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Abstract

Let F be a field and lep be a prime. The problem we study is whether the cerigy,of the
division ring of p x p generic matrices is stably rational over Given a finite groups and aZG-
lattice, we letF (M) be the quotient field of the group algebra of the abelian gifugrrocesi and
Formanek [Linear Multilinear Algebra 7 (1979) 203—-212] have shown that for tilere is dZS;, -
lattice,G,,, such thatC,, is stably isomorphic to the fixed field under the actiorspfof F(G,). Let
H be ap-Sylow subgroup of5,,. Let A be the root lattice, and ldt = F(ZS,/H). We show that
there exists an action 6f, on L(ZSp ®zy A), twisted by an element € Ext%p (ZSp ®zH A, L*),

such thatl(ZS, @z A)Sr is stably isomorphic t@ . The extensio corresponds to an element
of the relative Brauer group df over L. SinceZS, @zy A andZS,/H are quasi-permutations,
L(ZSp ®zH A)Sr is stably rational oveF. However, it is not known whethdr, (ZSp ®zu A)Sp

is stably rational oveF. Thus the result represents a reduction on the problem Zifigezy A is
quasi-permutation; however, the twist introduces a new level of complexity.
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Introduction

The problem we study is whether the centgy, of the division ring ofn x n generic
matrices is stably rational over the base figld This is a major open question with
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connections to important problems in other fields such as geometric invariant theory and
Brauer groups.

Given a finite groufs, aZG-lattice M, and a fieldF', we let F (M) denote the quotient
field of the group algebr&[M] of the abelian groups written multiplicatively. The group
G acts onF'(M) via its action onM. It was shown in [F] thaC, is stably isomorphic to
F(G,)%, the fixed field under the action 6f of F(G,), whereG,, is a specifics,-lattice
which we define below. IM andM’ are G-faithful ZG-lattices, their corresponding fields
F(M) and F(M’) are stably isomorphic if and only i/ andM’ are in the same flasque
class. ThusC, is stably equivalent taF(M)S for any ZS,-lattice in the flasque class
of G,; flasque classes &G-lattices are defined in Section 1.

Let p be a prime and le¥ be the normalizer ir$,, of a p-Sylow subgroup. In [B1] we
have shown that;, andZS, ®zy G, are in the same flasque class, which implies that
C, is stably isomorphic t&F (ZS, ®zy Gp)Sp In [B2] we show that the flasque class of
G, depends mostly on the structure@t7 as aZN-lattice, whereZ denotes the-adic
completion ofZ, and Gp = G, ® Z. These results, together with the decomposition of
Gp into mdecomposablﬁN modules from [B2], are used to find a family 3f , -lattices
whose corresponding fixed fields are stably isomorphi€ jpthe center of the division
ring of p x p generic matrices, Theorem 1.5.

Let G be a finite group, lelM be aZG-lattice, and letL be a field on whichG acts.
Given an element € Exté(M, L*), we have an action off on L(M) twisted bya. The
field L(M) with such an action will be denoted iy, (M).

Let H be ap-Sylow subgroup ofS,, and letA be the root lattice. We find a field
extensionL of F, on whichS,, acts faithfully asF-automorphism, and an elemantin
Extl (ZS,, ®zu A, L"), suchthatll,(ZS, ®zu A)S7 is stably isomorphic to the center of

the leISIOh ring ofp x p generic matrices over. Moreover,L5 is stably rational over.
Theorem 2.1 asserts thatlif, (ZS, ®zu A)Sr is stably rational ove#, then so isC,.
SinceZS, ®zu A is quasi-permutation,.(ZS, ®zu A)S» is rational overLS» by [B1,
Theorem 2.1]; however, there are no known analogous resulis {#S, @z x A)Sr. Thus
this theorem represents a reduction on the problem gi8geRz 4 A is quasi-permutation;
however, the twist introduces a new level of complexity.

1. Let G be a finite group. An equivalence relation is defined in the categerof
Z.G-lattices as follows. Th&G-latticesM and M’ are said to be equivalent if there exist
permutation module® andP’ such thatM @ P = M’ & P’. The set of equivalence classes
forms an abelian monoid under the direct sum. Lattices equivalent to O are said to be stably
permutation. The equivalence class of a latii¢evill be denoted by M].

For any integen, H" (G, M) will denote thenth Tate cohomology group aff with
coefficients inM. A ZG-lattice M is flasque ifH ~1(H, M) = 0 for all subgroups? of G.

A flasque resolution of &G-lattice M is an exact sequence

O->M—-P—-E—DO0

with permutationP and flasquek. It follows directly from [EM, Lemma 1.1] that any
ZG-lattice M has a flasque resolution. The flasque clas&d§ [E], and will be denoted
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by ¢(M). By [CTS, Lemma 5, Section 1§ (M) is independent of the flasque resolution
of M. Lattices whose flasque class is 0 are said to be quasi-permutation. For more on
flasque classes, see [CTS, Section 1].

