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Abstract

The Jordan normal form for a matrix over an arbitrary field and the canonical form for
a pair of matrices under contragredient equivalence are derived using Ptak’s duality method.
© 2000 Elsevier Science Inc. All rights reserved.

Keywords: Duality theory; Jordan normal form; Contragredient equivalence

1. Introduction

We show how Ptak’s duality method leads to short proofs of two extensions of
the Jordan canonical form, viz. the normal form for a matrix over an arbitrary (not
necessarily algebraically closed) field under similarity and the canonical form for a
pair of matrices under contragredient equivalence.

The duality method is summarized in the following.

Lemmal. Let V be a finite-dimensional space over a fieldlét A : V — V be
a linear map and S ¢ V be an A-invariant subspace of V.Tf C V* is an A*-
invariant subspace of the du&l* of V such that
ses, (5,)=0VteT — s=0, ()
teT, (s,t)y=0VseS — =0, (2)
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then V = S4+annT) is an A-invariant direct sum decomposition of With
annT):={v eV : (v, t) =0 Vr € T} the annihilator of T.

We give a proof for the sake of completeness.

Proof. Condition (1) implies that the surfi+ ann(7) is direct. If dim7 > dim §
and{tj}?i“f ({Sj}?inls) is a basis off (S), then the matrixG: = ((s;, ;) :i = 1, ...,
dimS, j =1,...,dimT) has fewer rows than columns. Hence the equation= 0
has a nontrivial solution, and so (2) fails. In other words, (2) implies thatTdim
dim S. Hence diman¢(T’) > dimV —dimS. Thus,V = S 4+ann(T). SinceT is A*-
invariant, an7’) is A-invariant, which completes the proof[

2. The analogue of the Jordan form for an arbitrary field

Theorem 1. Let V be a finite-dimensional linear space over a field F anddlet
V — V be a linear map. Then there exists a basis of V such that the representation
of A with respect to that basis has the form

diag(A1, ..., Ap), 3)
where
¢, 0 0O O 0 O 0 1
B C; 0O O 0 O 0 O
Al = ) Bl = S k)
0O O ¢, 0 0 O 0O O
0O O B, C; 0 O 0 O dixd,
0O 0 O 0 0 ay
1 0 O 0 0 ag-1
0 1 O 0 0 ag-2
Ci=|: : ’
0O 0 O 0 0 a3
0O 0 0 --- 1 0 a
0O 0 0 --- 0 1 m dixd:
x¥ —apx%-t—...— g4, isaprimeinF[x].

This form is unique up to reordering of the blocks, ..., A,.

Proof. Since the space of all linear maps ¥nis finite-dimensional, there exists
k € N such thatd* e sparil, 4, ..., A¥=1}, and hence some monic polynomial in
F[x] annihilatesA.
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Let f € F[x] be the monic polynomial of minimal degree such thfay) = 0
and let f = (fo)* --- (f,)* be its decomposition into powers of distinct (monic)
primesf;,i =1,...,r.Letg;:= ]'[;zlﬁj#(f,-)"i. SinceF[x]is a Euclidean domain
andgcdgs, ..., g-) = 1, itfollows thatgihy + - - - + g-h, = 1 forsomeny, ..., h,
€ F[x].Hencev = h1(A)g1(A)v + -+ + h,(A)g-(A)v foranyv € V. Buth; (A)g;
(A)V C Vii=ker(fi(A)ki, soV = Vi + -+ V.. Supposev € V; NV, i # j.
As (f,)"' and(flg)k are relatively prime, there exist ;, s;; € F[x] such thats; /
() + 550 (/Y = 1, and hence = s (A)(fi (A)) v + 5, (A)(f;(A) v =
since( f; (A)kv = (f; (A))"«fv =0.S0,V = Vi +--- 4V, is a(nA-invariant) direct
sum decomposition of. The arguments given so far are standard.

Now show how to split the subspac&s. Let V stand forVvy, A for Aly,, 7
for f1, k for k1, d for degfi. Sincef is the minimal polynomial annihilating,
f" is the minimal polynomial anmhllatlng So there exists € V such thatw: =
(F(A)FLA1y £ 0.

We claim thatw ¢ spar{(f(A))k 14Jv:j=0,...,d —2}. Indeed, ifw were
in that span, it would |mplyl(A)(f(A))k v=0 for some polynomiah of degree
d — 1. But any polynomial of degreé— 1 is coprime td, and so there would exist
a combination ofh andf (with coefficients fromF[x]) equal to 1, which would yield
(f(A)k—1y = 0, contradictingw = 0. Hence the claim follows.

