < 1, and we have 
a(x)<l, in D, then the only nonnegative solution of (4.11) in D is the 
trivial solution. (Here A, is the principal eigenvalue for the domain D.) 

Remark 4.2. If the function u(x) is continuous, more general results for 
the degenerate case can be found in [16] and other works. 

Remark 4.3. In this entire article, D has been assumed connected. 
However, if D is not connected, we do not have d > 0 in D but rather 4 2 0, 
4 f 0 in D. Thus, in this case have the following corollary for Theorem 4.2. 

COROLLARY 4.1. Suppose that D is not connected and that D, is 
connected. Assume that u(x) E L”(D) and that hypothesis (4.14) holds. Then 
the Dirichlet problem (4.11) has at least one nonnegative solution w (in the 
sense of Definition 2.3 with 1,9(w) = w) satisfying 0 < w < 8jb in D and w > 0 
in the component of D which contains D,. Furthermore, if there is a positive 
solution v of (4.1 l), with 0 < v <G/lb in D, then it is the unique nonnegative 
(nontrivial) solution of (4.11) satisfying 0 < w <ii/b in D. 
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