Definition. Let L and K be extension fields of a fiel#, and letG be a finite subgroup
of their groups ofF-automorphisms. Thelh and K are said to be stably isomorphic
if there existG-trivial indeterminatesvs, ..., x,, y1,...,ys such thatL(xq,...,x,) =
K(y1,...,ys) as F-algebras, and the isomorphism respects thgiactions. If K is
contained inL, we also say that is stably rational ovek .

We now define theZ S, -lattice G,,, mentioned in the introduction. Lé&f be theZs,-
lattice withZ-basis{u;: 1 < i < n} and withS, -action given bygu; = u,;), forallg € S,.
Let A be the root latticeA is defined by the exact sequence

0O-A—-U —- Z—0,

uj — 1

ThenG, = A®z A, andF(G,)% is stably isomorphic t@, [F, Theorem 3].
Henceforth we will adopt the following notation, unless otherwise specified:

G denotesS,,, wherep is a prime.

H denoteg-Sylow subgroup oG. ThusH is cyclic of orderp.

a € Z will denote a primitive(p — 1)st root of 1 modp.

N is the normalizer off in G. ThusN = H x C, is the semidirect product di by

a cyclic groupC, of orderp — 1. H will be generated by:, C by ¢, and we have

che=1=ne.

Z is the p-adic completion ofZ.

e For any finite groupG and anyZG-lattice M, M will denote thep-adic completion
of M, and for any primey, M, will denote the localization oM atg.

e The dual of #G-lattice M, Hom(M, Z), will be denoted by *.

SinceZN/H = ZC = Z[x]/(x?~1 — 1) asZN-lattices, the decomposition &?‘N/H
into indecomposables is given by

p—2 p—2
ZN/H =P zix1/(x — %) = P
k=0 k=0

whered is a primitive (p — 1)st root of 1 inZ which is congruent to a mog, andZ is
the ZN-module ofZ-rank 1 on whichH acts trivially, and such thatl = 9*.

The restriction fromG to N of U is isomorphic taZH, and the isomorphism is given
by u; — h, with c.h = h*. U is aZN-indecomposabIe module by [CR, Theorem 19.22].
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Fork=0,...,p—2,wesety = U ® Z. SINCeZN =7ZN ®z, ZH ZZN/HQ U,
we have

Fork = 0,....,p— 2,AAk will denote theZN-lattice ZH(h — 1)*. Under this notation,
Ayr=AandA,_1 = A" by [B1, Theorem 3.2]. We also s&t = Z/pZ.

Lemma 1.1. There exists & N-exact sequence

0-U—->Z®A*—>L—0,
whereL = Z/p"Z for all integersr > 1.
Proof. Dualizing the defining sequence of th& -lattice A, we obtain

0-Z—->U—A*=0

since U is a permutation, and hence isomorphic to its dual. The @iap- A* is the
composition of restrictiol/* — A* with the isomorphism fronU to U*. We denote
it by Res. The maf/ — Z @ A* is given byu; — p’~! + Resu;. The result follows
directly. O
Theorem 1.2. There exists ZN-exact sequence

O—>ZN—>6PEBZ—>Zl/p’Z1—>O.

Proof. In [B2, Theorem 2.5] we show that the decompositior@;finto indecomposable
ZN-modules is

N
N

Z}\p; Ur ® Z1.

o
RO

Z

By [B1, Theorem 3.2]A = A1 = A* ® Z1. Thus, tensoring the sequence of Lemma 1.1
by Z1, we obtain:

0—>U1—>Z1®A1—> Z1/p 71— Q.
Adding @,f;& kA1 Uy to the first two terms of the sequence, we obtain:

p—2 p—2
0— @Uk@Ulﬁ @Uk@Z]_GBA]_%Z]_/prZ]_%O.

k=0 k=0
k#1 k#1



E. Beneish / Journal of Algebra 259 (2003) 313—-322 317

But ZN = @,f:_g U, thus the first term of the sequence is isomorphi&e, and the
second term is isomorphic G, @ A1. O

Lemma 1.3. Leta € Z be a primitive(p — 1)st root of1 mod p. The map
i:ZC—>72C, l—c—a

is an injection ofZN-modules whose cokernelig @ Lo, whereL, = Z1/p" Z1 for some
r > 1,andL; is a finite cohomologically trivial.N -module of order prime tp.

Proof. The mapi is injective sincec — a is not a zero divisor, so its cokernel is finite.
A computation shows that cokgy is cyclic of ordera?~! — 1. Sincea is a primitive
(p — D)st root of 1 modp, a?~1 — 1 is divisible byp, and thep-primary component of
cokeli) is Ly. For primesy # p we have

0— Z,C > Z,C — (La)y — O.