So, there exists’ € V* such that

T R o i

Let
Wi =spad(f(A)11A2 1 y i1 =1,... k, ir=1,...,d)},
W= spari(f(A*)1 Y (A% h 1ip=1,... k, i2=1,....d).
Notice that

Slinin). o = ((FANTLA 2y (F(A*)F(A*) 27 Lyy £ 0

only if (i1,i2) < (j1, j2) (in lexicographic order). So, thekd x kd-matrix
(8(i1.i2). (. jo) * i1, J1=1, ..., k, i2, jo=1,...,d) is upper triangular with nonzero
diagonal elements. Hence bythe Iemrﬁa,—. W1+ annWwy) is anA-invariant direct
sum decomposmon of . The matrix representation dfiy, with respect to the basis
(f(A)ir-1Al2~1y . i1 =1,... k,i»=1,...,d) ordered lexicographically is one
of the diagonal bIocks in (3) W|tld,- =d andf(x) =x? —axd1— ... —q,.

Splitting the spaces anW;), V2, ..., V; in the same way as above, we obtain a
directsumV = Wy + - - - +W,, of A-invariantindecomposable subspaces and a basis
in each so that the matrix representatioiafith respect to the concatenation of the
bases oW;’s has the form (3).

Since the minimal polynomidlof A is unique, the (monic) prime factoys and
the powers; with which they occur irf are determined uniquely. Let
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n':=dimker(f; (A))/ = > min(dim W;, j degf;),
Wi cker( fi (A)ki

i=1....r, j=1... k.

Then Anj.: = ”§‘+1 — n’j is the number of blocks foy; of order greater tharj-

degf; multiplied by degf;. So the number of blocks of ordgr- degf; equals
—Aznj._l/ degf; = (Anj._1 — An’)/ degfi. Since the numbers’; are uniquely
determined by the ma#, this completes the proof of the uniqueness of (3)1

Remarks.

1. The arguments in the two preceeding paragraphs are variations of those due to de
Boor [1].

2. If Fis algebraically closed, the polynomiglsare of degree 1, and so (3) becomes
the Jordan normal form df.

3. In the proof above, all the factors of the minimal polynomial are treated in the
same way in contrast to the proof in [7] where the canonical splitting is first given
for the nilpotent part oA and then follows for all other parts by shiftidgby an
eigenvalue. (for that completion of the proof in [7], see [1]).

4. Theorem 1 is classical and can be found, e.g., in [5, pp. 92-97]. In the sequel, we
refer to a matrix in the form (3) as being in terdan normal form for the field
F, and as the Jordan normal form of the operator

3. The canonical form under contragredient equivalence

Two pairs of matrices;A, B) and(C, D), are called contragrediently equivalent
if A,C e F"™" B,D e F™" andA = SCT~!, B = T DS for some invertible
S e Fm><m, T e Fnxn.

The problem of classification of pairs of matrices under contragredient equiv-
alence can be restated as follows. Givennatimensional linear spacé and an
m-dimensional linear space®/ and linear mapsA : V. — W, B : W — V, choose
bases ol andW so that the paitA, B) has a simple representation with respect to
these bases.

Theorem 2. Let V, W be finite-dimensional linear spaces over a field F and let
A:V — W, B: W — V be linear maps. Then there exist bases of V and W such
that, with respect to those basebe pair(A, B) has the representation

(diag(Z, A1, ..., A,,0), diagJag, B, ..., By, 0), (4)

where J4p is the nonsingular part of the Jordan form of AR;, B; € F™i*"i,
lm; —n;| <1, and
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ol (i 0.2 )- (2 ) 0o )

(Im,'a Jm,')a (Jm,-a Im,)} ’

where J; denotes thek x k-matrix with ones on the first subdiagonal and zeros
elsewhere. The representatiof) is unique up to reordering of the pairs of blocks
(A, B)),i=1,..., p. Two pairs(A, B) and (C, D) are contragrediently equiva-
lent if and only if AB is similar to CD and

rankA =rankC, rankBA =rankDC,...,rankBA)" = rankDC)’,
rankB =rankD, rankAB =rankCD,...,rankKAB)" =rankCD)’, (5)
t:=min{m, n}.

