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This paper presents general and precise results on existence and number of solu- 
tions to implicitly defined ordinary differential equations in the vicinity of a singular 
point, where the equation is not equivalent to an explicit one. Unlike in most, if not 
in all, other studies devoted to this problem in the literature, it is not assumed that 
either rank drop occurs on an entire neighborhood of the singular point or that the 
equation is a scalar one. Attention is confined to the simplest but most frequently 
encountered kind of singular points. It is shown that such “standard” singular 
points split into two complementary classes: those from which exactly two distinct 
solutions emanate and those at which exactly two distinct solutions terminate. 
Whether a point of the latter class is eventually encountered is unaffected by slight 
modifications of the (nonsingular) initial condition and further evolution of the 
system governed by the singular ODE then requires using a suitable jump condition 
according to appropriate physical criteria. Points of the former class are also shown 
to play a more subtle but equally important role in the dynamics. The phenomena 
described here are relevant in various problems from the sciences, such as phase 
transitions or plasticity. They should also be relevant in some aspects of the 
classical domain of application of differential - algebraic equations: singular pertur- 
bations of ODE’s, 73 1989 Academic Press, Inc. 

1. INTRODUCTION 

The main object of this paper is the study of implicit initial value 
problems of the general form 

F( t, x, i) = 0, 

x(~,)=x,, ~(~o)=.h 
(1.1) 

* This work was in part supported by the Air Force Office of Scientific Research under 
Grant 84-0131. 
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where F= F(r, X, J’) and F(t,, x,,, yo) = 0. Of course, we shall assume that 
2, F(t,, x,), yO) is not invertible, so that the differential equation is not 
equivalent to an explicit one (multiform equation). This will be done after 
embedding (1 .I ) into a more general class of singular problems 

An examination of the literature reveals that multiform equations have 
been investigated either in the scalar case or in the assumption that i, F 
remains singular on an entire neighborhood of the point of interest. The 
study of the scalar case, apparently motivated by the example of Clairaut 
equation, began with the work of Darboux [7] in 1873 and related ques- 
tions are considered in Tricomi [ 161. More recently, the scalar case was 
reconsidered in the framework of catastrophe and singularity theories with 
contributions, e.g., by Thorn [ 151 and Lak Dara [ 121. Chaperon [6] and 
Arnold [2] contain a summary of the available results. 

For the case when d?F is singular on an entire neighborhood, relevant 
references are Gantmacher [8] and Campbell [4] among others. An up to 
date account of the state of the art is to be found in Griepentrog and 
M&z [9]. 

In this paper,, we shall not confine ourselves to the scalar case, nor 
assume that d,.F is singular on an entire neighborhood. Our approach 
somewhat bridges the gap between the “pure” and “applied” points of view 
briefly summarized above. No attempt to a classification is made, but the 
singularity we consider is the most commonly encountered one, and is 
properly identified as such through transversality arguments (in the finite- 
dimensional case). 

We believe it important to point out right now that limitation to a 
narrow class of singularities is justified a priori by elementary considera- 
tions. First and foremost, it must be observed that, in practice, when an 
evolution problem such as (1.1) is considered, the initial condition 
(to, x,,, ,v~) will in general not be a point where a,. F is singular. In any case, 
most arbitrarily small perturbations of (to, ,Y~, yO) will reinstate the non- 
singular character in the equation (except when d,. F is singular on an entire 
neighborhood). However, irrespective of the initial condition, it cannot be 
excluded that the trajectory eventually meets a singular point at some later 
and unspecified time. While this gives full justification to the study of 
singular problems, the same reasoning as above pursued one step further 
yields that particular consideration should be given to singular points 
provided that the event of a trajectory eventually going through one of 
them is not affected by slight modifications of the initial condition. Elemen- 
tary considerations lead to the conclusion that singular points whose pro- 
jections onto the (t, x)-space occupy a variety with codimension one are 
especially relevant, because all other points are “missed” by trajectories 
emanating at “most” initial conditions. 

