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Abstract-we present a very simple proof of the global existence of a Coo Lagranglan flow map for 
the 2D Euler and second-grade flmd equations (on a compact Rlemanman manifold with boundary) 
which has Coo dependence on uutlal data ~0 m the class of HS chvergence-free vector fields for s > 2 
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1. INCOMPRESSIBLE EULER EQUATIONS 

Let (1M, g) be a C” compact oriented Rlemanman 2-mamfold with smooth boundary dM, let V 

denote the Levi-Clvlta covarlant denvatlve, and let p denote the Rlemanman volume form The 

mcompresslble Euler equations are given by 

&L + V,u = - gradp, 

dlv u = 0, u(0) = uo, g(u, n) = 0, on dM, (1 1) 

where p(t, z) 1s the pressure function, determmed (modulo constants) by solvmg the Neumann 

problem -Ap = dlv V,u with boundary condltlon g(gradp, n) = i!&(u), S, denotmg the second 

fundamental form of dM 
The now standard global existence result for two-dlmeneonal classical solutions states that for 

mltlal data ug E x8 = {w E HS(TM) 1 d lvu = 0, g(u, n) = 0}, s > 2, the solution u 1s m 

Co@!, x5) and has Co dependence on uo (see, for example, [l]) Equation (1 1) gives the Eulerlan 
or spatial representation of the dynamics of the fluld The Lagranglan representation which 1s m 

terms of the volum+preservmg flmd particle motion or flow map q(t,z) 1s obtamed by solving 

(12) 
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This 1s an ordinary dlfferentlal equation on the infinite-dlmenslonal volume-preserving dlffeomor- 

phlsm group DE, the set of H” class bijective maps of M into Itself with HS mverses which leave 

dlM mvarlant Ebm and Marsden [2] proved that Vt 1s a CD0 mamfold whenever s > 2 They also 
showed that for an mterval I, whenever u E C’(I, x”) and s > 3, there exists a umque solution 

,rj E C’(I, ‘D;) to (1 2) Th us, for s > 3 the existence of a global C1 flow map lmmedlately follows 

from the fact that u !emams bounded m H’ for all time It 1s often essential, however, for the 

Euler flow to depend smoothly on the mltlal data, m the case of vortex methods, for example, 

Hald m Assumption 3 of [3] requires this as a necessary condltlon to establish convergence 

THEOREM 11 For UC, E xs, s > 2, there exists a unique global solution to (1 3) which IS m 

Cm@%, TV;) and has Co3 dependence on uo 

PROOF The smoothness of the flow map follows by consldermg the Lagranglan version of (1 1) 

given by 

j$o(t, x) = - gradp(t, rl(t, z)), detTq(t,z) = 1, 

&rl(O, x) = uo(z), (13) 

77(0, x) = z, 

where Tq(t, x) denotes the tangent map of 17 (which m local coordmates 1s given by the 2 x 2 matrix 

of partial derivatives $$), and where g 1s the covarlant derivative along the curve t H q(t,z) 

(which m Euclidean space 1s the usual partial time denvatlve) Since 

gradp 0 Q = grad A-’ [Tr (Vu Vu) + Rlc(u, u)] o 7, 

where RK 1s the Rlccl curvature of 1M, and since S, 1s C” and Hspl(TM) forms a multlphcatlve 

algebra whenever s > 2, we see that the linear operator u H grad n-l[Tr(Vu Vu) + &c(u, ZJ)] 

maps H” back mto H” Denote by f TV; + TTV; the vector field 

(77, &q) I-+ grad n-l [Tr (Vu Vu) + RK(u, TJ)] o 17 

Then, 

f (77, &rl) = grad, A;’ [n (V&h V&v) + Rlc, C&v, &>I, 

where grad, g = [grad(g 0 r]-‘)I o 7 f or all g E HS(M), dlv,X, = [dlv(X, o q-l)] o 7, and 

