The center of the generic division ring and twisted multiplicative group actions

Esther Beneish
Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, USA
Received 17 August 2000
Communicated by M. Van den Bergh

Abstract

Let F be a field and let p be a prime. The problem we study is whether the center, C_{p}, of the division ring of $p \times p$ generic matrices is stably rational over F. Given a finite group G and a $\mathbb{Z} G$ lattice, we let $F(M)$ be the quotient field of the group algebra of the abelian group M. Procesi and Formanek [Linear Multilinear Algebra 7 (1979) 203-212] have shown that for all n there is a $\mathbb{Z} S_{n}$ lattice, G_{n}, such that C_{n} is stably isomorphic to the fixed field under the action of S_{n} of $F\left(G_{n}\right)$. Let H be a p-Sylow subgroup of S_{p}. Let A be the root lattice, and let $L=F\left(\mathbb{Z} S_{p} / H\right)$. We show that there exists an action of S_{p} on $L\left(\mathbb{Z} S_{P} \otimes_{\mathbb{Z} H} A\right)$, twisted by an element $\alpha \in \operatorname{Ext}_{S_{p}}^{1}\left(\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A, L^{*}\right)$, such that $L_{\alpha}\left(\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A\right)^{S_{p}}$ is stably isomorphic to C_{p}. The extension α corresponds to an element of the relative Brauer group of L over L^{H}. Since $\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A$ and $\mathbb{Z} S_{p} / H$ are quasi-permutations, $L\left(\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A\right)^{S_{p}}$ is stably rational over F. However, it is not known whether $L_{\alpha}\left(\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A\right)^{S_{p}}$ is stably rational over F. Thus the result represents a reduction on the problem since $\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A$ is quasi-permutation; however, the twist introduces a new level of complexity. © 2003 Elsevier Science (USA). All rights reserved.

Keywords: Field invariants; Lattices; Generic matrices

Introduction

The problem we study is whether the center, C_{n}, of the division ring of $n \times n$ generic matrices is stably rational over the base field F. This is a major open question with

[^0]connections to important problems in other fields such as geometric invariant theory and Brauer groups.

Given a finite group G, a $\mathbb{Z} G$-lattice M, and a field F, we let $F(M)$ denote the quotient field of the group algebra $F[M]$ of the abelian group M written multiplicatively. The group G acts on $F(M)$ via its action on M. It was shown in [F] that C_{n} is stably isomorphic to $F\left(G_{n}\right)^{S_{n}}$, the fixed field under the action of S_{n} of $F\left(G_{n}\right)$, where G_{n} is a specific $\mathbb{Z} S_{n}$-lattice which we define below. If M and M^{\prime} are G-faithful $\mathbb{Z} G$-lattices, their corresponding fields $F(M)$ and $F\left(M^{\prime}\right)$ are stably isomorphic if and only if M and M^{\prime} are in the same flasque class. Thus C_{n} is stably equivalent to $F(M)^{S_{n}}$ for any $\mathbb{Z} S_{n}$-lattice in the flasque class of G_{n}; flasque classes of $\mathbb{Z} G$-lattices are defined in Section 1.

Let p be a prime and let N be the normalizer in S_{p} of a p-Sylow subgroup. In [B1] we have shown that G_{p} and $\mathbb{Z} S_{p} \otimes_{\mathbb{Z} N} G_{p}$ are in the same flasque class, which implies that C_{p} is stably isomorphic to $F\left(\mathbb{Z} S_{p} \otimes_{\mathbb{Z} N} G_{p}\right)^{S_{p}}$. In [B2] we show that the flasque class of G_{p} depends mostly on the structure of \widehat{G}_{p} as a $\widehat{\mathbb{Z}} N$-lattice, where $\widehat{\mathbb{Z}}$ denotes the p-adic completion of \mathbb{Z}, and $\widehat{G}_{p}=G_{p} \otimes \widehat{\mathbb{Z}}$. These results, together with the decomposition of \widehat{G}_{p} into indecomposable $\widehat{\mathbb{Z}} N$-modules from [B2], are used to find a family of $\mathbb{Z} S_{p}$-lattices whose corresponding fixed fields are stably isomorphic to C_{p}, the center of the division ring of $p \times p$ generic matrices, Theorem 1.5 .

