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In this article we extend a theorem previously proved by H. F;illmer forthe Wiener process on C([O, 11, R”) 

to diffusion processes; we therefore straightforward recover, under slightly less general technical assump- 

tions but in its whole generality, a theorem already given by Dawson and Glrtner. The result is intimately 

related with a Ventcel-Freidlin action functional associated to some N-particle system which is driven 

according to a non-linear McKean-Vlasov limiting equation. 
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large deviations * diffusion processes * Kullback information * particular equation of mathematical 

physics 

1. Introduction and result 

In Dawson and G3tner (1987) the large deviations from the McKean-Vlasov limit 

for N particle systems are investigated; the authors underline a strong analogy with 

the now classical Ventcel-Freidlin theory. Moreover, they derive the following 

expression of the associated action functional denoted by S(p( .)): 

S(P(.))= I oT Il~(t)-~(~(t))*E.L(~)IIt~r~d~. 

Formally speaking, the space of probability measures on LK?‘, denoted by A is 

given a Riemannian manifold structure, for which each tangent space .T+ at p E A 

is embedded in 9’ (the Schwartz distribution space on [Wd) and equipped with the 

norm 
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YP thus coincides with the 13 E 23’ such that the latter sup is finite (here (I (* denotes 

the squared Riemannian norm induced by the diffusion matrix a(. )). L(F) is a 

diffusion operator of the type $1 a”( *)a:, +C b’( *; ~)a,, of which the drift depends 

on (J E ~2: this dependance is to feature weak interactions between diffusions in the 

mean-field model, where F equals in this case the empirical mean (l/ N) C ,-_,” N SX, 

of N particles. Let us finally remark that 1) u)) i is the Legendre transform of the 

mapping f -+ &.L, IVfj’) for the dual pairing (23, 22’) and generalizes the well-known 

formulae when the underlying driving process is, say, Brownian motion or ordinary 

diffusion processes. On the other hand, the quantity appearing in the integrand of 

the action functional under squared norm value is related to the mean-field limit 

dynamics: the so called McKean-Vlasov equation 

(to be understood in the weak sense) defines, when existing, some process which 

is to be the large number limit of the empirical mean (l/N) C,_ j_ N 6X,,., of our N 

particles. 

The main difficulty is to derive directly the expression of the action functional. 

In fact, as H. Follmer pointed it out and showed in his ‘Cours de Saint-Flour’, when 

the diffusion matrix equals everywhere the identity, there exists one single law Q0 

on the Wiener space with prescribed marginals (u ) , ,( Lo,,l minimizing the Kullback 

information with respect to the Wiener measure P,, and for which the minimum is 

computed by 

,a(Qo; &)=~(qo;po)+ ’ IPu-hkllt,, du. 
I 0 

Moreover, Q. is Markovian. The proof of Dawson and Gartner’s result contains a 

contraction argument (Lemma 4.6 of Dawson and Gartner, 1987) which uses a large 

deviation principle for the diffusion laws on the path space; their proof consists in 

giving three different expressions of the large deviations of the Bow of one- 

dimensional marginals and comparing them to each other. In Ben Arous and 

Brunaud (1990), we met an analogous problem: we were interested in the large 

deviations for the empirical mean of N particle system driven according to the 

nonlinear McKean-Vlasov limiting equation; we also looked for characterizing the 

minima of the large deviations rate function. But there, the crucial point was that 

the rate function was the sum of the Kullback information w.r.t. some fixed process 

and an integral functional of one-dimensional marginals. We thus had to look at 

laws which minimize the Kullback information under prescribed one-dimensional 

marginals. 

We introduce now the principle notations and our main theorem; in Section 2, 

we give its proof using the notion of h-path processes as indicated in Follmer (1986). 

