
J. Differential Equations 253 (2012) 553–562

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

A remark on the geometry of uniformly rotating stars ✩

Sagun Chanillo a, Georg S. Weiss b,∗
a Department of Mathematics, Hill Center Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019,
United States
b Department of Mathematics, Heinrich Heine University, 40225 Düsseldorf, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 September 2011
Revised 24 March 2012
Available online 24 April 2012

MSC:
primary 35R35
secondary 35J60

Keywords:
Free boundary
Star
Singular point

In this paper we classify the free boundary associated to equilib-
rium configurations of compressible, self-gravitating fluid masses,
rotating with constant angular velocity. The equilibrium configu-
rations are all critical points of an associated functional and not
necessarily minimizers. Our methods also apply to alternative mod-
els in the literature where the angular momentum per unit mass is
prescribed. The typical physical model our results apply to is that
of uniformly rotating white dwarf stars.
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1. Introduction

In this paper we study the free boundary associated to rotating star models of white dwarf stars
with prescribed constant angular velocity. Thus we are considering figures of equilibrium for com-
pressible, self-gravitating fluid masses.

There has been a tremendous amount of work on incompressible, self-gravitating fluid masses
rotating with prescribed constant angular velocity since the primary investigations by Newton. Various
mathematicians like MacLaurin, Jacobi, Dirichlet, Riemann, Poincaré, H. Cartan and Chandrasekhar
made significant contributions to the field, studying bifurcation sequences and analyzing the stability
of various equilibrium shapes. A historical account and details of these investigations may be found
in Chandrasekhar’s treatise [10] and Tassoul’s book [18].
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In the compressible case for the model with prescribed constant angular velocity ω > 0 (cf. [15]),
we consider the functional

J (ρ) =
∫
R3

A(ρ)dξ − 1

2

∫
R3

ω2r2ρ dξ − 1

2

∫
R3

ρBρ dξ, (1.1)

where ξ = (ξ1, ξ2, ξ3), r =
√

ξ2
1 + ξ2

2 , ρ � 0, ρ ∈ L1(R3) ∩ L∞(R3) and

(Bρ)(ξ) =
∫
R3

ρ(η)

|ξ − η| dη.

Moreover we impose the constraint ∫
R3

ρ = 1. (1.2)

As ρ(ξ) represents the density of the stellar material, (1.2) means that the mass of the star is pre-
scribed. Later in our paper we will assume in addition that the density ρ(ξ) is axisymmetric, i.e.

ρ(ξ) = ρ(r, z) where z(ξ) = ξ3.

This assumption means that the star is rotating about the ξ3-axis. The function A(ρ) is the pressure
and thus represents the equation of state of the stellar material. We assume that A(ρ) ∈ C1([0,+∞))

with A strictly convex so that A′(ρ) is invertible. Further conditions on A(ρ) will be stipulated below.
The first term in (1.1) represents then the internal energy of the star, the second term the rotational
kinetic energy and the last term the gravitational potential energy.

In [15] the existence of minimizers of J under the constraint (1.2) has been obtained. Ref. [14]
contains further results for this model of prescribed angular velocity. In [11] support estimates for
critical points of (1.1) under the constraint (1.2) have been shown. In particular, [11, Theorem 1]
states that for ω � ω0 > 0, the support of ρ is contained in a ball Bσ (0,0, ξ3) for some ξ3, where
σ = σ(ω0). It follows that

0 � Bρ � C in R
3.

Furthermore, [11, Theorem 2] shows that the number of connected components of the set {ρ > 0} is
finite for any critical point ρ .

Critical points of J with the constraint (1.2) are according to [11, (0.6)] characterized by the prob-
lem

ρ is continuous and nonnegative and A′(ρ) − 1

2
ω2r2 − Bρ = λ(ω) in {ρ > 0}, (1.3)

where λ(ω) is a Lagrange multiplier arising from the constraint (1.2). The focus in this paper is to
study the free boundary ∂{ρ > 0} arising from (1.3).

