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generalizations of the Jordan canonical form
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Abstract

The Jordan normal form for a matrix over an arbitrary field and the canonical form for
a pair of matrices under contragredient equivalence are derived using Pták’s duality method.
© 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

We show how Pták’s duality method leads to short proofs of two extensions of
the Jordan canonical form, viz. the normal form for a matrix over an arbitrary (not
necessarily algebraically closed) field under similarity and the canonical form for a
pair of matrices under contragredient equivalence.

The duality method is summarized in the following.

Lemma 1. Let V be a finite-dimensional space over a field F, let A : V → V be
a linear map, and S ⊂ V be an A-invariant subspace of V. IfT ⊂ V ∗ is an A∗-
invariant subspace of the dualV ∗ of V such that

s ∈ S, 〈s, t〉 = 0 ∀t ∈ T H⇒ s = 0, (1)

t ∈ T , 〈s, t〉 = 0 ∀s ∈ S H⇒ t = 0, (2)
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then V = S+̇ ann(T ) is an A-invariant direct sum decomposition of V, with
ann(T ) :={v ∈ V : 〈v, t〉 = 0 ∀t ∈ T } the annihilator of T.

We give a proof for the sake of completeness.

Proof. Condition (1) implies that the sumS + ann(T ) is direct. If dimT > dimS

and{tj }dimT
j=1 ({sj }dimS

j=1 ) is a basis ofT (S), then the matrixG: = (〈si , tj 〉 : i = 1, . . . ,

dimS, j = 1, . . . , dimT ) has fewer rows than columns. Hence the equationGx = 0
has a nontrivial solution, and so (2) fails. In other words, (2) implies that dimT 6
dimS. Hence dim ann(T ) > dimV − dimS. Thus,V = S +̇ ann(T ). SinceT is A∗-
invariant, ann(T ) is A-invariant, which completes the proof.�

2. The analogue of the Jordan form for an arbitrary field

Theorem 1. Let V be a finite-dimensional linear space over a field F and letA :
V → V be a linear map. Then there exists a basis of V such that the representation
of A with respect to that basis has the form

diag(A1, . . . , Ap), (3)

where

Ai =




Ci 0 · · · 0 0
Bi Ci · · · 0 0
...

...
. . .

...
...

0 0 · · · Ci 0
0 0 · · · Bi Ci


 , Bi =




0 0 · · · 0 1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0




di×di

,

Ci =




0 0 0 · · · 0 0 adi

1 0 0 · · · 0 0 adi−1
0 1 0 · · · 0 0 adi−2
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 a3
0 0 0 · · · 1 0 a2
0 0 0 · · · 0 1 a1




di×di

,

xdi − a1x
di−1 − · · · − adi is a prime inF [x].

This form is unique up to reordering of the blocksA1, . . . , Ap.

Proof. Since the space of all linear maps onV is finite-dimensional, there exists
k ∈ N such thatAk ∈ span{I,A, . . . , Ak−1}, and hence some monic polynomial in
F [x] annihilatesA.
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Let f ∈ F [x] be the monic polynomial of minimal degree such thatf (A) = 0
and letf = (f1)

k1 · · · (fr )
kr be its decomposition into powers of distinct (monic)

primesfi, i = 1, . . . , r. Letgi : = ∏r
j=1,j /=i (fi)

ki . SinceF [x] is a Euclidean domain
and gcd(g1, . . . , gr ) = 1, it follows thatg1h1 + · · · + grhr = 1 for someh1, . . . , hr

∈ F [x]. Hencev = h1(A)g1(A)v + · · · + hr(A)gr(A)v for anyv ∈ V . Buthi(A)gi

(A)V ⊆ Vi : = ker(fi(A))ki , so V = V1 + · · · + Vr . Supposev ∈ Vi ∩ Vj , i /= j .
As (fi)

ki and(fj )
kj are relatively prime, there existsi,j , sj,i ∈ F [x] such thatsi,j

(fi)
ki + sj,i (fj )

kj = 1, and hencev = si,j (A)(fi(A))ki v + sj,i (A)(fj (A))kj v = 0,

since(fi(A))ki v = (fj (A))kj v = 0. So,V = V1 +̇ · · · +̇Vr is a(nA-invariant) direct
sum decomposition ofV. The arguments given so far are standard.

Now show how to split the subspacesVi . Let Ṽ stand forV1, Ã for A|V1, f̃

for f1, k for k1, d for degf1. Sincef is the minimal polynomial annihilatingA,
f̃ k is the minimal polynomial annihilating̃A. So there existsv ∈ Ṽ such thatw: =
(f̃ (Ã))k−1Ãd−1v /= 0.

We claim thatw /∈ span{(f̃ (Ã))k−1Ãj v : j = 0, . . . , d − 2}. Indeed, ifw were
in that span, it would implyh(Ã)(f̃ (Ã))k−1v = 0 for some polynomialh of degree
d − 1. But any polynomial of degreed − 1 is coprime tof, and so there would exist
a combination ofh andf (with coefficients fromF [x]) equal to 1, which would yield
(f (Ã))k−1v = 0, contradictingw /= 0. Hence the claim follows.