V,(X,) = P(X, O rl-71 O 77 f or all X, E T,VL, A,, = dlv, o gradQ, and RK, = Rlc 0~ It follows 

from Lemmas 4-6 m [4] and Appendix A m [2] that f 1s a CO” vector field Thus, (1 3) 1s an 

ordinary dlfferentlal equation on the tangent bundle TV: governed by a C” vector field on TV;, 

it lmmedlately follows from the fundamental theorem of ordinary dlfferentlal equations on Hllbert 

mamfolds, that (1 3) has a unique Coo solution on jinzte time intervals which depends smoothly 

on the m&la1 velocity field 2~0, 1 e , there exists a unique solution at7 E C”( (-T, T), TV:) with 

Cm dependence on mltlal data ‘LLO, where T depends only on jluoll~x 

When s > 3, this mterval can be extended globally to Iw by virtue of 7 remammg m VL 

Unfortunately, the global existence and umquess of a C” flow map q(t, XT) does not follow for 

mltlal data ug E x5 for s E (2,3], so we provide a simple argument to fill this gap We must show 

that v can be contmued m Vi It suffices to prove that Tr] and TV-’ are both bounded m H”-’ 
This 1s easily achieved using energy estimates We have that 

and 

$7/-l = -TV-1 V&Q T7-l = -TV-~ Vu 
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Computing the Hsel norm of TV and Tr]-‘, respectively, we obtam 

ff J/T&-~ = (Ds-’ (Vu TV) ,DS-lTv)Lz 

and 

f; llT~-‘ll~+~ = (Ds-’ (TV-’ Vu) ,DS-lTrj-l)Lz 

It is easy to estimate 

(D’-’ (Vu TV), DS-lT$ L2 I C (IIW- llTd~~ + IIWP~ IIT~IL= ll%r-I) 

5 C (IIWp llTd&~ + IbIIw llW”,.-1) 7 

where the first mequahty 1s due to Cauchy-Schwartz and Moser’s mequahtles and the second 1s 

the Sobolev embeddmg theorem Similarly, 

(D’-’ (-TV-~ Vu) , ~S-lW’)L, I C (IIV4,- I/W’/j;x-’ + II~IIP ~jT71-~~~;.-1) 

Since the solution u to (1 1) 1s m x3 for all t, we have that IIull~~ 1s bounded for all t Because 

the vortlclty w = curlu 1s m L”, we have by Lemma 2 4 m [l, Chapter 171 that llVull~== 5 

C(1 + log ll4l~~)r h ence, IlVull~= 1s bounded for t It then follows that 77 and 17-l are m Vi for 

all time 

2. SECOND-GRADE FLUID EQUATIONS 

In this section, we estabhsh the global existence of a CM Lagranglan flow map for the second- 

grade fluids equations, also known as the Lagranglan averaged Euler or Euler-a equations when 

v = 0, which has C” dependence on mltlal data These equations are given on (M, g) by 

& (1 - aA,) u - yAru + V, (1 - aA,) u - a (VU)~ A,u = -grad p, 

dlvu = 0, u(0) = uo, u = 0, on dM, (2 1) 

a > 0, v L 0, n,=-(db+6d)+2Fk, 

(see [4]), and were first derived m 1955 by Rlvhn and Erlcksenn [5] m Euclidean space (Rlc = 0) 

as a first-order correction to the Navler-Stokes equations In Euclidean space, the operator A, 

IS Just the component-wise Laplacian, and the equation may be wrltten as 

&(l-aA)u--Au+curl(l--cuA)uxu=-gradp 

For convenience, we set Q = 1 We define the unbounded, self-adJomt operator (1 - ,C) = 

(1 - 2 DepDef) on L2(TM) with domain H2(TM) n H,‘(TM) The operator Def* 1s the formal 

adjoint of Def w&h respect to L 2, 2Def*Def u = -(A+grad dlv+2Rlc)u so that 2Der”Def u = 