There is another model of rotating stars which has been studied in the literature, where the an-
gular momentum per unit mass is prescribed. Existence of minimizers for this alternative model has
been obtained in [5], and the study of critical points has been carried out in [16]. Caffarelli and Fried-
man investigated in [7] the free boundary of minimizers for this alternative model. As Caffarelli and
Friedman deal with minimizers, they are able to apply rearrangement methods to their functional to
obtain solutions that are increasing in one direction which simplifies the analysis as well as the result.
Unfortunately this technique does not work for critical points in either model and creates a difficulty
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for our analysis. Let us remark that the proofs presented in this paper for critical points of J with the
constraint (1.2) work equally well for the study of the free boundary of critical points in the model
in [7].

The principal difficulty we encounter in our classification of singularities of the free boundary is
that the nonlinearity is not an increasing function of the solution, so that various methods stemming
from the well-known obstacle problem do not apply. Neither does the monotonicity formula derived
in [1]. Let us also mention that our problem cannot be transformed into the type of problems studied
in [8], so we cannot use those results either. Another difficulty is that our equation is inhomogeneous.
In particular, the leading order term on the right-hand side is not of the form f (u). This—together
with a higher order degeneracy—distinguishes the present problem also from the recently researched
“unstable obstacle problem” (see [17,2–4]).

Last, let us point out that—due to the fact that the free boundary ∂{ρ > 0} does not necessarily
coincide completely with the free boundary of the PDE problem obtained by transformation—we ob-
tain in our classification of singularities several cases later called “pseudo-cases.” We suggest that in
the case of minimizers, rearrangement techniques similar to those used in [7] may be used to show
that solutions are decreasing in a certain direction, thus ruling out the pseudo-cases.

Setting u = 1
2 ω2r2 + Bρ + λ(ω), we obtain in the set {ρ > 0} that u = A′(ρ) = Φ−1(ρ), where

Φ : [0,+∞) →R is an increasing function satisfying according to the asymptotics

A(ρ) = c1ρ
5
3 + o

(
ρ

5
3
)

as ρ → 0, A(ρ) = c2ρ
4
3 + o

(
ρ

4
3
)

as ρ → +∞

(where c1, c2 are positive constants) from Chandrasekhar’s book [9, Chapter 10] and [11, (0.2)] the
asymptotic relations

A′(ρ) = 5

3
c1ρ

2
3 + o

(
ρ

2
3
)

as ρ → 0, A′(ρ) = 4

3
c2ρ

1
3 + o

(
ρ

1
3
)

as ρ → +∞, (1.4)

lim
z→0+ z−3/2Φ(z) = c̃1 ∈ (0,+∞), lim

z→+∞ z−3Φ(z) = c̃2 ∈ (0,+∞). (1.5)

It follows (cf. [11, (3.3)]) that


u = 3ω2 − 4πρ = 3ω2 − 4πΦ(u) in {ρ > 0}

and


u = 3ω2 in {ρ = 0}.

Note that as u = A′(ρ) = Φ−1(ρ) is only valid in the set {ρ > 0}, we obtain {ρ > 0} ⊂ {u > 0} but not
necessarily the opposite inclusion. It is however true that ∂{ρ > 0} ⊂ ∂{u > 0} and that if ρ(x0) > 0
then the connected component of {ρ > 0} containing x0 coincides with the connected component of
{u > 0} containing x0.

Normalizing the equation as well as Φ we obtain the free boundary problem


u = 1 − Φ(u)χΩ with an open set Ω satisfying u > 0 in Ω and u = 0 on ∂Ω, (1.6)

where u ∈ L∞
loc(R

3), (1.6) is to be satisfied in the sense of distributions, and Φ ∈ C1([0,+∞)) such
that

∫
Ω

Φ(u) ∈ (0,+∞),

lim
z→0+ z−3/2Φ(z) ∈ (0,+∞) and lim

z→+∞ z−3Φ(z) ∈ (0,+∞).
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Fig. 1. Double wedge (with the set Ω̃ painted as
filled shape).

Fig. 2. Pseudo-wedge (with the set Ω̃ painted
as filled shape).

Fig. 3. Pseudo-cusp (with the set Ω̃ painted as
filled shape).

Fig. 4. Double cusp (with the set Ω̃ painted as
filled shape).