Let C, be any subgroup aV of ¢-power order. We may assume tl@f is contained
in C. ThusH™(Cy, (L2)4) = 0 for all integersn, which proves the claim. O

Lemma 1.4. LetG be afinite group, an® a Dedekind domain of characteristicSuppose
there existRG-exact sequences

0>V—>E—L—DQ0, 0>V > E —-L—0,
whereE and E’ are RG-lattices, andV and V' are RG-projectives. Then
E®V =ZE @V.
Furthermore, ifG = S,,, thenE and E’ are in the same flasque class.

Proof. Consider the commutative diagram

0 o0
f
O—=V—=E—L—0
(I
0>V —>M

|
o—=>< >0 ->r~—>

v

o

o—= =< —
|
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Since projectives are injectives in the categoryRa¥-lattices, and sinc& and E’ are
RG-lattices, the middle sequences split and we have

VeE XV ®E.

SinceG = S, and V and V' are RG-projective, they are stably permutative by [EM,
Theorem 3.3], thereforg andE’ are in the same flasque classa

Theorem 1.5. Let p be a prime, le be a positive integer, and I€t be a finiteG-module
with the property that itg-primary component is isomorphic G ®zy (Z1/p"Z1). Let

0-Z2ZG—-E—-L—0

be any extension df by ZG such thatE is a ZG-lattice. Then the center of the division
ring of p x p generic matrices over af is stably isomorphic t& (E)°.

Proof. As above, letG = S,, and letH be ap-Sylow subgroup ofG. Let i be the
injection of ZG/H into ZG = Z.G ®zy 7Z.H, defined byix(g;) = Z;’Zl gi ® h/ where
{gi} is atransversal foH in G. Leti; be any injective endomorphism &G/H whose
cokernel satisfies the hypothesis of the theorem. Form the commutative diagram

0 0

| :

0—>ZG/H —2>7G —= ZG/H® A — 0

it ¢

00— 2G/H ——E — ZG/H® A — 0. (%)

| :

cokel(iy) — cokeii)

! |

0 0

Set cokefi1) = S @ S, whereS = ZG ®zn (Z1/p"Z1) and S’ is order prime top. The
vertical middle sequence becomes

0-ZG—>E—-S®S —0. 1)
Step 1. We show thaZG ®3y G, ® ZG ®7, A = E. Tensoring the sequence
0—>ZN—Gp®AL— Z1/p'Z1— 0
of Theorem 1.2, bfZ.G overZN, we get

072G - 2G®3y G, LG @5y A — S — 0. )
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Tensoring sequence (1) l@ and applying Lemma 1.4 to the resulting sequence and to
sequence (2) we get

ZG ®y Gp ®ZG @3y AGLG=E ®ZG.
By the Krull-Schmit-Azumaya theorem, we have
726G ®3y G, LG 5y A=E.

Step 2. We show thaiG, and E are in the same flasque class. The defining sequence of
theZG-lattice A is

0O—->-A—->U — Z—0,

ug — 1.
For all primesg # p, this sequence splits, with splitting map-L (1/p) Y u;. Thus
U =A;07Zy and U;QA;=A; @A, @ Ay
SinceG, = A ® A, we have
Uy ®A; = (Gp)g @ Ay

As ZN-moduleslU =ZH =7ZN/C, andA =ZH(h—1). We also have an isomorphism
of ZC-modulesA = ZC given byh! — 1+ ¢ fori =1,..., p — 1. Therefore

Uy @Ay =ZyN/C® Ay =ZyN ®z,c ZqgC =7ZyN,
which implies
N=(Gpg®A; and Z,G=74G ®zy (G, @ A).

On the other hand, sincH is of orderp, A, is Z, H-projective for all primesy # p.
Therefore the horizontal sequencessy, namely,

0—ZG/H — ZG - ZG/H ® A — 0, 0—ZG/H—E—ZGH/H® A — 0,
split when localized at a primg # p, and soE, = Z,G. Thus we havet, =Z,G ®zy

(G, ® A) for all primesg # p. From Step 1, we ha\@G ®sy Gp ® LG ®ZN A=E
which implies, by [CR, Proposition 30.17]:

Ep,=7,GQzn (G, @ A).

ThusE andZG ®zn (G, @ A) are of the same genus. By [BL, Proposition 2.2] they are
in the same flasque class, sinGe= S,. SinceA is quasi-permutation, this implies that
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andZG ®zy G, are inthe same flasque class. By [B2, Corollary G3JandZG Q@zy G,
are in the same flasque class, thus soendG .

By [B2, Theorem 1.1] this implies that(G ,)° and F (E)¢ are stably isomorphic. The
result follows from [F, Theorem 3]. O

2. Given afinite groufz, aZG-lattice M, and a fieldL on whichG acts, we may form
the fieldL (M), and this field has &-action via the action of; on M. However, there exist
otherG-actions onL(M). These actions were found by Saltman [S], and callédisted
actions. They are defined as follows.