Let G be a finite group, let M be a $\mathbb{Z} G$-lattice, and let L be a field on which G acts. Given an element $\alpha \in \operatorname{Ext}_{G}^{1}\left(M, L^{*}\right)$, we have an action of G on $L(M)$ twisted by α. The field $L(M)$ with such an action will be denoted by $L_{\alpha}(M)$.

Let H be a p-Sylow subgroup of S_{p}, and let A be the root lattice. We find a field extension L of F, on which S_{p} acts faithfully as F-automorphism, and an element α in $\operatorname{Ext}_{S_{p}}^{1}\left(\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A, L^{*}\right)$, such that $L_{\alpha}\left(\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A\right)^{S_{p}}$ is stably isomorphic to the center of the division ring of $p \times p$ generic matrices over F. Moreover, $L^{S_{p}}$ is stably rational over F. Theorem 2.1 asserts that if $L_{\alpha}\left(\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A\right)^{S_{p}}$ is stably rational over F, then so is C_{p}. Since $\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A$ is quasi-permutation, $L\left(\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A\right)^{S_{p}}$ is rational over $L^{S_{p}}$ by [B1, Theorem 2.1]; however, there are no known analogous results for $L_{\alpha}\left(\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A\right)^{S_{p}}$. Thus this theorem represents a reduction on the problem since $\mathbb{Z} S_{p} \otimes_{\mathbb{Z} H} A$ is quasi-permutation; however, the twist introduces a new level of complexity.

1. Let G be a finite group. An equivalence relation is defined in the category \mathcal{L}_{G} of $\mathbb{Z} G$-lattices as follows. The $\mathbb{Z} G$-lattices M and M^{\prime} are said to be equivalent if there exist permutation modules P and P^{\prime} such that $M \oplus P \cong M^{\prime} \oplus P^{\prime}$. The set of equivalence classes forms an abelian monoid under the direct sum. Lattices equivalent to 0 are said to be stably permutation. The equivalence class of a lattice M will be denoted by [M].

For any integer $n, H^{n}(G, M)$ will denote the nth Tate cohomology group of G with coefficients in M. A $\mathbb{Z} G$-lattice M is flasque if $H^{-1}(H, M)=0$ for all subgroups H of G. A flasque resolution of a $\mathbb{Z} G$-lattice M is an exact sequence

$$
0 \rightarrow M \rightarrow P \rightarrow E \rightarrow 0
$$

with permutation P and flasque E. It follows directly from [EM, Lemma 1.1] that any $\mathbb{Z} G$-lattice M has a flasque resolution. The flasque class of M is $[E]$, and will be denoted
by $\phi(M)$. By [CTS, Lemma 5, Section 1], $\phi(M)$ is independent of the flasque resolution of M. Lattices whose flasque class is 0 are said to be quasi-permutation. For more on flasque classes, see [CTS, Section 1].

Definition. Let L and K be extension fields of a field F, and let G be a finite subgroup of their groups of F-automorphisms. Then L and K are said to be stably isomorphic if there exist G-trivial indeterminates $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}$ such that $L\left(x_{1}, \ldots, x_{r}\right) \cong$ $K\left(y_{1}, \ldots, y_{s}\right)$ as F-algebras, and the isomorphism respects their G-actions. If K is contained in L, we also say that L is stably rational over K.

We now define the $\mathbb{Z} S_{n}$-lattice G_{n}, mentioned in the introduction. Let U be the $\mathbb{Z} S_{n}$ lattice with \mathbb{Z}-basis $\left\{u_{i}: 1 \leqslant i \leqslant n\right\}$ and with S_{n}-action given by $g u_{i}=u_{g(i)}$, for all $g \in S_{n}$. Let A be the root lattice. A is defined by the exact sequence

$$
\begin{aligned}
0 \rightarrow A \rightarrow U & \rightarrow \mathbb{Z} \rightarrow 0, \\
u_{i} & \mapsto 1
\end{aligned}
$$

Then $G_{n}=A \otimes_{\mathbb{Z}} A$, and $F\left(G_{n}\right)^{S_{n}}$ is stably isomorphic to $C_{n}[\mathrm{~F}$, Theorem 3].
Henceforth we will adopt the following notation, unless otherwise specified:

- G denotes S_{p}, where p is a prime.
- H denotes p-Sylow subgroup of G. Thus H is cyclic of order p.
- $a \in \mathbb{Z}$ will denote a primitive $(p-1)$ st root of $1 \bmod p$.
- N is the normalizer of H in G. Thus $N=H \rtimes C$, is the semidirect product of H by a cyclic group C, of order $p-1 . H$ will be generated by h, C by c, and we have $c h c^{-1}=h^{a}$.
- $\widehat{\mathbb{Z}}$ is the p-adic completion of \mathbb{Z}.
- For any finite group G and any $\mathbb{Z} G$-lattice M, \widehat{M} will denote the p-adic completion of M, and for any prime q, M_{q} will denote the localization of M at q.
- The dual of a $\mathbb{Z} G$-lattice $M, \operatorname{Hom}(M, \mathbb{Z})$, will be denoted by M^{*}.