-(A + 2 RK)U if dlv u = 0 We let ZJL,o denote the subgroup of Vi whose elements restrict to 

the identity on the boundary dM ‘D:,. 1s a C” manifold (see [2,4]) Define x& = {u E x3 1 

u=O, ondM} 

The followmg 1s Proposltlon 5 m [4] 

PROPOSITION 2 1 For s > 2, let q(t) be a curve m DE,*, and set u(t) = 8,~ o v(t)-’ Then u IS 

a solution of the mltlal-boundary value problem (2 1) with Dnxhlet boundary condltlons u = 0 

on dM if and only if 

+ [-~(1 - L)-‘A, 21 + U(u) + R(u)] 0 77 1 = 0, DetTv(t,z) = 1, 

&77(0,x) = uo(z), 

rl(O,z) = 2, 

(2 2) 
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where 

U(U) = (1 - ,C)-’ {dlv [VU Vut + Vu Vu - Vut VU] + grad Tr (VU VU)}, 

R(u) = (1 - C)-’ {Tr [V (R (u, ) U) + R(u, ) Vu + R (VU, ) U] 

+grad RIG (u, U) - (V,Rlc) u + VZL~ Rlc(u)} , 

and 7, T,z)b + T,VL,D IS the Stokes proJector defined by 

and where P,(F) = v, v bemg the unique solutlon of the Stokes problem 

(1 - C) w + grad p = (1 - L) F, 

dlv 21 = 0, 

v = 0, on dM 

Equation (2 2) 1s an ordinary dlfferentlal equation for the Lagranglan flow Notlce again that 
HyW1, s > 2, forms a multlphcatlve algebra, so that both U and R map HS mto HS 

THEOREM 2 1 For uo E xb, s > 2, and v L 0, there exists a unique global solution to (2 2) 
which IS m C03(R, TD;) and has C” dependence on ug 

We note that one cannot prove the statement of this theorem from an analysis of (2 1) alone 
(see [6,7], and references therem) 

PROOF The ordmary dlfferentlal equation (2 2) can be written as dttv = S(Q, a,q) (see m [4, 
p 231) Remarkably, S TDi,D + TTQ, 1s a C” vector field, and [4, Theorem 21 provides 
the existence of a umque short-time solution to (2 2) m C”((-T, T), TD:,,) which depends 
smoothly on ug, and where T only depends on IIuojl~~ 

Thus, It suffices to prove that the solution curve 7 does not leave VE,D Followmg the proof of 
Theorem 1 1, and using the fact that the solution u(t, ST) to (2 1) remains m H” for all time [6,7], 
it suffices to prove that Vu 1s bounded m L” 

Letting 4 = curl( 1 - c&.)u denote the potential vortlclty, and computmg the curl of (2 l), we 
obtain the 2D vortlclty form as 

&q + g (grad q, U) = v curl u 

It follows that for all v 2 0, q(t,s) 1s bounded m L2 (conserved when Y = 0), and therefore, by 
standard elliptic estimates Vu(t,z) 1s bounded m H2, and hence, m Loo I 

As a consequence of Theorem 2 1 being independent of vlscoslty, we lmmedlately obtain the 
followmg 

COROLLARY 2 1 Let q”(t, x) denote the Lagranglan flow solvmg (2 2) for v > 0, so that u” = 
atvu o f-l solves (2 1) Then for uo E XL, s > 2, the VJSCOUS solution q” E C?(W,TD;) 
converges regularly (m HS) to the mvlscld solution q” E Co3(IR, TV;) Consequently, u” -+ u” 

m HS on mfinlte-time intervals 

This gives an improvement of BUSU~OC’S result m [8] m two ways 

(1) we are able to prove the regular limit of zero vlscoslty on manifolds with boundary, and 
(2) m the Lagranglan framework, we are able to get C” m time solutions 
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