Let a :Rd x (0, +co) +R“@Rd be a diffusion matrix, which defines a pseudo 

Riemannian metrics on [w”;V,, (., *),,].I, d eno e t respectively the Riemannian 

gradient, scalar product and norm on the tangent space. In global Euclidean 
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coordinate (x’, . . . , xd), 

(X, Y), = c a,,(., ~W’Y’, (1) 
,S-i,j~d 

d 

P,f)‘= c a’,‘(., f)$> (2) 
,=I / 

1x1: = (X, Xl,, (3) 

(X, Y), = 1 a’*‘( ., t)X’Y, (4) 
IS-l.,--d 

((X))? =(X, X),, (5) 

where the matrix (a,,,( . , t)),,, denotes the inverse of (a’*‘(. , t)),,, = a. Let us observe 

that formulae (2) and (4) both imply 

WI:= c a.f af 
1 <- I,, F CI 

d’(‘,‘)-g;ix. 
I 

(6) 

Let b: Rd x [0, +a) + R" be a measurable vector field (drift). We shall make the 

following: 

Assumption Al. For any T > 0, there exist 0~ AT < AT < a~, B7 <a~ such that, for 

all (t, x) E [0, T] x Rd and 0 E R”, are satisfied: 

Gl@12S ((0%x) c &P12, 

Ib(x, [)I zz &, 

lim sup sup sup lu(x’, S) - u(x2, S)IHS = 0. 
8-O IrlCy’l_-fi OS,-_ 7- 

For some fixed t > 0 and [E Rd, let I!,,([) be a second order differential operator, 

defined for every f E Ci(Rd) (the set of compactly supported twice differentiable 

functions on Rd) by 

(7) 

We shall omit .$ in L,(t), whenever it is applied on a progressively measurable 

process X( t, 5): 

bfS)(f)(X(j, 5))= -bf(X(5)). 
Moreover, JC,T will denote the formal adjoint of L, acting on probability distributions 

on Rd. Under Assumption Al, Theorem 9.1.9 of Stroock and Varadhan (1979) yields 

the existence of a transition probability density rr(s, x; f, v) for the solution P of 

the martingale problem associated with L,. Furthermore, we shall impose: 

Assumption A2. For any nonnegative measurable function 4 on Rd such that 

Z&d(u, x) = I ~(Y)~zJ, x; f, Y) dy <a, (u, x) dt@m a.s., 
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Notation. Throughout this paper, IV<, will stand for the set of continuous trajectories 

from [s, t] to Rd. 

Our main result consists in the following: 

Theorem 1.1. ForJixed s E [0, CO), let P, be the law of an Ito* process with variance a 

and drift b, with some fixed initial law at time s and satisfying both Assumptions Al 

and A2. Some T > s beinghxed, denote P the restriction of P, on WC,, endowed with 

its canonical filtration generated by the coordinate projections (x,,),,~[~,~,. Let q = 

(qu)uc[Y.T, d EM:@ ) L’,rJ be a flow of marginals such that qU -p,, for all u E [s, T], 

where ( pU) ut[,71 is the correspondingflowfor l? Let K(q) be the set of all theprobability 

distributions Q on WtT verifying both conditions 

$a(Q; PI (00, 

QLlx;‘= q,, for all u E [s, T]. 

We shall assume that K(q) is non-empty. Then there exists a single law 0 in K(q), 

minimizing4(. ; P). Moreover, Q is Markovian and satisfies thefollowing ‘Pythagoras’ 

equality: 

~(Q;P)=4(Q;P)+4(Q;@ forany QEK(~) 

where the minimum is computed by 

$a(@ P)=~(q,;p,)+ _T 114 - C%AI;~,,, du. 