Theorem A. For each axisymmetric three-dimensional solution (u,Ω) of problem (1.6), where min(u,0) ∈
L∞(R3), r =

√
x2

1 + x2
2 , u(x1, x2, x3) = v(r, x3) and (x1, x2, x3) ∈ Ω ⇔ (r, x3) ∈ Ω̃ , the following holds:

Apart from the singular set {v = 0} ∩ {∇v = 0} the level set {v = 0} and the boundary ∂Ω̃ are locally
C2,α-curves. The set ∂Ω̃ ∩ {∇v = 0} contains in each bounded subset of R2 at most finitely many singular
points (r0, x0

3) with the following possible asymptotics:

(a) Suppose that r0 = 0. Then one of the following three alternatives holds:
1. Either v((r0, x0

3) + t(r, x3))/t2 → 1
4 r2 as t → 0 or v((r0, x0

3) + t(r, x3))/t2 → 1
2 x2

3 as t → 0, and

{v � 0} is a cusp. See Figs. 3–5 for the asymptotics of {v > 0} and Ω̃ in the case that v((r0, x0
3) +

t(r, x3))/t2 → 1
4 r2 as t → 0.

2. There is λ ∈ (−∞,0) ∪ (1,+∞) such that

v
((

r0, x0
3

) + t(r, x3)
)
/t2 → 1

2

(
λ

2
r2 + (1 − λ)x2

3

)
as t → 0.

Then {v > 0} is a double wedge. See Figs. 1–2 for the asymptotics of {v > 0} and Ω̃ in the case that
λ > 1.

3. There is λ ∈ (0,1) such that v((r0, x0
3)+ t(r, x3))/t2 → 1

2 ( λ
2 r2 + (1−λ)x2

3) as t → 0. The complement

of {v > 0} and that of Ω̃ is the single point x0 .
(b) Suppose that r0 > 0. Then after rotation one of the following three alternatives holds:

1. Either v((r0, x0
3)+ t(x, y))/t2 → 1

2 x2 as t → 0, and {v � 0} is a cusp. See Figs. 3–5 for the asymptotics

of {v > 0} and Ω̃ .
2. There is λ ∈ (−∞,0) ∪ (1,+∞) such that

v
((

r0, x0
3

) + t(x, y)
)
/t2 → 1

2

(
λx2 + (1 − λ)y2) as t → 0.

Then {v > 0} is a double wedge. See Figs. 1–2 for the asymptotics of {v > 0} and Ω̃ in the case that
λ > 1.
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Fig. 5. Cusp (with the set Ω̃ painted as filled shape).

3. There is λ ∈ (0,1) such that v((r0, x0
3)+ t(x, y))/t2 → 1

2 (λx2 + (1−λ)y2) as t → 0. The complement

of {v > 0} and that of Ω̃ is the single point x0 .

Remark 1.1. The asymptotics for v in Theorem A is actually valid at any point x̃0 ∈ {v = 0}∩ {∇v = 0},
however at points x̃0 ∈ {v = 0} ∩ {∇v = 0} \ ∂Ω there is the possibility of straight line segments for
{v � 0} so that we have confined the statement to points x̃0 ∈ ∂Ω ∩ {∇v = 0}.

2. Proof of the main result

Let (u,Ω) be a solution of (1.6) satisfying the assumptions in the statement of the theorem. By
L p- and Cα-estimates u ∈ W 2,p

loc (R3) ∩ C1,α
loc (R3) for each p ∈ (1,+∞) and α ∈ (0,1). Differentiating u

we obtain


∂xk u = −Φ ′(u)χΩ∂xk u ∈ L∞
loc

(
R

3) (2.1)

in the sense of distributions: one way to realize this would be to observe that

wδ(x) :=
{

max(u(x) − δ,0), x ∈ Ω,

0, x /∈ Ω

defines a family of functions (wδ)δ∈(0,1) which is bounded in W 1,2(B R) for each R ∈ (0,+∞). Thus

w(x) :=
{

u(x), x ∈ Ω,

0, x /∈ Ω

is a function in W 1,2
loc (R3), and

∫
R3

u
ζ =
∫
R3

(
1 − Φ(w)

)
ζ,

∫
R3

u
∂xkζ = −
∫
R3

Φ(w)∂xk ζ

for every ζ ∈ C∞
0 (R3). Thus, by the assumptions Φ ∈ C1([0,+∞)) and u ∈ L∞

loc(R
3) as well as the fact

that w ∈ W 1,2
loc (R3), Φ(w) ∈ W 1,2

loc (R3) so that u ∈ W 3,p
loc (R3) with p = 2 by L2-theory. Therefore ∂xk u

is a strong solution of


∂xk u =
{−Φ ′(w)∂xk w, x ∈ Ω,

0, x /∈ Ω,

in the sense of [12, Chapter 9] which proves (2.1).
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Consequently u ∈ W 3,p
loc (R3) ∩ C2,α

loc (R3) for each p ∈ (1,+∞) and α ∈ (0,1). We maintain that in
addition

‖u‖C2,α(B1({u=0})) � C . (2.2)

In order to see that we observe that by the assumption of our theorem,

u � −C and 
u � C in R
3.