Since $\mathbb{Z} N / H \cong \mathbb{Z} C \cong \mathbb{Z}[x] /\left(x^{p-1}-1\right)$ as $\mathbb{Z} N$-lattices, the decomposition of $\widehat{\mathbb{Z}} N / H$ into indecomposables is given by

$$
\widehat{\mathbb{Z}} N / H \cong \bigoplus_{k=0}^{p-2} \mathbb{Z}[x] /\left(x-\vartheta^{k}\right) \cong \bigoplus_{k=0}^{p-2} \mathbb{Z}_{k}
$$

where ϑ is a primitive $(p-1)$ st root of 1 in $\widehat{\mathbb{Z}}$ which is congruent to a $\bmod p$, and \mathbb{Z}_{k} is the $\widehat{\mathbb{Z}} N$-module of $\widehat{\mathbb{Z}}$-rank 1 on which H acts trivially, and such that $c 1=\vartheta^{k}$.

The restriction from G to N of U is isomorphic to $\mathbb{Z} H$, and the isomorphism is given by $u_{i} \mapsto h^{i}$, with $c . h=h^{a} . \widehat{U}$ is a $\widehat{\mathbb{Z}} N$-indecomposable module by [CR, Theorem 19.22].

For $k=0, \ldots, p-2$, we set $U_{k}=\widehat{U} \otimes \mathbb{Z}_{k}$. Since $\widehat{\mathbb{Z}} N \cong \widehat{\mathbb{Z}} N \otimes_{\widehat{\mathbb{Z}} H} \widehat{\mathbb{Z}} H \cong \widehat{\mathbb{Z}} N / H \otimes \widehat{U}$, we have

$$
\widehat{\mathbb{Z}} N=\bigoplus_{k=0}^{p-2} U_{k}
$$

For $k=0, \ldots, p-2, A_{k}$ will denote the $\widehat{\mathbb{Z}} N$-lattice $\widehat{\mathbb{Z}} H(h-1)^{k}$. Under this notation, $A_{1}=\widehat{A}$ and $A_{p-1}=\widehat{A}^{*}$ by [B1, Theorem 3.2]. We also set $X_{k}=\mathbb{Z}_{k} / p \mathbb{Z}_{k}$.

Lemma 1.1. There exists a $\mathbb{Z} N$-exact sequence

$$
0 \rightarrow U \rightarrow \mathbb{Z} \oplus A^{*} \rightarrow L \rightarrow 0
$$

where $L=\mathbb{Z} / p^{r} \mathbb{Z}$ for all integers $r \geqslant 1$.
Proof. Dualizing the defining sequence of the $\mathbb{Z} G$-lattice A, we obtain

$$
0 \rightarrow \mathbb{Z} \rightarrow U \rightarrow A^{*} \rightarrow 0
$$

since U is a permutation, and hence isomorphic to its dual. The map $U \rightarrow A^{*}$ is the composition of restriction $U^{*} \rightarrow A^{*}$ with the isomorphism from U to U^{*}. We denote it by Res. The map $U \rightarrow \mathbb{Z} \oplus A^{*}$ is given by $u_{i} \mapsto p^{r-1}+\operatorname{Res} u_{i}$. The result follows directly.