So, there existsv′ ∈ Ṽ ∗ such that

〈(f (Ã))k−1Ãj v, v′〉
{= 0 if j = 0, . . . , d − 2,

/= 0 if j = d − 1.

Let

W1: = span{(f (Ã))i1−1Ãi2−1v : i1 = 1, . . . , k, i2 = 1, . . . , d},
W ′

1: = span{(f (Ã∗))i1−1(Ã∗)i2−1v′ : i1 = 1, . . . , k, i2 = 1, . . . , d}.
Notice that

g(i1,i2),(j1,j2): = 〈(f (Ã))i1−1Ãd−i2v, (f (Ã∗))k−j1(Ã∗)j2−1v′〉 /= 0

only if (i1, i2) � (j1, j2) (in lexicographic order). So, thekd × kd-matrix
(g(i1,i2),(j1,j2) : i1, j1 = 1, . . . , k, i2, j2=1, . . . , d) is upper triangular with nonzero
diagonal elements. Hence, by the lemma,Ṽ = W1+̇ ann(W ′

1) is anÃ-invariant direct
sum decomposition of̃V . The matrix representation of̃A|W1 with respect to the basis
((f (Ã))i1−1Ãi2−1v : i1 = 1, . . . , k, i2 = 1, . . . , d) ordered lexicographically is one
of the diagonal blocks in (3) withdi = d andf̃ (x) = xd − a1x

d−1 − · · · − ad .
Splitting the spaces ann(W ′

1), V2, . . . , Vr in the same way as above, we obtain a
direct sumV = W1 +̇ · · · +̇Wp of A-invariant indecomposable subspaces and a basis
in each so that the matrix representation ofA with respect to the concatenation of the
bases ofWi ’s has the form (3).

Since the minimal polynomialf of A is unique, the (monic) prime factorsfi and
the powerski with which they occur inf are determined uniquely. Let
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ni
j : = dim ker(fi(A))j =

∑
Wl⊆ker(fi(A))ki

min(dimWl, j degfi),

i = 1, . . . , r, j = 1, . . . , ki .

Then 1ni
j : = ni

j+1 − ni
j is the number of blocks forfi of order greater thanj ·

degfi multiplied by degfi . So the number of blocks of orderj · degfi equals
−12ni

j−1/ degfi = (1ni
j−1 − 1ni

j )/ degfi . Since the numbersni
j are uniquely

determined by the mapA, this completes the proof of the uniqueness of (3).�

Remarks.
1. The arguments in the two preceeding paragraphs are variations of those due to de

Boor [1].
2. If F is algebraically closed, the polynomialsfi are of degree 1, and so (3) becomes

the Jordan normal form ofA.
3. In the proof above, all the factors of the minimal polynomial are treated in the

same way in contrast to the proof in [7] where the canonical splitting is first given
for the nilpotent part ofA and then follows for all other parts by shiftingA by an
eigenvalueλ (for that completion of the proof in [7], see [1]).

4. Theorem 1 is classical and can be found, e.g., in [5, pp. 92–97]. In the sequel, we
refer to a matrix in the form (3) as being in theJordan normal form for the field
F, and as the Jordan normal form of the operatorA.

3. The canonical form under contragredient equivalence

Two pairs of matrices,(A,B) and(C,D), are called contragrediently equivalent
if A,C ∈ Fm×n, B,D ∈ Fn×m, andA = SCT −1, B = T DS−1 for some invertible
S ∈ Fm×m, T ∈ Fn×n.

The problem of classification of pairs of matrices under contragredient equiv-
alence can be restated as follows. Given ann-dimensional linear spaceV and an
m-dimensional linear spaceW and linear mapsA : V → W , B : W → V , choose
bases ofV andW so that the pair(A,B) has a simple representation with respect to
these bases.

Theorem 2. Let V, W be finite-dimensional linear spaces over a field F and let
A : V → W, B : W → V be linear maps. Then there exist bases of V and W such
that, with respect to those bases, the pair(A,B) has the representation(

diag(I,A1, . . . , Ap, 0), diag(JAB,B1, . . . , Bp, 0)
)
, (4)

whereJAB is the nonsingular part of the Jordan form of AB, Ai, Bi ∈ Fmi×ni ,

|mi − ni | 6 1, and
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(Ai, Bi)∈
{((

Imi−1 0
)
,

(
0

Imi−1

))
,

((
0

Imi−1

)
,
(
Imi−1 0

))
,

(Imi , Jmi ), (Jmi , Imi )

}
,

whereJk denotes thek × k-matrix with ones on the first subdiagonal and zeros
elsewhere. The representation(4) is unique up to reordering of the pairs of blocks
(Ai, Bi), i = 1, . . . , p. Two pairs(A,B) and (C,D) are contragrediently equiva-
lent if and only if AB is similar to CD and

rankA = rankC, rankBA = rankDC, . . . , rank(BA)t = rank(DC)t ,

rankB = rankD, rankAB = rankCD, . . . , rank(AB)t = rank(CD)t , (5)

t : = min{m,n}.

