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Abstract

Let F be a field and letp be a prime. The problem we study is whether the center,Cp, of the
division ring ofp × p generic matrices is stably rational overF . Given a finite groupG and aZG-
lattice, we letF(M) be the quotient field of the group algebra of the abelian groupM . Procesi and
Formanek [Linear Multilinear Algebra 7 (1979) 203–212] have shown that for alln there is aZSn-
lattice,Gn, such thatCn is stably isomorphic to the fixed field under the action ofSn of F(Gn). Let
H be ap-Sylow subgroup ofSp. Let A be the root lattice, and letL = F(ZSp/H). We show that
there exists an action ofSp onL(ZSP ⊗ZH A), twisted by an elementα ∈ Ext1

Sp
(ZSp ⊗ZH A,L∗),

such thatLα(ZSp ⊗ZH A)Sp is stably isomorphic toCp. The extensionα corresponds to an element
of the relative Brauer group ofL overLH . SinceZSp ⊗ZH A andZSp/H are quasi-permutations,
L(ZSp ⊗ZH A)Sp is stably rational overF . However, it is not known whetherLα(ZSp ⊗ZH A)Sp

is stably rational overF . Thus the result represents a reduction on the problem sinceZSp ⊗ZH A is
quasi-permutation; however, the twist introduces a new level of complexity.
 2003 Elsevier Science (USA). All rights reserved.
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Introduction

The problem we study is whether the center,Cn, of the division ring ofn × n generic
matrices is stably rational over the base fieldF . This is a major open question with

E-mail address:beneite@cmich.edu.

0021-8693/03/$ – see front matter 2003 Elsevier Science (USA). All rights reserved.
PII: S0021-8693(02)00576-8

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82738546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


314 E. Beneish / Journal of Algebra 259 (2003) 313–322

connections to important problems in other fields such as geometric invariant theory and
Brauer groups.

Given a finite groupG, aZG-latticeM, and a fieldF , we letF(M) denote the quotient
field of the group algebraF [M] of the abelian groupM written multiplicatively. The group
G acts onF(M) via its action onM. It was shown in [F] thatCn is stably isomorphic to
F(Gn)

Sn , the fixed field under the action ofSn of F(Gn), whereGn is a specificZSn-lattice
which we define below. IfM andM ′ areG-faithful ZG-lattices, their corresponding fields
F(M) andF(M ′) are stably isomorphic if and only ifM andM ′ are in the same flasque
class. ThusCn is stably equivalent toF(M)Sn for any ZSn-lattice in the flasque class
of Gn; flasque classes ofZG-lattices are defined in Section 1.

Let p be a prime and letN be the normalizer inSp of ap-Sylow subgroup. In [B1] we
have shown thatGp andZSp ⊗ZN Gp are in the same flasque class, which implies that
Cp is stably isomorphic toF(ZSp ⊗ZN Gp)

Sp . In [B2] we show that the flasque class of
Gp depends mostly on the structure ofĜp as aẐN -lattice, wherêZ denotes thep-adic
completion ofZ, andĜp = Gp ⊗ Ẑ. These results, together with the decomposition of
Ĝp into indecomposablêZN -modules from [B2], are used to find a family ofZSp-lattices
whose corresponding fixed fields are stably isomorphic toCp , the center of the division
ring of p × p generic matrices, Theorem 1.5.

Let G be a finite group, letM be aZG-lattice, and letL be a field on whichG acts.
Given an elementα ∈ Ext1G(M,L∗), we have an action ofG onL(M) twisted byα. The
field L(M) with such an action will be denoted byLα(M).

Let H be ap-Sylow subgroup ofSp , and letA be the root lattice. We find a field
extensionL of F , on whichSp acts faithfully asF -automorphism, and an elementα in
Ext1Sp (ZSp ⊗ZH A,L∗), such thatLα(ZSp ⊗ZH A)Sp is stably isomorphic to the center of

the division ring ofp×p generic matrices overF . Moreover,LSp is stably rational overF .
Theorem 2.1 asserts that ifLα(ZSp ⊗ZH A)Sp is stably rational overF , then so isCp .
SinceZSp ⊗ZH A is quasi-permutation,L(ZSp ⊗ZH A)Sp is rational overLSp by [B1,
Theorem 2.1]; however, there are no known analogous results forLα(ZSp ⊗ZH A)Sp . Thus
this theorem represents a reduction on the problem sinceZSp ⊗ZH A is quasi-permutation;
however, the twist introduces a new level of complexity.