2. Proof of the theorem 

2.1. First step: Existence of an l-projection 

Let us first translate the conditions satisfied by any element of K(q). If {s,},,, is a 

dense denumerable subset of [s, T] and { 4,}i_, a total subset of C,,(Rd), the second 

condition defining the set K(q) is equivalent to 

v(i,j)EN*xN*, (4, OX,,, 0)=(&i, q,,) 

i.e., as the marginals of Q are already prescribed by q, to denumerable linear 

constraints on Q. We shall reindex these constraints and put, if k is related to (i, j), 

ck = (+i, %,), $k = h ’ x,,,, SO that 

Vk E N*, ($k, Q) = ck. (8) 

It easily follows from these equalities that K(q) is a norm variation closed subset 

of all the probabilities on W:,. From Theorem 2.1 of Csiszar (1975), we directly 

obtain the existence and unicity of Q. Let us see now how to recover the solution 

of our minimization problem according to a discretized procedure. We consider the 



334 M. Brunaud / Diffusion with jixed margin& 

problem consisting in finding a probability distribution Q which minimizes $(. ; P) 

under the n first preceding constraints. As a consequence of Theorem (3.3) of Csiszar 

(1975) and the non-emptiness of K(q), this problem admits a unique solution Q,, 

such that, for any u E [s, T], there exists a unique vector 0(“+) in R” solving the 

normal equation in 8: 

and 

(9) 

We prove that the sequence (Qn)n2, converges in variation norm and weakly to a 

solution Q of the initial minimization problem (see Fiillmer, 1986). K,,(q) will 

denote similarly the set of the Q’s such that ,a( Q, P) <cc and Q satisfies the n first 

linear constraints. 

A property of Q,, implies that, for any probability distribution Q in K,,(q), the 

following is verified: 

9(Q; P)=J+(Q; Qn)+$(Qn; PI. (11) 

But, if n B m, Qn E K,(q), so that 

Qm, Qnsm, $(Qn ; PI = -a(Qn ; Qm)+9a(Qm ; f’). (12) 

As K(q)c n, ~, K,,(q) and K(q) is non-empty, the preceding relation implies that 

the sequence ($(Q,, : P)),4, is bounded by $(R; P), where R is an arbitrary element 

of K(q); moreover, the same sequence is nondecreasing and thus convergent. Let 

1 be its limit. As 

I--$(Q,,,; P)= sup[$(Q,l 
n>m 

; PI-$(Qm; ~‘)I=suP~(Q~ 
nzm 

; Qm) 

we get 

lim sup 9(Qn; Q,,,)=O. 
111-K, n ‘,,, 

Using the elementary inequality (where 11~ jlvar d enotes the total variation norm of 

the measure p) (see Jacod and Shyriaev, 1988) 

we deduce from the above relations that the sequence (Q,,),,%, is Cauchy and thus 

converges in variation norm: its weak limit Q therefore exists. By means of the 

lower semi-continuity of ,a( .; P), of the fact that nnaL K,(q) contains Q, due to 

the continuity of the mappings Q H (Gk, Q), we successively get the inequalities 
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and 

9(Qn; P)S4(Q; P) 

so that 9(Q; P) = lim,,, 9(Q, ; P) and lim,,, 9( Q; Qn) = 0. This shows that Q is 

a solution of the initial minimization problem; its unicity follows from the unicity 

of the solution of each minimization problem and the fact that K(q) = n,,,, K,(q). 

Nevertheless, the unicity of Q may be obtained from direct topological consider- 

ations: as we are interested in a minimization problem, we may assume that there 

exists some constant C > 0 such that the minimum is taken on K(q) n {9(. ; P) s C}, 

which is a compact convex non-void subset of M:( Wl,); 9( -; P) is a ‘good’ rate 

function (i.e. its level sets are compact), lower semi-continuous and strictly convex 

on K(q); so, 9(. ; P) attains its minimum at a unique point of K(q). Finally, taking 

the limit n +~3 in (ll), we get the first assertion of the theorem, which shows that 

Q is the I-projection of P on K(q) in the Csiszar’s terminology. 

2.2. Second step: Description of 0 

As has been shown in the preceding paragraph, the probability distribution Q, 

solution of the minimization problem of the theorem exists and is unique. For two 

main reasons, we need giving a more descriptive characterization of Q. On one 

hand, the preceding one, though simple, is not explicit, as given by a limit of 

unknown probability distributions. On the other hand, in view of our main result, 

Q should be Murkovian; this property does not follow the Csiszar’s like arguments. 