Therefore w := u + C satisfies w � 0 and

∫
B2(x)

(u + C) =
∫

B2(x)

w � C1 w(x) = C1C for every x ∈ {u = 0};

here C1 is a universal constant. But then (2.2) follows by repeating the above proof using the uniform
L1(B2(x))-bound.

On the other hand we infer from (1.6) that the Hessian of u satisfies

∣∣D2u
∣∣ � c > 0 on {u = 0}. (2.3)

As {u = 0} ∩ {∇u 
= 0} is by the implicit function theorem locally a C2,α-surface—the regularity of the
surface can be improved to real analyticity by the methods in [7]—, we will focus on the singular set
∂Ω ∩ {∇u = 0}.

Let us consider a point x0 ∈ ∂Ω ∩ {∇u = 0}. If (x0
1)

2 + (x0
2)

2 > 0 then we translate x0 to the origin
and rotate so that

D2u(0) =
(

λ 0 0
0 0 0
0 0 1 − λ

)
for some λ ∈R. (2.4)

In cylindrical coordinates (where we do rotate but not translate) we obtain in this case that

D2 v
((

r0, x0
3

)) =
(

λ 0
0 1 − λ

)
for the same λ ∈R.

If r0 = 0, that is x0 is on the axis of symmetry, we expand

v(r, x3) = c1r2 + c2x2
3 + c3rx3 + o

(
r2 + x2

3

)
and ∂rx3 v = c3 + o(1).

Suppose now towards a contradiction that c3 
= 0: then

∂x1x3 u(x1, x2, x3) = x1

r
∂rx3 v,

where the right-hand side is discontinuous at (x1, x2, x3) = 0, a contradiction. Thus

v(r, x3) = c1r2 + c2x2
3 + o

(
r2 + x2

3

)
and

u(x1, x2, x3) = c1
(
x2

1 + x2
2

) + c2x2
3 + o

(
x2

1 + x2
2 + x2

3

)
,
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and using the PDE for u we obtain in the case r0 = 0 that

u(x1, x2, x3) = λ

4

(
x2

1 + x2
2

) + 1

2
(1 − λ)x2

3 + o
(
x2

1 + x2
2 + x2

3

)
and that, setting x̃0 := (r0, x0

3),

D2 v
(
x̃0) =

(
λ
2 0
0 1 − λ

)
for some λ ∈R.

Case 1: If 0 < λ < 1, then Ωc consists in a sufficiently small ball Bδ(x0) of only the point x0 which is
in this case a local minimum point of u.

Case 2: If λ > 1 or λ < 0, {v = 0} consists of two C1-curves intersecting at a nonzero angle at x̃0 (cf.
Fig. 1 and Fig. 2): we may assume that λ > 1, and as explained above we may assume that either

D2 v
(
x̃0) =

(
λ
2 0
0 1 − λ

)

or that after a rotation of the coordinates,

D2 v
(
x̃0) =

(
λ 0
0 1 − λ

)
.

As in this case for sufficiently small δ, ∂x3 v < 0 in Br(x̃0) ∩ {x3 > δ} and ∂x3 v > 0 in Br(x̃0) ∩ {x3 <

−δ}, we may rescale and obtain that {v = 0} \ {0} consists of four C1,α-graphs. The fact that

v
(
x̃0 + t(r, x3)

)
/t2 → 1

2

(
μr2 + (1 − λ)x2

3

)
as t → 0

with μ ∈ {λ/2, λ} and that convergence takes place in C2
loc(R

2), implies now that the graphs have
tangents as x → 0 and that we may combine them to two C1-curves intersecting at a nonzero angle
at 0.