Proof. Stepl. By [7, Theorem 1] (whose proof holds over an arbitrary field), there
exist V1 (W1) and V> (W2) such thatBA (AB) is invertible onVy (W1) and nilpo-
tent onV, (W) andV = V14V, (W = W1 4W>). Moreover,V; = rang€BA)",

Vo = kern(BA)", W1 = (AB)", andW> = ker(AB)" for somer € N. If x € V1, then

x = (BA)"yforsomey € V. Hence(AB) Ay = Ax, thatis,Ax € W1. Analogous-

ly, By € V1 whenevery € W1. S0,V = V14V, W = W1 +W>, AmapsV; to W;,

B mapsW; to V; fori = 1, 2.

If x € Vo, then(AB)"Ax =0, and soAx € Wo. If x € V1 and Ax = 0, then
BAx = 0, and therefore; = 0 sinceBAis invertible onV;. So,Ainduces a one—one
map fromVy to Wj. Likewise,B induces a one—one map froiy to V1. So, V7 and
W1 have the same dimension and the induced maps are also onto.

This step of the proof not only uses [7, Theorem 1], but also parallels it.

Now one can choose basesiaf and W1 so thatA|y, is the identity matrix and
Bl|w, is in Jordan normal form (which is the nonsingular part of the Jordan normal
form of AB).

Step2. The space$» and W, are further split as follows. Ldtbe the length of
the longest nonzero product of the form ABA or --- BAB. Call such a product
C and suppose it ends . Pickx € V» so thatCx # 0 and form the sequence
Ax, BAx, ..., Cx, whose elements are alternatelyiinandW,. Let V3 (W3) be the
span of the elements of the sequence belongirig (GV>).

If lis even, thendin¥z = dimW3 + 1= 1+1/2. Pickx’ € V; sothat{Cx, x')#
0. Form the sequence, B*x’, ..., A*B*x’, ..., C*x’. Let V4 (W) be the annihi-
lator in V2 (W2) of the elements of the sequence that li&h(W). The(1 +1/2) x
(1+1/2)-matrix (((BA)~Yx, (A*B*H/2=ix"y i j=1,...,1+1/2) is upper
triangular with nonzero diagonal entries. Hence, by Lemmuols= V3 4 V4. This
argument is exactly the same as the corresponding argumentin [1].

Analogously, W, = W3 +W,4. Moreover,A mapsV; to W;, B mapsW; to V;,

i = 3,4, and the paitA|y,, B|w,) has the form
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(0 0. (2)

If I is odd, then dinVz =dimWsz = (1+1[)/2, and the above construction gives
Vo = V3+Vy4, Wo = W3 +W4 with A mappingV; to W;, B mappingW; to V;, i =
3,4, the pair(Alv,, Blws) having the form(/(1+1)/2, Ja+1)/2)-

If C ends inB, then(A|y;, Blw,) has the form

0
((11/2)’(1’/2 O)) or Uasn/z lan2)-

This step of the proof parallels, with necessary modifications, [7, Theorem 2].

The problem is now reduced to splittingg andW, in the same way. The splitting
process ends at thth stage ifA|y,; = 0 andB|w,, = 0.

Thus, one obtains the canonical form (4). It is completely determined by the
nonsingular part of the Jordan form @B and the ranks rarfld), rank BA),
ranKABA), ..., rankB), ranKAB), ranK BAB), ... Since the rank of any such
product equals the size dfy s if the length of the product exceeds 2 rhin n}, the
infinite sequences above can be terminatgdat) ™"} (A B)Minmnl |t follows
that
1. the representation (4) is unique up to the order of the pairs of blocks and
2. two pairs(A, B) and(C, D) are contragrediently equivalent if and onlyAB is

similar toCD and (5) holds. [J

Remarks.

1. Ptak’s duality method was rediscovered by Kaplansky [6], who also described
how to derive the canonical form (4). The same form was first published by
Dobrovol'skaya and Ponomarev [2]. Gelonch and Rubié i Diaz [3, Theorem 2]
proved that the paifA, B) can be represented as

(diag(A1, ..., Ay), diagBu,..., By)).,
whereA; and B} are of the same size and
(dimkerA;, dimkerB;) € {(0,1), (1,0)} unless A; =0, B; =0.

Horn and Merino derived the canonical form (4) in [4, Theorem 5]. All the deri-
vations (in [2—4,6]) were for the fiel@.

2. Observe that the canonical form of the pdir A) under contragredient equiva-
lence is(I, J4), whereJ, is the Jordan normal form @&&. This and many other
applications of the canonical form (4) are discussed in [4].
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