This crucial feature is related to the smoothing procedure, which underlies an 

entropy minimizing technique. Let us define Q’“’ to be the unique probability 

distribution minimizing 9(. ; P) under the n following constraints: 

Vj, lsj~n, Q~x;‘=q,~,. (13) 

One can easily show that the same arguments as above work to prove both its 

existence and unicity. We first give a precise description of Q”’ as an h-conditioned 

diffusion law for some precise P-invariant mapping h. 

(a) The case n = 2: Let us fix t E [s, T] and look for laws Q minimizing Ca*,,,(. ; P) 

such that 

Q o xl’ = 9, -1 Q”x, =q,, 
where qs and qr are two given probability distributions on Rd. For any (x,y) in 

Rd X Rd and any law R on W$ (also denoted by R,y,,, when emphasizing on the 

initial conditions) RI;;“, will denote the regular conditional probability distribution 

of R, conditioned to be a.s. equal to x (resp. y) at time s (resp. t). 
We also need the following definition: 

Definition 2.1. Let w and w’ be two paths in Wz,,. Let us pick some t > 0. The 

t-splice of w and WI, denoted by w 0, w’ is the path defined by 

(w 0, w’)(s) = w(~)l[o,t,t~) + w’(s)1 [r,oo~tS) if w(t) = w’(t), 
w(s A t) otherwise. 
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Moreover, if P and Q are two probability distributions on Wi,, and w E 

Wd 0.m 3 OJ 0, Q denotes the image of Q under the measurable mapping w’ H w 0, w’ 

and P 0, Q the probability distribution P 0, Q = j P(dw)G,,,o. 

We now quote the following useful lemma from Varadhan (1984, Lemma 10.3): 

Lemma 2.1. Let (X, 2) be a Polish space and 9, c 5F2 c 2 be sub-a-j?elds. Denote 

also by A,, pL, the regular conditional distribution of A and t.~ given 9,. Then 

G&u; A)=~.F~(P; A)+EL”(4,&u,; A,)). 0 

We use the preceding notions to get the following: 

Proposition 2.1. Let Q be any probability distribution on W$ and pick some t > 0 in 

(s, T). Q:’ (resp. Q,$) will denote a regular conditional probability distribution of Q 

given p,,,, (resp. a{~,, x,}). It then holds that: 

where ho (resp. vp) is the law of (x,,, x,) under Q (resp. P). 

Proof. We shall use twice Lemma 2.1. We plug 5, = ~{x,,, x,}, S’* = ?F<,,,, PX = q,,r, 

such that 5, c .Fzc SI. Using (2.1) with the pair (9,) SJ, we first get 

-%F\,,(Q; P) = A,,(Q; P)+ E’%,(Qt;‘; Pi’), (14) 

and with the pair ( S2, S3), 

G,,(Q; P) = h,,,\>,,,, (Q; P) + Eo&J Q$+ P$Ys,“‘). (1% 

As an obvious consequence of the definition of 9,) the first term of (15) equals 

$(vo, . vp); for the second term, we notice that, assumed to be finite, the Kullback 

information of the conditional law Q~‘x,~~X~’ w.r.t. P~c’~*“~~ is computed by taking the 

expectation of some ~{x,, x,) measurable T.v., which justifies to be rewritten as said 

in the proposition. We deal now with the second term of (14). It is obvious that 

Q;’ = 6, 0, Q;’ 

and, because of the Markovian property of the family (P,,,) where s 2 0 and x E Rd, 

Pl;’ = 6, 0, P,+(,). 

