Alternating Hamiltonian circuits in edge-coloured bipartite graphs

A.J.W. Hilton

Department of Mathematics, University of Reading, P.O. Box 220, Whiteknights, Reading, RG6 2AX, UK; and Department of Mathematics, University of West Virginia, Morgantown, WV 26506, USA

Received 18 January 1990
Revised 28 May 1990

Abstract

We show that if $G = K_{n,n}$ is edge-coloured with $r \geq 2$ colours so that the subgraph induced by the edges of each colour is regular of order $2n$, then G has a Hamiltonian circuit in which adjacent edges have different colours. We also give a generalization of this result to the case when G is a regular bipartite graph.

1. Introduction

An edge-colouring of a graph G is a map $\phi : E(G) \to \mathcal{C}$, where \mathcal{C} is a set of colours. A circuit in an edge-coloured graph is alternating if adjacent edges of the circuit have different colours. Various authors have found conditions which imply the existence of alternating circuits of various kinds in edge-coloured graphs (see for example Chen and Daykin [2], Daykin [3], Grossman and Häggkvist [5], Bollobás and Erdös [1]).

In this paper we prove the following theorems.

Theorem 1. Let $K_{n,n}$ be edge-coloured with $r \geq 2$ colours in such a way that the subgraph induced by each colour is regular of order $2n$ and degree at least 1. Then G contains an alternating Hamiltonian circuit.

Theorem 1.1 is a special case of Theorem 1.2.

Theorem 1.2. Let G be a regular bipartite graph of order $2n$ and degree at least
\(\frac{1}{2}n + 1 \) which is edge-coloured by \(r \geq 2 \) colours \(c_1, \ldots, c_r \). If \(1 \leq s < r \) and the subgraph induced by \(c_s + 1, \ldots, c_r \) is regular of degree at least \(\frac{1}{2}n \) and at most \(d(G) - 1 \), and has order \(2n \), then \(G \) has an alternating Hamiltonian circuit.

2. Proof of Theorem 1.2

To prove Theorem 1.2, we use an approach via a corollary due to Nash-Williams [8] of a theorem of Ghouila-Houri [4] about directed graphs. Ghouila-Houri's theorem is in turn an easy consequence of an attractive theorem of Meyniel [7]. Let \(d^1(v) \) and \(d^0(v) \) denote the in- and out-degrees of a vertex \(v \) in a directed graph, respectively. The result of Nash-Williams is:

Lemma 2.1. Let \(D \) be a directed graph of order \(n \). If \(d^1(v) \geq \frac{1}{2}n \) and \(d^0(v) \geq \frac{1}{2}n \) for each \(v \in V(G) \), then \(G \) contains a directed Hamiltonian circuit.

We now prove Theorem 1.2.

Let \(G_1 \) be the subgraph of \(G \) induced by the edges coloured \(c_1, \ldots, c_r \), and let \(G_2 \) be the subgraph induced by the edges coloured \(c_{s+1}, \ldots, c_r \). Then \(G_1 \) and \(G_2 \) are both regular, and \(\frac{1}{2}n \leq d(G_2) < d(G) \), so that \(d(G_1) > 0 \). By a well-known theorem of König, \(G_1 \) is the union of \(d(G_1) \) edge-disjoint 1-factors. Let \(F_1 \) be such a 1-factor.

Let the vertex set of \(G \) be \(A \cup B \), where each edge joins a vertex of \(A \) to a vertex of \(B \). Let \(A = \{a_1, \ldots, a_n\} \) and \(B = \{b_1, \ldots, b_n\} \), and suppose that the edges of \(F_1 \) are \(a_1 b_1, \ldots, a_n b_n \). Then, for \(1 \leq i \leq n \), \(a_i \) and \(b_i \) are nonadjacent in \(G_2 \).

Form a directed graph \(D \) on vertices \(d_1, \ldots, d_n \) as follows. For \(1 \leq i \leq n \), \(i \neq j \), whenever \(a_i b_j \) is an edge of \(G_2 \), let \(d_i d_j \) be a directed edge of \(D \). Since \(d(G_2) \geq \frac{1}{2}n \) it follows that \(d^1(v) \geq \frac{1}{2}n \) and \(d^0(v) \geq \frac{1}{2}n \) for each \(v \in V(D) \). (Since \(G_2 \) is regular, it also follows that \(D \) is regular, although we do not use this fact.) By Lemma 2.1, \(D \) has a directed Hamiltonian circuit, which we may suppose consists of the edges \(d_1 d_2, d_2 d_3, \ldots, d_{n-1} d_n, d_n d_1 \).

It follows that \(G \) has a Hamiltonian circuit whose edges are, in order, \(b_1 a_1, a_1 b_2, b_2 a_2, a_2 b_3, \ldots, a_{n-1} b_n, b_n a_n, a_n b_1 \). The edges of \(F_1 \) are in \(G_1 \) and are interlaced with edges of \(G_2 \), and so the Hamiltonian circuit is alternating.

3. Comments

Theorem 1.2 is best possible, for if \(n \) is even and the subgraph induced by \(c_s + 1, \ldots, c_r \) is regular of degree \(\frac{1}{2}n - 1 \), then it does not follow that \(G \) has an alternating Hamiltonian circuit. To see this, suppose that \(s = 1 \), that the edges coloured \(c_1 \) form a 1-factor \(F \) of \(G \), and that \(G \) consists of two copies of \(K_{n/2, n/2} \). Then \(G \setminus F \) has degree \(\frac{1}{2}n - 1 \) and is edge-coloured with \(c_2, \ldots, c_r \). As \(G \) has no Hamiltonian circuit, it clearly does not have one that is alternating.
If, as in the proof of Theorem 1.2, G_2 is the subgraph of G induced by the edges coloured c_1, c_2, \ldots, c_r, then, under the conditions of Theorem 1.2, it follows that G has at least $\min(d(G) - d(G_2), d(G_2) - \frac{1}{2}n - 1)$ edge-disjoint Hamiltonian circuits.

If in Theorem 1.2 we were to stipulate that G be connected, then it seems likely that the lower bound on $d(G)$ could be lowered considerably.

It is evident that the regularity condition could be weakened a great deal. All that is really needed is that, referring to the proof of Theorem 1.2, G_1 has a 1-factor F_1 and D has a Hamiltonian circuit. Conditions for these are provided by Hall's theorem and Meyniel's theorem, respectively.

Acknowledgement

I would like to thank Keith Walker for various helpful remarks.

References