1. Let G be a finite group. An equivalence relation is defined in the categoryLG of
ZG-lattices as follows. TheZG-latticesM andM ′ are said to be equivalent if there exist
permutation modulesP andP ′ such thatM ⊕P ∼= M ′ ⊕P ′ . The set of equivalence classes
forms an abelian monoid under the direct sum. Lattices equivalent to 0 are said to be stably
permutation. The equivalence class of a latticeM will be denoted by[M].

For any integern, Hn(G,M) will denote thenth Tate cohomology group ofG with
coefficients inM. A ZG-latticeM is flasque ifH−1(H,M) = 0 for all subgroupsH of G.
A flasque resolution of aZG-latticeM is an exact sequence

0 → M → P → E → 0

with permutationP and flasqueE. It follows directly from [EM, Lemma 1.1] that any
ZG-latticeM has a flasque resolution. The flasque class ofM is [E], and will be denoted
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by φ(M). By [CTS, Lemma 5, Section 1],φ(M) is independent of the flasque resolution
of M. Lattices whose flasque class is 0 are said to be quasi-permutation. For more on
flasque classes, see [CTS, Section 1].

Definition. Let L andK be extension fields of a fieldF , and letG be a finite subgroup
of their groups ofF -automorphisms. ThenL andK are said to be stably isomorphic
if there existG-trivial indeterminatesx1, . . . , xr , y1, . . . , ys such thatL(x1, . . . , xr) ∼=
K(y1, . . . , ys) as F -algebras, and the isomorphism respects theirG-actions. If K is
contained inL, we also say thatL is stably rational overK.

We now define theZSn-latticeGn, mentioned in the introduction. LetU be theZSn-
lattice withZ-basis{ui : 1 � i � n} and withSn-action given bygui = ug(i), for all g ∈ Sn.
Let A be the root lattice.A is defined by the exact sequence

0 → A → U → Z → 0,

ui �→ 1

ThenGn = A ⊗Z A, andF(Gn)
Sn is stably isomorphic toCn [F, Theorem 3].

Henceforth we will adopt the following notation, unless otherwise specified:

• G denotesSp , wherep is a prime.
• H denotesp-Sylow subgroup ofG. ThusH is cyclic of orderp.
• a ∈ Z will denote a primitive(p − 1)st root of 1 modp.
• N is the normalizer ofH in G. ThusN = H � C, is the semidirect product ofH by

a cyclic groupC, of orderp − 1. H will be generated byh, C by c, and we have
chc−1 = ha .

• Ẑ is thep-adic completion ofZ.
• For any finite groupG and anyZG-latticeM, M̂ will denote thep-adic completion

of M, and for any primeq , Mq will denote the localization ofM atq .
• The dual of aZG-latticeM, Hom(M,Z), will be denoted byM∗.

SinceZN/H ∼= ZC ∼= Z[x]/(xp−1 − 1) asZN -lattices, the decomposition of̂ZN/H

into indecomposables is given by

ẐN/H ∼=
p−2⊕
k=0

Z[x]/(x − ϑk
)∼=

p−2⊕
k=0

Zk

whereϑ is a primitive(p − 1)st root of 1 inẐ which is congruent to a modp, andZk is
theẐN -module of̂Z-rank 1 on whichH acts trivially, and such thatc1= ϑk .

The restriction fromG to N of U is isomorphic toZH , and the isomorphism is given
by ui �→ hi , with c.h = ha . Û is aẐN -indecomposable module by [CR, Theorem 19.22].
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For k = 0, . . . , p − 2, we setUk = Û ⊗ Zk . SinceẐN ∼= ẐN ⊗
ẐH ẐH ∼= ẐN/H ⊗ Û ,

we have

ẐN =
p−2⊕
k=0

Uk.

For k = 0, . . . , p − 2, Ak will denote theẐN -lattice ẐH(h − 1)k. Under this notation,
A1 = Â andAp−1 = Â∗ by [B1, Theorem 3.2]. We also setXk = Zk/pZk .

Lemma 1.1. There exists aZN -exact sequence

0 → U → Z ⊕A∗ → L → 0,

whereL = Z/pr
Z for all integersr � 1.