Case 3: If λ = 1 or λ = 0, then {v = 0} consists either of two C1-curves ending in a cusp at x̃0 (cf.
Fig. 5) or intersecting in a double cusp at x̃0 (cf. Figs. 1–2).

In order to prove the statement of Case 3, we may assume that x0 = 0 and that in the case that
the original free boundary point is not on the axis of symmetry, (2.4) holds. We will first consider the
case λ = 1, implying that v(t(r, x3))/t2 → 1

2 r2 as t → 0 after rotation in the case that the original free
boundary point is not on the axis of symmetry, and that v(t(r, x3))/t2 → 1

4 r2 as t → 0 else. From (2.1)
we obtain that


∂x3 u = c(x)∂x3 u

with Hölder continuous coefficients c(x). Using once more the asymptotic assumptions for Φ and
applying [6, Lemma 3.1] repetitively for β = 3/2,7/2,11/2,15/2, . . . we infer that either

∂x3 u = p + Γ

where p is a nontrivial harmonic polynomial of degree [β] + 2 with leading term of order � 2 (by
the fact that u(tx)/t2 → μ(x2

1 + x2
2) as t → 0 with μ ∈ {1/2,1/4}) and

∣∣Γ (x)
∣∣ � C1|x|β+2,
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or ∂x3 u vanishes of infinite order at 0, that is

∣∣∂x3 u(x)
∣∣ � Ck|x|k in Brk (0)

for every k ∈N.
In the latter case we obtain by repetitive application of a well-known strong unique continuation

property (see [13, Remark 6.7] for a very general result), that ∂x3 u ≡ 0 in each connected component
of {u 
= 0} touching the origin, implying by our information on the blow-up limit that u ≡ 1

4 (x2
1 +x2

2)+
f (x2

1 + x2
2) in each connected component of {u 
= 0} touching the origin, where f (z) = o(z) as z → 0.

But this contradicts the assumption
∫
Ω

Φ(u) ∈ (0,+∞)—by which Ω incidentally is non-empty—, thus
proving that infinite order vanishing is not possible.

Let us return to the former case

∂x3 u = q + O
(|x|k+ 1

2
)

where q is a nontrivial homogeneous harmonic polynomial of degree k � 2. It follows that in the case
that the original free boundary point is on the axis of symmetry,

u = 1

4

(
x2

1 + x2
2

) + g
(
x2

1 + x2
2

) +
x3∫

0

q(x1, x2, s)ds + O
(|x|k+ 3

2
)
, (2.5)

where g(z) = o(z) as z → 0, and that in the case that the original free boundary point is not on the
axis of symmetry,

u = 1

2
x2

1 + g
(
x2

1

) +
x3∫

0

q(x1, x2, s)ds + O
(|x|k+ 3

2
)
, (2.6)

where g(z) = o(z) as z → 0. Now, if q((0,0,1)) 
= 0, then {v � 0} is in a neighborhood of x̃0 a one-
sided or double axially symmetric cusp (depending on the signs of q((0,0,1)) and q((0,0,−1))); see
Figs. 3–5. If q((0,0,1)) = 0, then we will distinguish two cases, depending on whether the original
free boundary point is on the axis of symmetry or not. In the case that the original free boundary
point is on the axis of symmetry, we will prove that q((0,0,1)) = 0 is not possible. Suppose towards a
contradiction that q((0,0,1)) = 0. We observe that q is axisymmetric and define q̃(r, x3) = q(x1, x2, x3).
As q is a homogeneous polynomial, q̃(r, x3) is a homogeneous polynomial, and—using the assumption
q((0,0,1)) = 0—all powers of r in the expansion of q̃ are even numbers � 2. Let ar2 j x�

3 be the leading
term in the expansion of q̃, where a is a real constant, j � 1 and � � 0 are integers. Then (2.5)
becomes

v = 1

4
r2

(
1 + 4a

� + 1
r2 j−2x�+1

3

)
+ o

(
r2) + O

(
rk+ 3

2
)
,

so that v is positive for sufficiently small x3 and sufficiently small r > 0. Suppose now that for

W a(x3) := inf
{

r > 0: v(·, x3) > 0 in (−r, r) \ {0}},
lim infx3→X W a = 0, where X ∈ [−∞,+∞]. Then we obtain a contradiction to (2.2) and (2.3).
Thus W a � c > 0 on R. It follows that u = 0 on the whole line x1 = x2 = 0 and u � d > 0 in
{(x1, x2, x3): δ < x2