We can now deduce that 

The latter equality holds for the probability distributions 6, 0, R are nonrandom 

until time t and to compute the Kullback information of the considered conditional 

laws it is sufficient to take S,,,-measurable functions. 0 
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We can now get the characterization of Q’*‘; we first minimize over all Q knowing 

w H 95’. Therefore the restriction of Q:’ on g,,r equals that of P,,+(,). Taking care 

of this, we see that 

Q= 
(1 

~~(dxOdy)P::Y, 0 P,,,, , 
f > 

(16) 

whenever vo minimizes $a(. ; vP) having its first (resp. second) marginal identical 

to 4, (resp. q,). Following Csiszar (1975) and using Lemma 2.5 from Donsker and 

Varadhan (1976), the latter finite dimensional problem has a unique solution vo 

such that there exist two positive measurable functions fS (resp. f;) PI (resp. p,) a.e. 

strictly positive and finite with 

log(L) E L’(q,), idem for fr, 
and 

2 (x, Y) =fc(xlft(Y), VP-a.s. 

We then deduce by a direct calculation the expression of the marginals 

z (xl =L(x) ,hyM~, x; f, Y) dy, 
5 

2 (Y) =ft(v) 
hbW.L(xh(~, x; t, Y) 

I h(dxMs, x; t,~) . 

(17) 

(18) 

Let us define 

h(u,x)= f,(y)n-(u,x; r,y) dy, SGU< t. 
I 

As h( t, .) -fr, we straightforward verify that h is invariant for the diffusion of 

law P, i.e. h(u,x)=j ( n U, x; t, y)h( t, y) dy for all t E [s, T]. As 

dQ 
dp ,_ =L(x.y)h(4x,L P-a.s., 

3\,, 

P-ah 

we see that h(s, x,) > 0, P-a.s., and we finally obtain: 

P-as. (19) 

Notice that it is in no way assumed that the function h is strictly positive dt@ m,(dy) 

a.e. For this reason, let H denote the first hitting time of the closed subset hp’({O}) 

of [O, 00) x Rd, 
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(inf{@} = 0). Similarly, let us define the stopping times -?;, and ? by 

~~=inf{l>~iJ-‘I~i’(~,x~)d~~~}, 

i: = sup -?;, = lim TN,. 

Obviously, 72 H, P-a.s. Let us write an It6 formula for u +-+ log !I(. , X.) 

(u A H A t,), 

This latter relation may be written as 

h(r A H A fn, x,n~,i,,) 

h(s, x,) 
= exp ( j,5”“‘i’ i(k+ L,)(h)(u, x,) dv) 

x %(c. P)(r A H A TJ, 

where j3 denotes the P adapted martingale 

I 
I 

/3,=x,-x<- b(x,,U)du, ~E[s, T], 
., 

c the mapping defined on the complementary of 

c(u, x) =v, log h(u, x), SSUGT, 

h-‘(101) by 

and %‘Y( c. /3) is the exponential martingale associated with c. j3 and starting from 

s. Taking the limit n + ~0, recalling that f 2 H, P-a.s., we get 

(Whenever t 2 H, this latter equality boils down to 0 = 0.) 

If we already know that h is strictly positive everywhere, then using Theorem 

V.5.2 of Azencott (1983) and the regularity Assumption A2 on the kernel n of the 

diffusion P, the preceding equality would straightforward imply that the restriction 

of Q on [s, T] is a diffusion law with the extra-drift: yY(x) = a(s, x)V, log h(s, x) 

and new kernel . 

iqs, x; t, y) = 
h(t Y) ----7r(s, x; t, y). 
h(s, xl 
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Then, as a consequence of Assumption A2, we see that 

%= ZTT(c. p)(t) 
h(s, x.,) 

on {t < H}. 

Thus 

dQ =d4‘(x,)8,(c. /3)(u,x,). 
dP :9,,, dP, 

(20) 

(b) The general case: We now fix n+l points (s,)“_~~ (by convention, sO= S) 

of the interval [s, T] and n + 1 probability measures on Rd, (q,)os,c,,. We look for 

the law Q”” minimizing I.F-,.( . ; P) under the n + 1 constraints 

Q”xs, -’ = qi, OSiSn. 

A chain use of the above Varadhan’s lemma shows us that 

where v$’ (resp. Y:‘) is the law of (x,,, x,$,+,) under Q (resp. P). 