Proof. Step1. By [7, Theorem 1] (whose proof holds over an arbitrary field), there
exist V1 (W1) andV2 (W2) such thatBA (AB) is invertible onV1 (W1) and nilpo-
tent onV2 (W2) and V = V1 +̇V2 (W = W1 +̇W2). Moreover,V1 = range(BA)r ,
V2 = ker(BA)r , W1 = (AB)r , andW2 = ker(AB)r for somer ∈ N. If x ∈ V1, then
x = (BA)ry for somey ∈ V . Hence(AB)rAy = Ax, that is,Ax ∈ W1. Analogous-
ly, By ∈ V1 whenevery ∈ W1. So,V = V1 +̇V2, W = W1 +̇W2, A mapsVi to Wi ,
B mapsWi to Vi for i = 1, 2.

If x ∈ V2, then (AB)rAx = 0, and soAx ∈ W2. If x ∈ V1 and Ax = 0, then
BAx = 0, and therefore,x = 0 sinceBA is invertible onV1. So,A induces a one–one
map fromV1 to W1. Likewise,B induces a one–one map fromW1 to V1. So,V1 and
W1 have the same dimension and the induced maps are also onto.

This step of the proof not only uses [7, Theorem 1], but also parallels it.
Now one can choose bases ofV1 andW1 so thatA|V1 is the identity matrix and

B|W1 is in Jordan normal form (which is the nonsingular part of the Jordan normal
form of AB).

Step2. The spacesV2 andW2 are further split as follows. Letl be the length of
the longest nonzero product of the form· · · ABA or · · · BAB. Call such a product
C and suppose it ends inA. Pick x ∈ V2 so thatCx /= 0 and form the sequencex,
Ax, BAx, . . . , Cx, whose elements are alternately inV2 andW2. Let V3 (W3) be the
span of the elements of the sequence belonging toV2 (W2).

If l is even, then dimV3 = dimW3 + 1 = 1 + l/2. Pickx ′ ∈ V ∗
2 so that〈Cx, x ′〉 /=

0. Form the sequencex ′, B∗x ′, . . . , A∗B∗x ′, . . . , C∗x ′. Let V4 (W4) be the annihi-
lator inV2 (W2) of the elements of the sequence that lie inV ∗

2 (W∗
2 ). The(1 + l/2) ×

(1 + l/2)-matrix (〈(BA)i−1x, (A∗B∗)1+l/2−jx ′〉 : i, j = 1, . . . , 1 + l/2) is upper
triangular with nonzero diagonal entries. Hence, by Lemma 1,V2 = V3 +̇V4. This
argument is exactly the same as the corresponding argument in [1].

Analogously,W2 = W3 +̇W4. Moreover,A mapsVi to Wi , B mapsWi to Vi ,
i = 3, 4, and the pair(A|V3, B|W3) has the form
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Il/2 0

)
,

(
0

Il/2

))
.

If l is odd, then dimV3 = dimW3 = (1 + l)/2, and the above construction gives
V2 = V3 +̇V4, W2 = W3 +̇W4 with A mappingVi to Wi , B mappingWi to Vi , i =
3, 4, the pair(A|V3, B|W3) having the form(I(1+l)/2, J(1+l)/2).

If C ends inB, then(A|V3, B|W3) has the form((
0

Il/2

)
,
(
Il/2 0

))
or (J(1+l)/2, I(1+l)/2).

This step of the proof parallels, with necessary modifications, [7, Theorem 2].
The problem is now reduced to splittingV4 andW4 in the same way. The splitting

process ends at thejth stage ifA|V2j
= 0 andB|W2j

= 0.
Thus, one obtains the canonical form (4). It is completely determined by the

nonsingular part of the Jordan form ofAB and the ranks rank(A), rank(BA),
rank(ABA), . . . , rank(B), rank(AB), rank(BAB), . . . Since the rank of any such
product equals the size ofJAB if the length of the product exceeds 2 min{m,n}, the
infinite sequences above can be terminated at(BA)min{m,n}, (AB)min{m,n}. It follows
that
1. the representation (4) is unique up to the order of the pairs of blocks and
2. two pairs(A,B) and(C,D) are contragrediently equivalent if and only ifAB is

similar toCD and (5) holds. �

Remarks.
1. Pták’s duality method was rediscovered by Kaplansky [6], who also described

how to derive the canonical form (4). The same form was first published by
Dobrovol’skaya and Ponomarev [2]. Gelonch and Rubió i Diaz [3, Theorem 2]
proved that the pair(A,B) can be represented as(

diag(A1, . . . , Aq), diag(B1, . . . , Bq)
)
,

whereAi andB∗
i are of the same size and

(dim kerAi, dim kerBi) ∈ {(0, 1), (1, 0)} unless Ai = 0, Bi = 0.

Horn and Merino derived the canonical form (4) in [4, Theorem 5]. All the deri-
vations (in [2–4,6]) were for the fieldC.

2. Observe that the canonical form of the pair(I,A) under contragredient equiva-
lence is(I, JA), whereJA is the Jordan normal form ofA. This and many other
applications of the canonical form (4) are discussed in [4].
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