Theorem 1.2. There exists a $\widehat{\mathbb{Z}} N$-exact sequence

$$
0 \rightarrow \widehat{\mathbb{Z}} N \rightarrow \widehat{G}_{p} \oplus \widehat{A} \rightarrow \mathbb{Z}_{1} / p^{r} \mathbb{Z}_{1} \rightarrow 0
$$

Proof. In [B2, Theorem 2.5] we show that the decomposition of \widehat{G}_{p} into indecomposable $\widehat{\mathbb{Z}} N$-modules is

$$
\widehat{G}_{p} \cong \bigoplus_{\substack{k=0 \\ k \neq 1}}^{p-2} U_{k} \oplus \mathbb{Z}_{1}
$$

By [B1, Theorem 3.2], $\widehat{A} \cong A_{1} \cong \widehat{A^{*}} \otimes \mathbb{Z}_{1}$. Thus, tensoring the sequence of Lemma 1.1 by \mathbb{Z}_{1}, we obtain:

$$
0 \rightarrow U_{1} \rightarrow \mathbb{Z}_{1} \oplus A_{1} \rightarrow \mathbb{Z}_{1} / p^{r} \mathbb{Z}_{1} \rightarrow 0
$$

Adding $\bigoplus_{k=0, k \neq 1}^{p-2} U_{k}$ to the first two terms of the sequence, we obtain:

$$
0 \rightarrow \bigoplus_{\substack{k=0 \\ k \neq 1}}^{p-2} U_{k} \oplus U_{1} \rightarrow \bigoplus_{\substack{k=0 \\ k \neq 1}}^{p-2} U_{k} \oplus \mathbb{Z}_{1} \oplus A_{1} \rightarrow \mathbb{Z}_{1} / p^{r} \mathbb{Z}_{1} \rightarrow 0
$$

But $\widehat{\mathbb{Z}} N \cong \bigoplus_{k=0}^{p-2} U_{k}$, thus the first term of the sequence is isomorphic to $\widehat{\mathbb{Z}} N$, and the second term is isomorphic to $\widehat{G}_{p} \oplus A_{1}$.

Lemma 1.3. Let $a \in \mathbb{Z}$ be a primitive $(p-1)$ st root of $1 \bmod p$. The map

$$
i: \mathbb{Z} C \rightarrow \mathbb{Z} C, \quad 1 \mapsto c-a
$$

is an injection of $\mathbb{Z} N$-modules whose cokernel is $L_{1} \oplus L_{2}$, where $L_{1}=Z_{1} / p^{r} Z_{1}$ for some $r \geqslant 1$, and L_{2} is a finite cohomologically trivial $\mathbb{Z} N$-module of order prime to p.

Proof. The map i is injective since $c-a$ is not a zero divisor, so its cokernel is finite. A computation shows that coker (i) is cyclic of order $a^{p-1}-1$. Since a is a primitive $(p-1)$ st root of $1 \bmod p, a^{p-1}-1$ is divisible by p, and the p-primary component of $\operatorname{coker}(i)$ is L_{1}. For primes $q \neq p$ we have

$$
0 \rightarrow \mathbb{Z}_{q} C \xrightarrow{i} \mathbb{Z}_{q} C \rightarrow\left(L_{2}\right)_{q} \rightarrow 0
$$

Let C_{q} be any subgroup of N of q-power order. We may assume that C_{q} is contained in C. Thus $H^{m}\left(C_{q},\left(L_{2}\right)_{q}\right)=0$ for all integers m, which proves the claim.

Lemma 1.4. Let G be a finite group, and \mathbb{R} a Dedekind domain of characteristic 0 . Suppose there exists $\mathbb{R} G$-exact sequences

$$
0 \rightarrow V \rightarrow E \rightarrow L \rightarrow 0, \quad 0 \rightarrow V^{\prime} \rightarrow E^{\prime} \rightarrow L \rightarrow 0
$$

where E and E^{\prime} are $\mathbb{R} G$-lattices, and V and V^{\prime} are $\mathbb{R} G$-projectives. Then

$$
E \oplus V^{\prime} \cong E^{\prime} \oplus V
$$

Furthermore, if $G=S_{n}$, then E and E^{\prime} are in the same flasque class.

Proof. Consider the commutative diagram

Since projectives are injectives in the category of $\mathbb{R} G$-lattices, and since E and E^{\prime} are $\mathbb{R} G$-lattices, the middle sequences split and we have

$$
V \oplus E^{\prime} \cong V^{\prime} \oplus E
$$

Since $G=S_{n}$ and V and V^{\prime} are $\mathbb{R} G$-projective, they are stably permutative by [EM, Theorem 3.3], therefore E and E^{\prime} are in the same flasque class.