Leta € Exté(M, L*), whereL* is the multiplicative group of. Let the equivalence
class of

O—>L*-M —>M-—>0
in Extg(M, L*) bea. Writing M and M’ as multiplicative abelian groups, we have
M = {x.m: xel* m EM},

and theG-action onM’ is given byg*x.m = g(x) dg(gm).gm, whered G — Homz (M, L*)
is the derivation corresponding&o In particular, forx = 1, we have

g'm =d,(gm).gm.

Thus we obtain ar-twisted action orL(M). Denote byL, (M) the field L (M) with the
correspondingr-action.
The following remark is needed in the proof of Theorem 2.1.

Remark. Recall thatV is the normalizer of @-Sylow subgrougd of G. ThusN = H x C
is the semidirect product @f by a cyclic groupC, of orderp — 1. Leth andc generated
andC, respectively. Themhc™1 = h¢, wherea is a primitive (p — 1)st root of 1 modp.
Let n, = ;A" be the norm ofH. The kernel of theZH-map ZH — ZH (h — 1),
multiplication byh — 1, isnyZH. ThusA = ZH (h — 1) = ZH /n;ZH asZH-modules.

Theorem 2.1.LetL = F(ZG/H). There exists an-twisted action of; on L(ZG/H ® A)
such thatL,(ZG/H ® A)¢ is stably isomorphic taC,. That is, if Lo (ZG/H ® A)Y is
stably rational overF, thenC, is stably rational overF. Furthermore, the extension
corresponds to an element of the relative Brauer gr8u(. /L').

Proof. Leti; be the map

ZG/H - ZG/H, 1~ ¢—a.
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SinceZG/H = 7.G ®zn ZC, the map; is the map of Lemma 1.3 induced up t6, and
thus it is injective. Consider the diagram

0 0

| :

0—>7ZG/H 276 —>7ZG/H®A — 0
il\L \L
00— 2G/H —— M —= ZG/H® A — 0.

| :

coker(iy) — cokeii)

! /

0 0

It follows from Lemma 1.3 that cokén) satisfies the hypothesis of Theorem 1.5, hence
F(M)C is stably isomorphic t@,.

Let {g;} be a transversal foH in G. Setbh; = i1(g;) and, as in Theorem 1.5, let
i2(g) = Y_%_1 i ® h/. Thus

14
M%ZG/HEBZG/{(bi—Zgi(X)hj): i:l,...,(p—l)!}.
j=1

From this isomorphism we obtain@-surjection of rings
FlZG/H & ZG] — F[M].

We lety; andx;; denote the elements of tliebasis ofZG/H & ZG, corresponding to
andg; ® h/, respectively, wheG/H & ZG is viewed as a multiplicative abelian group.
Thus they; andx;; are independent commuting indeterminates aver_et m; be the
monomial in they; corresponding td;. Then FIZG/H & ZG] = F[y!, jl.jjtl], and the
kernel of the above surjection by [P, Lemma 1.8] is:

p
1=<m,»]_[x,.j1—1: i:l,...,(p—l)!>.
j=1

ThusFIM]= Fly;™, x;51/1. Let
Vi = Vi mod ], )E,-jzx,-j mod / f0rj=1,...,p—1.

Thenxi, = m; nj.’_:lx;l_ andgy; = gyi. The set(y;, Tyt i =L,...,(p = D!, j=1,...,
p — 1} is algebraically independent oveér, since its cardinalityp!, is equal to the Krull
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dimension ofF[M]. ThusF(M) = F(y;,%;;: i=1,...,(p—=D!, j=1,...,p—1).We
have aG-isomorphism

Flyil— Fyi] € FIM], yi+ Y.
SetL = F(j;), thenL = F(ZG/H) andF (M) = L(%;;). O

Let M* be the subgroup of (M)* generated by.* and M. By the remark preceding
the theoremA = ZH /n,ZH as aZH-module, hence/*/L* = ZG/H ® A. We have a
G-exact sequence

a.: 0> L">M"—-7ZG/H®A—DO.

Clearly, F(M) = F(M*) = Lo,(ZG/H ® A), where by F(M*) we mean the smallest
subfield of F(M) generated by and M*. HenceF(M)° = Lo (ZG/H ® A)° and, by
Theorem 1.5F (M)¢ is stably isomorphic ta,. This proves the first statement.

For the second statement,e Ext;(ZG/H ® A, L*) = Ext}, (A, L*) by Shapiro’s
Lemma. Taking the cohomology of th&H -sequence

0—-A—7ZH—7—0,

we have Ext (A, L*) = Ext,(Z, L*) = H?(H, L*) = Br(L/L"), the relative Brauer
group of L overLH,
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