1 + x2
2 < 2δ}, a contradiction to the assumption

∫
Ω

Φ(u) ∈ (0,+∞).
In the case that the original free boundary point is not on the axis of symmetry, we obtain by our

choice of rotation that ∂x3x2 u = 0 and that consequently ∂x2 q ≡ 0. Using also the information that by
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homogeneity, q(0,0, t) = 0 for every t ∈ R, we may expand q, and we obtain a leading term of the
form ax j

1x�
3 where a is a real constant, j � 1 and � � 0 are integers satisfying j + � � 2. Thus

u = 1

2
x2

1 + g
(
x2

1

) + a

� + 1
x j

1x�+1
3 + O

(|x|k+ 3
2
)
.

If j � 2, then we conclude that and we obtain that u = 0 on {x1 = 0} and u > 0 for sufficiently small
x1 > 0, sufficiently small |x2| and sufficiently small x2

3 > 0. Suppose now that for

W b(x2, x3) := inf
{

x > 0: u(·, x2, x3) > 0 in (−x, x) \ {0}},
lim inf(x2,x3)→X W b = 0, where X ∈ R

2 ∪ {∞}. Then we obtain a contradiction to (2.2) and (2.3). Thus
W b � c > 0 on R

2. It follows that u = 0 on {x1 = 0} and u � d > 0 in {(x1, x2, x3): δ < x2
1 < 2δ}, a

contradiction to the assumption
∫
Ω

Φ(u) ∈ (0,+∞). If j = 1, then we conclude that � � 1. If both
connected components of {u > 0} are subsets of Ω , then we may again obtain a contradiction to the
assumption

∫
Ω

Φ(u) ∈ (0,+∞). Else we translate the obtained result into cylindrical coordinates and
obtain a double cusp {v � 0} that is asymmetric with respect to the axis x1 = 0 (note that as we have
rotated, x1 = 0 would in this case not be the axis of the axisymmetry).

The proof in the case λ = 0 is similar. In this case we replace ∂x3 u by ∂x1 u. In the case that the
original free boundary point is not on the axis of symmetry, the above proof works with obvious
changes. In the case that the original free boundary point is on the axis of symmetry, we obtain the
formula

u = 1

2
x2

3 + h
(
x2

3

) +
x1∫

0

q(s, x2, x3)ds + O
(|x|k+ 3

2
)
,

with h(z) = o(z) as z → 0. If q((1,0,0)) 
= 0, then we obtain as before that {v � 0} is in a neighborhood
of 0 a double cusp. Let us therefore focus on the case q((1,0,0)) = 0. This time, Q (x1, x2, x3) :=∫ x1

0 q(s, x2, x3)ds is a homogeneous axisymmetric polynomial satisfying Q ((t,0,0)) = 0 for every t ∈R.
Thus we may write Q (x1, x2, x3) = Q̃ (r, x3). Let ar2 j x�

3 be the leading term in the expansion of Q̃
where a is a real constant, j � 1 and � � 1 are integers. If � � 2, then we conclude that

v = 1

2
x2

3

(
1 + 2ar2 jx�−2

3

) + o
(
r2) + O

(
rk+ 3

2
)
,

and we obtain that u = 0 on {x3 = 0} and u > 0 for sufficiently small r and sufficiently small x2
3 > 0.

Suppose now that for

W c(r) := inf
{

x > 0: v(r, x) > 0 in (−x, x) \ {0}},
lim infr→R W c = 0, where R ∈ [0,+∞]. Then we obtain a contradiction to (2.2) and (2.3). Thus W c �
c > 0 on (0,+∞). It follows that u = 0 on {x3 = 0} and u � d > 0 in {(x1, x2, x3): δ < x2

3 < 2δ}, a
contradiction to the assumption

∫
Ω

Φ(u) ∈ (0,+∞). If � = 1, then we conclude that

v = 1

2
x2

3 + ar2 jx3 + lower order terms.

If both connected components of {u > 0} are subsets of Ω , then we may again obtain a contradiction
to the assumption

∫
Ω

Φ(u) ∈ (0,+∞). Else we obtain a double cusp {v � 0} that is asymmetric with
respect to the axis x3 = 0.
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