Theorem 1.5. Let p be a prime, let r be a positive integer, and let L be a finite G-module with the property that its p-primary component is isomorphic to $\mathbb{Z} G \otimes_{\mathbb{Z} N}\left(\mathbb{Z}_{1} / p^{r} \mathbb{Z}_{1}\right)$. Let

$$
0 \rightarrow \mathbb{Z} G \rightarrow E \rightarrow L \rightarrow 0
$$

be any extension of L by $\mathbb{Z} G$ such that E is a $\mathbb{Z} G$-lattice. Then the center of the division ring of $p \times p$ generic matrices over an F is stably isomorphic to $F(E)^{G}$.

Proof. As above, let $G=S_{p}$, and let H be a p-Sylow subgroup of G. Let i_{2} be the injection of $\mathbb{Z} G / H$ into $\mathbb{Z} G \cong \mathbb{Z} G \otimes_{\mathbb{Z} H} \mathbb{Z} H$, defined by $i_{2}\left(\bar{g}_{i}\right)=\sum_{j=1}^{p} g_{i} \otimes h^{j}$ where $\left\{g_{i}\right\}$ is a transversal for H in G. Let i_{1} be any injective endomorphism of $\mathbb{Z} G / H$ whose cokernel satisfies the hypothesis of the theorem. Form the commutative diagram

Set coker $\left(i_{1}\right)=S \oplus S^{\prime}$, where $S=\mathbb{Z} G \otimes_{\mathbb{Z} N}\left(\mathbb{Z}_{1} / p^{r} \mathbb{Z}_{1}\right)$ and S^{\prime} is order prime to p. The vertical middle sequence becomes

$$
\begin{equation*}
0 \rightarrow \mathbb{Z} G \rightarrow E \rightarrow S \oplus S^{\prime} \rightarrow 0 \tag{1}
\end{equation*}
$$

Step 1. We show that $\widehat{\mathbb{Z}} G \otimes_{\widehat{\mathbb{Z}} N} \widehat{G}_{p} \oplus \widehat{\mathbb{Z}} G \otimes_{\widehat{\mathbb{Z}} N} \widehat{A} \cong \widehat{E}$. Tensoring the sequence

$$
0 \rightarrow \widehat{\mathbb{Z}} N \rightarrow \widehat{G}_{p} \oplus A_{1} \rightarrow \mathbb{Z}_{1} / p^{r} \mathbb{Z}_{1} \rightarrow 0
$$

of Theorem 1.2, by $\widehat{\mathbb{Z}} G$ over $\widehat{\mathbb{Z}} N$, we get

$$
\begin{equation*}
0 \rightarrow \widehat{\mathbb{Z}} G \rightarrow \widehat{\mathbb{Z}} G \otimes_{\widehat{\mathbb{Z}} N} \widehat{G}_{p} \oplus \widehat{\mathbb{Z}} G \otimes_{\widehat{\mathbb{Z}} N} \widehat{A} \rightarrow S \rightarrow 0 \tag{2}
\end{equation*}
$$

Tensoring sequence (1) by $\widehat{\mathbb{Z}}$, and applying Lemma 1.4 to the resulting sequence and to sequence (2) we get

$$
\widehat{\mathbb{Z}} G \otimes_{\widehat{\mathbb{Z}} N} \widehat{G}_{p} \oplus \widehat{\mathbb{Z}} G \otimes_{\widehat{\mathbb{Z}} N} \widehat{A} \oplus \widehat{\mathbb{Z}} G \cong \widehat{E} \oplus \widehat{\mathbb{Z}} G
$$

By the Krull-Schmit-Azumaya theorem, we have

$$
\widehat{\mathbb{Z}}_{G} \otimes_{\widehat{\mathbb{Z}} N} \widehat{G}_{p} \oplus \widehat{\mathbb{Z}} G \otimes_{\widehat{\mathbb{Z}} N} \widehat{A} \cong \widehat{E} .
$$

Step 2. We show that G_{p} and E are in the same flasque class. The defining sequence of the $\mathbb{Z} G$-lattice A is

$$
\begin{aligned}
0 \rightarrow A \rightarrow U & \rightarrow \mathbb{Z} \rightarrow 0 \\
u_{1} & \mapsto 1
\end{aligned}
$$

For all primes $q \neq p$, this sequence splits, with splitting map $1 \rightarrow(1 / p) \sum u_{i}$. Thus

$$
U_{q} \cong A_{q} \oplus \mathbb{Z}_{q} \quad \text { and } \quad U_{q} \otimes A_{q} \cong A_{q} \otimes A_{q} \oplus A_{q}
$$