Similarly, Q (n’ is given, at least formally, by n-l 
( J 630 v’d’(dx,Odx,+,)P::,+~;‘~i~ 

> 
@ P s,,, y, (21) 

,=o \,+, $0 

which is a kind of convatenation of diffusion laws, each of them being respectively 

restricted on WY,,,,+, and such that each measure v ‘0’ is the unique solution of an 

analogous problem as for v. but with q, (resp. q,) changed into qi (resp. sit,). 

We therefore get, for every u E [s, T], such that s, < u < s,,, for some 0 < i 9 n - 1, 

dQ’“’ 
==(x,,).,,(P. J?“‘)(u,xu), 

d P -F,,,, dp,, 
(22) 

where c(j) is the same mapping obtained as in (20) and /3”’ is the restriction of the 

Brownian motion /3 on W,a,,s+,. 

2.3. Third step: The lower bound 

Let us choose in K(q) one Q, to which we shall refer all along this sub-section. As 

Q < P, it is well known that the process 2 = (Z,),,,5 where 2, = (dQ/dP)I,,,, defines 

a positive uniformly integrable martingale. Under Assumption Al, Theorem 7.2.1 

of Stroock and Varadhan (1979) yields the unicity of the martingale problem 

associated with L,. Theorems 1.5 and 4.3 of Jacod and Yor (1977) thus show that 

every adapted L’(P)-martingale admits the decomposition as a sum of its initial 
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value and of a stochastic integral of the elementary characteristic martingale. In 

particular, there exists one (.F5,,,),zc previsible process (&,)sc-uS-T such that 

2, = 2, + 
J 

f 

4, dM, (23) 
c 

where (MU),,,T denotes the (F5,u),SUSr adapted martingale 

II 
M:=x:-x:- 

J, 
bi(x,,,a)da, l~isd, 

with quadratic variation process 

d(Mu,M:)=ai3’(x,,u)du, lSi,jSd. 

Thus, M. being continuous, so is 2.. 

Let us quickly show that Z, = (dq,/dp,5)(x,y). By definition, Z, is the Radon- 

Nikodym derivative of Q restricted to a{~,,} with respect to P restricted to ~{x,}. 

Thus, for any bounded bore1 map J 

J f(x\)Z, dP = f(x.5) dQ = 
J J 

f(yh,(dy) 

= 
J 

i’(y) z (y)p,(dy) = 
5 J 

f(x.s) $f (x,1 dP. 
, 

Noticing that Z, is strictly positive P-a.s. (because p,, and 4 are equivalent), we 

can define the following stopping times: 

T,,=inf{t>s/Z,<l/n}, nal, 

T*=inf{t>sIZ,=O}, 

such that T,, converges increasingly towards T * P-a.s. The T,-stopped martingale 

272 = z.,, is a nonnegative margingale, so that the P-martingale Y% can be defined 

by 

y;,z = 
‘nr,r dZ 

J u 0 z . 

Moreover, this one fullills the property that 

is a Q-martingale. Solving the latter equation, we see that 

i.e. 

Z rnr,, =-CAT,, exp{ KAr,, -#‘hd, t~[s, 7-l 
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Taking the n + 00 limit in this relation and using the continuity of Z, we deduce 

Z rnT* = -&AT. * exp{ ytA T* -$( Y)rhT*)y t E [$ Tl. 
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Let us show that Q( T” < +a) = 0. First of all, Q( T,, < 00) = Ep(Z,, 1 T,,<m) s l/n 

and this implies 

4!1{ > 
T,,<co} =0= Q(T*<oo). 