Proof. Dualizing the defining sequence of theZG-latticeA, we obtain

0→ Z → U → A∗ → 0

sinceU is a permutation, and hence isomorphic to its dual. The mapU → A∗ is the
composition of restrictionU∗ → A∗ with the isomorphism fromU to U∗. We denote
it by Res. The mapU → Z ⊕ A∗ is given byui �→ pr−1 + Resui . The result follows
directly. ✷
Theorem 1.2. There exists âZN -exact sequence

0 → ẐN → Ĝp ⊕ Â → Z1
/
pr

Z1 → 0.

Proof. In [B2, Theorem 2.5] we show that the decomposition ofĜp into indecomposable
ẐN -modules is

Ĝp
∼=

p−2⊕
k=0
k �=1

Uk ⊕ Z1.

By [B1, Theorem 3.2],̂A ∼= A1 ∼= Â∗ ⊗ Z1. Thus, tensoring the sequence of Lemma 1.1
by Z1, we obtain:

0 → U1 → Z1 ⊕ A1 → Z1/p
r
Z1 → 0.

Adding
⊕p−2

k=0, k �=1Uk to the first two terms of the sequence, we obtain:

0 →
p−2⊕
k=0
k �=1

Uk ⊕ U1 →
p−2⊕
k=0
k �=1

Uk ⊕ Z1 ⊕ A1 → Z1
/
pr

Z1 → 0.
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But ẐN ∼= ⊕p−2
k=0 Uk, thus the first term of the sequence is isomorphic toẐN , and the

second term is isomorphic tôGp ⊕A1. ✷
Lemma 1.3. Let a ∈ Z be a primitive(p − 1)st root of1 modp. The map

i :ZC → ZC, 1 �→ c − a

is an injection ofZN -modules whose cokernel isL1 ⊕L2, whereL1 = Z1/p
rZ1 for some

r � 1, andL2 is a finite cohomologically trivialZN -module of order prime top.

Proof. The mapi is injective sincec − a is not a zero divisor, so its cokernel is finite.
A computation shows that coker(i) is cyclic of orderap−1 − 1. Sincea is a primitive
(p − 1)st root of 1 modp, ap−1 − 1 is divisible byp, and thep-primary component of
coker(i) is L1. For primesq �= p we have

0 → ZqC
i→ ZqC → (L2)q → 0.

Let Cq be any subgroup ofN of q-power order. We may assume thatCq is contained
in C. ThusHm(Cq, (L2)q) = 0 for all integersm, which proves the claim. ✷
Lemma 1.4. LetG be a finite group, andR a Dedekind domain of characteristic0. Suppose
there existsRG-exact sequences

0→ V → E → L → 0, 0 → V ′ → E′ → L → 0,

whereE andE′ areRG-lattices, andV andV ′ are RG-projectives. Then

E ⊕ V ′ ∼= E′ ⊕ V.

Furthermore, ifG = Sn, thenE andE′ are in the same flasque class.

Proof. Consider the commutative diagram

0 0

0 V E L 0

0 V M E′ 0

V ′ V ′

0 0

.
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Since projectives are injectives in the category ofRG-lattices, and sinceE andE′ are
RG-lattices, the middle sequences split and we have

V ⊕E′ ∼= V ′ ⊕E.

SinceG = Sn and V andV ′ are RG-projective, they are stably permutative by [EM,
Theorem 3.3], thereforeE andE′ are in the same flasque class.✷
Theorem 1.5. Letp be a prime, letr be a positive integer, and letL be a finiteG-module
with the property that itsp-primary component is isomorphic toZG⊗ZN (Z1/p

r
Z1). Let

0 → ZG → E → L → 0

be any extension ofL by ZG such thatE is a ZG-lattice. Then the center of the division
ring of p × p generic matrices over anF is stably isomorphic toF(E)G.

Proof. As above, letG = Sp , and letH be ap-Sylow subgroup ofG. Let i2 be the
injection of ZG/H into ZG ∼= ZG ⊗ZH ZH , defined byi2(ḡi ) = ∑p

j=1gi ⊗ hj where
{gi} is a transversal forH in G. Let i1 be any injective endomorphism ofZG/H whose
cokernel satisfies the hypothesis of the theorem. Form the commutative diagram

0 0

0 ZG/H
i2

i1

ZG ZG/H ⊗A 0

0 ZG/H E ZG/H ⊗A 0

coker(i1) coker(i)

0 0

. (∗)

Set coker(i1) = S ⊕ S′, whereS = ZG ⊗ZN (Z1/p
r
Z1) andS′ is order prime top. The

vertical middle sequence becomes

0 → ZG → E → S ⊕ S′ → 0. (1)