Since $G_{p}=A \otimes A$, we have

$$
U_{q} \otimes A_{q} \cong\left(G_{p}\right)_{q} \oplus A_{q} .
$$

As $\mathbb{Z} N$-modules, $U \cong \mathbb{Z} H \cong \mathbb{Z} N / C$, and $A \cong \mathbb{Z} H(h-1)$. We also have an isomorphism of $\mathbb{Z} C$-modules $A \cong \mathbb{Z} C$ given by $h^{i}-1 \mapsto c^{i}$ for $i=1, \ldots, p-1$. Therefore

$$
U_{q} \otimes A_{q} \cong \mathbb{Z}_{q} N / C \otimes A_{q} \cong \mathbb{Z}_{q} N \otimes_{\mathbb{Z}_{q} C} \mathbb{Z}_{q} C \cong \mathbb{Z}_{q} N
$$

which implies

$$
\mathbb{Z}_{q} N \cong\left(G_{p}\right)_{q} \oplus A_{q} \quad \text { and } \quad \mathbb{Z}_{q} G \cong \mathbb{Z}_{q} G \otimes_{\mathbb{Z} N}\left(G_{p} \oplus A\right)
$$

On the other hand, since H is of order p, A_{q} is $\mathbb{Z}_{q} H$-projective for all primes $q \neq p$. Therefore the horizontal sequences in $(*)$, namely,

$$
0 \rightarrow \mathbb{Z} G / H \rightarrow \mathbb{Z} G \rightarrow \mathbb{Z} G / H \otimes A \rightarrow 0, \quad 0 \rightarrow \mathbb{Z} G / H \rightarrow E \rightarrow \mathbb{Z} G H / H \otimes A \rightarrow 0
$$

split when localized at a prime $q \neq p$, and so $E_{q} \cong \mathbb{Z}_{q} G$. Thus we have $E_{q} \cong \mathbb{Z}_{q} G \otimes_{\mathbb{Z} N}$ $\left(G_{p} \oplus A\right)$ for all primes $q \neq p$. From Step 1 , we have $\widehat{\mathbb{Z}} G \otimes_{\widehat{\mathbb{Z}} N} \widehat{G}_{p} \oplus \widehat{\mathbb{Z}} G \otimes_{\widehat{\mathbb{Z}}} N \widehat{A} \cong \widehat{E}$ which implies, by [CR, Proposition 30.17]:

$$
E_{p} \cong \mathbb{Z}_{p} G \otimes_{\mathbb{Z} N}\left(G_{p} \oplus A\right)
$$

Thus E and $\mathbb{Z} G \otimes_{\mathbb{Z} N}\left(G_{p} \oplus A\right)$ are of the same genus. By [BL, Proposition 2.2] they are in the same flasque class, since $G=S_{p}$. Since A is quasi-permutation, this implies that E
and $\mathbb{Z} G \otimes_{\mathbb{Z} N} G_{p}$ are in the same flasque class. By [B2, Corollary 1.2] G_{p} and $\mathbb{Z} G \otimes_{\mathbb{Z} N} G_{p}$ are in the same flasque class, thus so are E and G_{p}.

By [B2, Theorem 1.1] this implies that $F\left(G_{p}\right)^{G}$ and $F(E)^{G}$ are stably isomorphic. The result follows from [F, Theorem 3].
2. Given a finite group G, a $\mathbb{Z} G$-lattice M, and a field L on which G acts, we may form the field $L(M)$, and this field has a G-action via the action of G on M. However, there exist other G-actions on $L(M)$. These actions were found by Saltman [S], and called α-twisted actions. They are defined as follows.

Let $\alpha \in \operatorname{Ext}_{G}^{1}\left(M, L^{*}\right)$, where L^{*} is the multiplicative group of L. Let the equivalence class of

$$
0 \rightarrow L^{*} \rightarrow M^{\prime} \rightarrow M \rightarrow 0
$$

in $\operatorname{Ext}_{G}^{1}\left(M, L^{*}\right)$ be α. Writing M and M^{\prime} as multiplicative abelian groups, we have

$$
M^{\prime}=\left\{x . m: x \in L^{*}, m \in M\right\},
$$

and the G-action on M^{\prime} is given by $g^{*} x . m=g(x) \mathrm{d}_{g}(g m) . g m$, where $\mathrm{d}: G \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(M, L^{*}\right)$ is the derivation corresponding to α. In particular, for $x=1$, we have

$$
g^{*} m=\mathrm{d}_{g}(g m) . g m
$$

Thus we obtain an α-twisted action on $L(M)$. Denote by $L_{\alpha}(M)$ the field $L(M)$ with the corresponding G-action.