Thus, T* = tco, Q-a.s. Using Theorem 1.11 of Sharpe (1980) for the P-martingale 

Y T*, we see that 

{T* < 00) n {( Y)T* < ~0) = {T* < CO} n { YT* exists and is finite} 

up to P-negligible events. As Z,* = 0 on {T” < 00) P-a.s., by continuity of Z and 

the above expression of ZT* (put t = s), we also deduce that these events are P-a.s. 

equal to 

{T*<oo}n{Z,*>O}, 

and that (Y)T* = +OO on {T” < a} P-a.s. It is also well known that Z = 0 P-a.s. on 

UT”, ooI[ (Lemma 111.3.6 in Jacod and Shyriaev, 1988). This enables us to compute 

9,F\,,( Q; P) for every t 2 s (recall that ,a,,( Q; P) = Ep(Z, log Z,) whenever 

Z,(log Z,)’ E L’(P), and +a otherwise; we shall put 0 log 0 = 0). We easily get via 

the Girsanov’s theorem the following expression: 

%,,(Q; p)=~.~~(4;p.~)+~E,((y)T,,) 

which implies via Lemma 2.1 that 

tEo( y)T,, s ?Q,, (Q; P)S$(Q; P)<co. 

Taking the limit, we finally obtain 

&,{(Y),; T*=co}+;E,{( Y),-; T*<co}<oo. (24) 

But, as Q( T* < +a) = 0, we deduce 

EQ{( y)T*)<co, 

%$?; PI = $s,(q.s; A)+&(m). 

Similarly, on {T* = +a}, Z, > 0, P-a.s. and the restrictions of Q and P on {T* = +co} 

are equivalent. Let J(4) denote the function defined on Rd x [0, +oo] by 

J(4)(x, t) = 4 * wx, t)+t((4)):(x). 

Re-using the representation of the P-martingales, we finally get the existence of an 

adapted process $ such that, for every t 3 s, 

Z, = lrCTCZF exp [~.,~~~dx.-l.lI(~~)(x.,U)du]. 
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As a consequence of the representation of Q (“’ already obtained in the second 

step (cf. (22)), we observe that Q’“’ is (locally) equivalent to P, which implies, as 

before, the existence of an adapted process (+:“‘),,, such that, for all t E [s, T], 

dQ’“’ 
~1 =~(x.)exp[j:di:“‘dx.l:.l(l/,l:l)(*,,u)du]. (25) 

dP s-,,, dp, 

We then deduce the expression of the Kullback information of Q (resp. Q’“‘) with 

respect to P, 

&JO; f’)=&,(a;Ps)+& ; (1 
’ ((h))2,(~,) du , (26) 
s ) 

and 

using the fact that, if H. is a P-martingale, the process 

.,=.,-(H,j,j,dM.), 

(resp. K’“’ similarly defined but with $ replaced by I,!J’“‘) is a Q- (resp. Q’“‘-) 

martingale. 

Let us now give the following: 

Definition 2.2. Let Q be an element of K(q) and I,!J the adapted process defined as _ 
above. Then, for any t E [s, T], $, denotes a regular conditional probability version 

of $I, knowing x,, i.e. 

G,(x) = J%[$, Ix, = xl. 

Thus, as ~o[(~hJ~%xu) ix,1 = ((&J>‘u(xu)+ &A((+k, - &J)%-L ~11, we get the lower 
bound 

, 
&,,(Q; P) 2 9a,(q, ; P,)+%J 

(I i s 
Wd ~&Jtb+dW dz.4 . 

> 
(28) 

Let us now show how this lower bound is related to the norms )l.]jy,,,U. Because 

of our assumptions, P is the unique solution of the (a, b)-martingale problem, such 

that, for all f~ Cz(W”), the process 

(f(x,) -f(x,) - j-’ U(x,) du) 
s f z= s 

is an adapted P-martingale. Consequently, thanks to the representation of the 

martingale 2, we compute for any Q in K(q), 

-&LOX,) -.0x,)) = CL qr)-(1 q.5) 
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We thus have, in the distributional sense, 

(4, - JGs,.f> = (s,, (VLA &M. 

But 

(29) 

4(4,, ((&)):) =Ms,, (($6 -VfX)-&I,, ((VJX)+-(s,, (Vlf; $J,, 

a(41 - L~(q,),f)-~(q,,((V,f)):). 