Step 1. We show that̂ZG⊗
ẐN Ĝp ⊕ ẐG⊗

ẐN Â ∼= Ê. Tensoring the sequence

0 → ẐN → Ĝp ⊕ A1 → Z1
/
pr

Z1 → 0

of Theorem 1.2, bŷZG overẐN , we get

0 → ẐG → ẐG⊗
ẐN Ĝp ⊕ ẐG⊗

ẐN Â → S → 0. (2)
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Tensoring sequence (1) bŷZ, and applying Lemma 1.4 to the resulting sequence and to
sequence (2) we get

ẐG⊗
ẐN Ĝp ⊕ ẐG⊗

ẐN Â ⊕ ẐG ∼= Ê ⊕ ẐG.

By the Krull–Schmit–Azumaya theorem, we have

ẐG⊗
ẐN Ĝp ⊕ ẐG⊗

ẐN Â ∼= Ê.

Step 2. We show thatGp andE are in the same flasque class. The defining sequence of
theZG-latticeA is

0 → A → U → Z → 0,

u1 �→ 1.

For all primesq �= p, this sequence splits, with splitting map 1→ (1/p)
∑

ui . Thus

Uq
∼= Aq ⊕ Zq and Uq ⊗ Aq

∼= Aq ⊗Aq ⊕Aq.

SinceGp = A ⊗A, we have

Uq ⊗Aq
∼= (Gp)q ⊕ Aq.

As ZN -modules,U ∼= ZH ∼= ZN/C, andA ∼= ZH(h − 1). We also have an isomorphism
of ZC-modulesA ∼= ZC given byhi − 1 �→ ci for i = 1, . . . , p − 1. Therefore

Uq ⊗Aq
∼= ZqN/C ⊗ Aq

∼= ZqN ⊗ZqC ZqC ∼= ZqN,

which implies

ZqN ∼= (Gp)q ⊕ Aq and ZqG ∼= ZqG⊗ZN (Gp ⊕ A).

On the other hand, sinceH is of orderp, Aq is ZqH -projective for all primesq �= p.
Therefore the horizontal sequences in(∗), namely,

0 → ZG/H → ZG → ZG/H ⊗A → 0, 0 → ZG/H → E → ZGH/H ⊗ A → 0,

split when localized at a primeq �= p, and soEq
∼= ZqG. Thus we haveEq

∼= ZqG ⊗ZN

(Gp ⊕ A) for all primesq �= p. From Step 1, we havêZG ⊗
ẐN Ĝp ⊕ ẐG ⊗

ẐN Â ∼= Ê

which implies, by [CR, Proposition 30.17]:

Ep
∼= ZpG⊗ZN (Gp ⊕ A).

ThusE andZG ⊗ZN (Gp ⊕ A) are of the same genus. By [BL, Proposition 2.2] they are
in the same flasque class, sinceG = Sp . SinceA is quasi-permutation, this implies thatE
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andZG⊗ZN Gp are in the same flasque class. By [B2, Corollary 1.2]Gp andZG⊗ZN Gp

are in the same flasque class, thus so areE andGp .
By [B2, Theorem 1.1] this implies thatF(Gp)

G andF(E)G are stably isomorphic. The
result follows from [F, Theorem 3]. ✷

2. Given a finite groupG, aZG-latticeM, and a fieldL on whichG acts, we may form
the fieldL(M), and this field has aG-action via the action ofG onM. However, there exist
otherG-actions onL(M). These actions were found by Saltman [S], and calledα-twisted
actions. They are defined as follows.

Let α ∈ Ext1G(M,L∗), whereL∗ is the multiplicative group ofL. Let the equivalence
class of

0→ L∗ → M ′ → M → 0

in Ext1G(M,L∗) beα. Writing M andM ′ as multiplicative abelian groups, we have

M ′ = {
x.m: x ∈ L∗, m ∈ M

}
,

and theG-action onM ′ is given byg∗x.m = g(x)dg(gm).gm, where d :G→ HomZ(M,L∗)
is the derivation corresponding toα. In particular, forx = 1, we have

g∗m = dg(gm).gm.

Thus we obtain anα-twisted action onL(M). Denote byLα(M) the fieldL(M) with the
correspondingG-action.

The following remark is needed in the proof of Theorem 2.1.