The following remark is needed in the proof of Theorem 2.1.

Remark. Recall that N is the normalizer of a p-Sylow subgroup H of G. Thus $N=H \rtimes C$ is the semidirect product of H by a cyclic group C, of order $p-1$. Let h and c generate H and C, respectively. Then $c h c^{-1}=h^{a}$, where a is a primitive $(p-1)$ st root of $1 \bmod p$. Let $n_{h}=\sum_{i} h^{i}$ be the norm of H. The kernel of the $\mathbb{Z} H$-map $\mathbb{Z} H \rightarrow \mathbb{Z} H(h-1)$, multiplication by $h-1$, is $n_{h} \mathbb{Z} H$. Thus $A \cong \mathbb{Z} H(h-1) \cong \mathbb{Z} H / n_{h} \mathbb{Z} H$ as $\mathbb{Z} H$-modules.

Theorem 2.1. Let $L=F(\mathbb{Z} G / H)$. There exists an α-twisted action of G on $L(\mathbb{Z} G / H \otimes A)$ such that $L_{\alpha}(\mathbb{Z} G / H \otimes A)^{G}$ is stably isomorphic to C_{p}. That is, if $L_{\alpha}(\mathbb{Z} G / H \otimes A)^{G}$ is stably rational over F, then C_{p} is stably rational over F. Furthermore, the extension α corresponds to an element of the relative Brauer group $\operatorname{Br}\left(L / L^{H}\right)$.

Proof. Let i_{1} be the map

$$
\mathbb{Z} G / H \rightarrow \mathbb{Z} G / H, \quad \overline{1} \mapsto \bar{c}-\bar{a}
$$

Since $\mathbb{Z} G / H \cong \mathbb{Z} G \otimes_{\mathbb{Z} N} \mathbb{Z} C$, the map i_{1} is the map i of Lemma 1.3 induced up to G, and thus it is injective. Consider the diagram

It follows from Lemma 1.3 that $\operatorname{coker}\left(i_{1}\right)$ satisfies the hypothesis of Theorem 1.5, hence $F(M)^{G}$ is stably isomorphic to C_{p}.

Let $\left\{g_{i}\right\}$ be a transversal for H in G. Set $b_{i}=i_{1}\left(\bar{g}_{i}\right)$ and, as in Theorem 1.5, let $i_{2}\left(\bar{g}_{i}\right)=\sum_{j=1}^{p} g_{i} \otimes h^{j}$. Thus

$$
M \cong \mathbb{Z} G / H \oplus \mathbb{Z} G /\left\{\left(b_{i}-\sum_{j=1}^{p} g_{i} \otimes h^{j}\right): i=1, \ldots,(p-1)!\right\}
$$

From this isomorphism we obtain a G-surjection of rings

$$
F[\mathbb{Z} G / H \oplus \mathbb{Z} G] \rightarrow F[M] .
$$

We let y_{i} and $x_{i j}$ denote the elements of the \mathbb{Z}-basis of $\mathbb{Z} G / H \oplus \mathbb{Z} G$, corresponding to and $g_{i} \otimes h^{j}$, respectively, when $\mathbb{Z} G / H \oplus \mathbb{Z} G$ is viewed as a multiplicative abelian group. Thus the y_{i} and $x_{i j}$ are independent commuting indeterminates over F. Let m_{i} be the monomial in the y_{i} corresponding to b_{i}. Then $F[\mathbb{Z} G / H \oplus \mathbb{Z} G]=F\left[y_{i}^{ \pm 1}, j_{i j}^{ \pm 1}\right]$, and the kernel of the above surjection by [P, Lemma 1.8] is:

$$
I=\left\langle m_{i} \prod_{j=1}^{p} x_{i j}^{-1}-1: i=1, \ldots,(p-1)!\right\rangle
$$

Thus $F[M] \cong F\left[y_{i}^{ \pm 1}, x_{i j}^{ \pm 1}\right] / I$. Let

$$
\bar{y}_{i}=y_{i} \quad \bmod I, \quad \bar{x}_{i j}=x_{i j} \quad \bmod I \quad \text { for } j=1, \ldots, p-1 .
$$