Because of the definition of I/. IIy,,,, given just before Definition 1.1, the preceding 

inequality yields 

II 41 - cst II ‘,,,I s t(s,> hw~. (30) 

We summarize these results in: 
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Proposition 2.2. For all Q in K(q) and all t E [s, T], 

&,,(Q; P)~4.+\(qs;ps)+ ’ Ik-~hull:c,,udu. 
I 

0 
F 

2.4. Fourth step: The lower bound is attained at 0 

We have shown at the second step that 9.F,,(Q; Q)‘“‘) tends to 0 as n tends to ~0, 

for each t E [s, T]. Using the above ‘Pythagoras’ equalities (12), we compute 

[ (I 
, - &&?; PC) +$a ((h”‘))‘,(xu) du 
< )I 

We finally get the following expression for our null convergent sequence: 

&\,,(Q; 0’“‘) = ,a.~>(%; q:“))+& 
(I 

’ C(&‘- hJt(xu, du 
.5 > 

(where we have used the facts that Q Q Q” and, consequently that ii Q qi”‘). But, 

as proved in the first step, Q’“’ converges weakly and in variation norm to Q such 

that, for all n 3 1, Q < Q’“’ and $,(q, ; 4:“)) tends to 0. We then conclude from 

the last equality that 

(4 w) H ((r&Y’-&J,(x,) 

converges to 0 in L*(fi x [s, T], QOdu). 

The main result of the second step shows that for all t > s, the process @II”’ is 

a(x,)-measurable and that there exists a piecewise continuous C” in x function 

h’“’ such that 

(crv’(x) =V, log h’“‘(u, x) for almost all (u, x) w.r.t. duOm,(dx). 



344 M. Brunaud / Diffusion with fixed marginals 

Due to Assumption Al, we see that, for almost all u E [s, T], (cry’ converges to +!J~ 

in L’(llP, qu), and, as *I,“’ IS a(~,) measurable, that &, is too (one can easily verify 

that if (Zn)naO is some L2 convergent sequence of a(X) measurable random 

variables, its limit is g(X) measurable). This implies that Ju = &, for almost all 

u E [s, T] and that 0 is Markovian. Recall (cf. Section 2.2(a) above) that H > t iff 

Z, > 0: thus, T” = H and H = +a, @a.s. We may also use the results contained in 

Nagasawa (1989) which are especially suited for general h. According to the result 

in Section 2.2(b), one can find a sequence of functions k’“‘: I%’ x [ 0, too), Cz ’ in x 

such that, for almost all u E [s, T], 

6, = lim V,k’“‘(u, x) 
n-u3 

in L*(U?, q,,) norm. (In fact, before taking smooth approximations, the functions 

match with V,x log h”’ on each subinterval [si, si+,) and that is why the preceding 

equality takes place for all u but a denumerable union of finite subsets of [s, T].) 

In fact, by means of the relation following (29), we have 

;(qu, ++6J)t) =;(su> (& -VJ&‘%+(q,, (&,, V,k?‘),)-t(q,, ((V,k:‘))t). 

The first term of the right side of this equality tends to 0; the second term is equal 

to (4,, - Lzq,, ky’). By definition of the norm N, = I]&, - L$q,, Ij’,,,,u, we have 

N,, slim sup((Q, - L$q,, kr’)-i(q,, ]V,,kv’15)). 
n-cc 

The quantity of which we are taking the limit sup equals 

o(l)+&L ct&J)‘,>, 

so that N,, ~$(q,,,((&))f,). Using the inequality (30), we conclude that the latter 

inequality is in fact an equality. Thus 

&>,,(6; P) =9,-,(&i PA+; 
1. 

; (ai, <tiu)% du 

= .~+~\(a; P,)+ I ’ 114u - Lhll2,,,,u du. 
s 

And, as 0 E K(q), we get an equality in Proposition 2.2. We conclude that the lower 

bound is really achieved at 0, and at this point only. 0 
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