Remark. Recall thatN is the normalizer of ap-Sylow subgroupH of G. ThusN = H �C

is the semidirect product ofH by a cyclic groupC, of orderp− 1. Leth andc generateH
andC, respectively. Thenchc−1 = ha , wherea is a primitive(p − 1)st root of 1 modp.
Let nh = ∑

i h
i be the norm ofH . The kernel of theZH -map ZH → ZH(h − 1),

multiplication byh − 1, isnhZH . ThusA ∼= ZH(h− 1) ∼= ZH/nhZH asZH -modules.

Theorem 2.1. LetL = F(ZG/H). There exists anα-twisted action ofG onL(ZG/H ⊗A)

such thatLα(ZG/H ⊗ A)G is stably isomorphic toCp . That is, ifLα(ZG/H ⊗ A)G is
stably rational overF , thenCp is stably rational overF . Furthermore, the extensionα
corresponds to an element of the relative Brauer groupBr(L/LH ).

Proof. Let i1 be the map

ZG/H → ZG/H, 1̄ �→ c̄ − ā.
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SinceZG/H ∼= ZG⊗ZN ZC, the mapi1 is the mapi of Lemma 1.3 induced up toG, and
thus it is injective. Consider the diagram

0 0

0 ZG/H
i2

i1

ZG ZG/H ⊗A 0

0 ZG/H M ZG/H ⊗A 0

coker(i1) coker(i)

0 0

.

It follows from Lemma 1.3 that coker(i1) satisfies the hypothesis of Theorem 1.5, hence
F(M)G is stably isomorphic toCp .

Let {gi} be a transversal forH in G. Set bi = i1(ḡi ) and, as in Theorem 1.5, let
i2(ḡi ) =∑p

j=1gi ⊗ hj . Thus

M ∼= ZG/H ⊕ ZG

/{(
bi −

p∑
j=1

gi ⊗ hj

)
: i = 1, . . . , (p − 1)!

}
.

From this isomorphism we obtain aG-surjection of rings

F [ZG/H ⊕ ZG] → F [M].

We letyi andxij denote the elements of theZ-basis ofZG/H ⊕ ZG, corresponding to
andgi ⊗ hj , respectively, whenZG/H ⊕ ZG is viewed as a multiplicative abelian group.
Thus theyi and xij are independent commuting indeterminates overF . Let mi be the
monomial in theyi corresponding tobi . ThenF [ZG/H ⊕ ZG] = F [y±1

i , j±1
ij ], and the

kernel of the above surjection by [P, Lemma 1.8] is:

I =
〈
mi

p∏
j=1

x−1
ij − 1: i = 1, . . . , (p − 1)!

〉
.

ThusF [M] ∼= F [y±1
i , x±1

ij ]/I . Let

ȳi = yi modI, x̄ij = xij modI for j = 1, . . . , p − 1.

Thenx̄ip = mi

∏p

j=1 x̄
−1
ij andgȳi = gyi . The set{ȳi , x̄ij : i = 1, . . . , (p − 1)!, j = 1, . . . ,

p − 1} is algebraically independent overF , since its cardinality,p!, is equal to the Krull
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dimension ofF [M]. ThusF(M) = F(ȳi, x̄ij : i = 1, . . . , (p − 1)!, j = 1, . . . , p − 1). We
have aG-isomorphism

F [yi] → F [ȳi] ⊆ F [M], yi �→ ȳi .

SetL = F(ȳi), thenL ∼= F(ZG/H) andF(M) ∼= L(x̄ij ). ✷
Let M∗ be the subgroup ofF(M)∗ generated byL∗ andM. By the remark preceding

the theorem,A ∼= ZH/nhZH as aZH -module, henceM∗/L∗ ∼= ZG/H ⊗ A. We have a
G-exact sequence

α: 0 → L∗ → M∗ → ZG/H ⊗A → 0.

Clearly, F(M) ∼= F(M∗) = Lα(ZG/H ⊗ A), where byF(M∗) we mean the smallest
subfield ofF(M) generated byF andM∗. HenceF(M)G ∼= Lα(ZG/H ⊗ A)G and, by
Theorem 1.5,F(M)G is stably isomorphic toCp . This proves the first statement.

For the second statement,α ∈ Ext1G(ZG/H ⊗ A,L∗) ∼= Ext1H(A,L∗) by Shapiro’s
Lemma. Taking the cohomology of theZH -sequence

0 → A → ZH → Z → 0,

we have Ext1H (A,L∗) ∼= Ext2H (Z,L∗) ∼= H 2(H,L∗) = Br(L/LH ), the relative Brauer
group ofL overLH .
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