Then $\bar{x}_{i p}=m_{i} \prod_{j=1}^{p} \bar{x}_{i j}^{-1}$ and $g \bar{y}_{i}=\overline{g y}_{i}$. The set $\left\{\bar{y}_{i}, \bar{x}_{i j}: i=1, \ldots,(p-1)!, j=1, \ldots\right.$, $p-1\}$ is algebraically independent over F, since its cardinality, p !, is equal to the Krull
dimension of $F[M]$. Thus $F(M)=F\left(\bar{y}_{i}, \bar{x}_{i j}: i=1, \ldots,(p-1)!, j=1, \ldots, p-1\right)$. We have a G-isomorphism

$$
F\left[y_{i}\right] \rightarrow F\left[\bar{y}_{i}\right] \subseteq F[M], \quad y_{i} \mapsto \bar{y}_{i} .
$$

Set $L=F\left(\bar{y}_{i}\right)$, then $L \cong F(\mathbb{Z} G / H)$ and $F(M) \cong L\left(\bar{x}_{i j}\right)$.
Let M^{*} be the subgroup of $F(M)^{*}$ generated by L^{*} and M. By the remark preceding the theorem, $A \cong \mathbb{Z} H / n_{h} \mathbb{Z} H$ as a $\mathbb{Z} H$-module, hence $M^{*} / L^{*} \cong \mathbb{Z} G / H \otimes A$. We have a G-exact sequence

$$
\alpha: \quad 0 \rightarrow L^{*} \rightarrow M^{*} \rightarrow \mathbb{Z} G / H \otimes A \rightarrow 0 .
$$

Clearly, $F(M) \cong F\left(M^{*}\right)=L_{\alpha}(\mathbb{Z} G / H \otimes A)$, where by $F\left(M^{*}\right)$ we mean the smallest subfield of $F(M)$ generated by F and M^{*}. Hence $F(M)^{G} \cong L_{\alpha}(\mathbb{Z} G / H \otimes A)^{G}$ and, by Theorem 1.5, $F(M)^{G}$ is stably isomorphic to C_{p}. This proves the first statement.

For the second statement, $\alpha \in \operatorname{Ext}_{G}^{1}\left(\mathbb{Z} G / H \otimes A, L^{*}\right) \cong \operatorname{Ext}_{H}^{1}\left(A, L^{*}\right)$ by Shapiro's Lemma. Taking the cohomology of the $\mathbb{Z H}$-sequence

$$
0 \rightarrow A \rightarrow \mathbb{Z} H \rightarrow \mathbb{Z} \rightarrow 0
$$

we have $\operatorname{Ext}_{H}^{1}\left(A, L^{*}\right) \cong \operatorname{Ext}_{H}^{2}\left(\mathbb{Z}, L^{*}\right) \cong H^{2}\left(H, L^{*}\right)=\operatorname{Br}\left(L / L^{H}\right)$, the relative Brauer group of L over L^{H}.

References

[BL] C. Bessenrodt, L. Lebruyn, Stable rationality of certain $P G L_{n}$-quotients, Invent. Math. 104 (1991) 179199.
[B1] E. Beneish, Induction theorems on the center of the ring of generic matrices, Trans. Amer. Math. Soc. 350 (9) (1998) 3571-3585.
[B2] E. Beneish, Monomial actions of the symmetric group, J. Algebra, to appear.
[CR] Curtis, Reiner, Methods of Representation Theory, Vol. 1, Wiley, New York, 1981.
[CTS] S.-L. Colliot-Thelene, J.-P. Sansuc, La R-equivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977) 175-230.
[EM] S. Endo, T. Miyata, On the projective class group of finite groups, Osaka J. Math. 13 (1976) 109-122.
[F] E. Formanek, The center of the ring of 3×3 generic matrices, Linear Multilinear Algebra 7 (1979) 203212.
[P] D. Passman, The Algebraic Structure of Rings, Wiley, New York, 1977.
[S] D. Saltman, Twisted multiplicative invariants, Noether's problem and Galois extensions, J. Algebra 131 (2) (1990) 535-558.

[^0]: E-mail address: beneite@cmich.edu.
 0021-8693/03/\$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
 PII: S0021-8693(02)00576-8