As we shall see, there is essentially one kind of singular points satisfying 
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the requirement that their projections occupy a hypersurface. This family of 
standard singular points will be shown to split into two complementary 
classes of “attracting” and “repelling” points (in a sense to be specified 
later). Both kinds of points seem to play an important role: the numerical 
work by Porsching [ 131 on phase transitions clearly indicates the presence 
of “attracting” ones. On the other hand, “repelling” points seem to be 
responsible for a strange “bifurcation looking” phenomenon in a problem 
of metal forming investigated by Cavendish et al. [5] and reported by Hall 
and Rheinboldt [ 111. A simple example in which the same feature can be 
reproduced is given in Section 5. 

Our analysis heavily relies on properties of determinants and matrices of 
cofactors. For this reason, it is carried out in the finite dimensional case up 
to and including Section 5. The infinite dimensional case is considered in 
Section 6, but it is not treated through a reduction argument of Lyapunov- 
Schmidt type, for it is easily seen that such a procedure does not preserve 
the differential structure of the problem. Instead, we have observed that a 
simple way exists to generalize a pair determinant-matrix of cofactors for 
operators close enough to a given Fredholm operator with index zero. This 
idea, which permits to use the same approach as in the finite-dimensional 
case, is only briefly discussed and will be developed elsewhere. 

2. REDUCTION TO CANONICAL FORM AND RELATED NOTIONS 

Given a mapping F= F(t, x, y) defined on a neighborhood of (to, x0, y, ) 
in R x R” x R”, with values in R” and verifying F(t,, x0, y,) = 0, consider 
the differential equation 

F(t,x,R)=O, 

x(t,)=x,, 4to)=Yo. 
(2.1) 

With the usual trick, one may as well confine attention to the autonomous 
case when F is independent of t, so that Eq. (2.1) becomes 

F(x,i)=O, 

40) =x0, i(0) =y,. 
(2.2) 

Now, differentiating F(x, ci) = 0, one finds 

8,F(x,k)~++,,F(x,.?)j;-=O. (2.3) 

Setting i = y, we obtain 

(2.4) 
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Equations (2.3) and (2.4) being equivalent, any solution to (2.4) satisfying 
the initial condition x(O) = x0, y(O)( =-t(O)) =J’~ yields x such that 
F(x, -f) = F(x,, y. ) = 0, namely solves (2.2 ). 

Clearly, introducing the notation A’= (x, I’), Eq. (2.4) is one of the 
general form 

A(X)y= G(X), 
(2.5) 

.w) = x,1> 

where A and G are mappings from a neighborhood of X0 to Y(R”) and R”, 
respectively. When A is continuous and A(X,) is invertible, Eq. (2.5) 
is equivalent to the explicit differential equation X= A ~ ’ (X) G(X), 
X(0)=X,. However, in the only case of interest here when the mapping F 
above is such that a,F(x,, ,v~) $ Isom(R”), the corresponding matrix A(X,) 
is certainly not invertible. For notational convenience, we shall return to a 
lower case variable x and consider the problem of solving 

A( = G(x), 
(2.6) 

x(0) =x(), 

when A(x,) E Y(R”) is singular. 
Irrespective of the invertibility of A(x), one has 

(det A(x))Z= A(x)(adj A(x)) = (adj A(x)) A(x), (2.7 

where adj A(x) denotes the adjugate (transpose of the matrix of cofactors 
of A(x). From now on, we shall use the notation 

f(x) = det A(x), (2.8) 

C(x) = adj A(x). (2.9) 

Using (2.7), it follows that every solution to (2.6) is also a solution to 

f(x) i = C(x) G (x), 
(2.10) 

x(0) = xg, 

and f(xo) = 0 since A(x,) is singular. Conversely, every solution to (2.10) 
verifying f(x(t)) # 0 for (tl > 0 small enough is also a solution to (2.6). 
Setting 

ff(x) = C(x) G(x), 

we see that (2.10) is a special case of 

(2.11) 

.f(x) A= H(s), 

x(0) = xg, 
(2.12) 
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where f is a real-valued mapping from a neighborhood of x0 E R” satisfying 
f(xO) = 0, and H is a mapping from the same neighborhood of x0 with 
values in R”. Equation (2.12) will be referred to as the canonical form of the 
singular Eq. (2.6). 

For a generic function f E %:‘(R”, R) (possibly defined only on some open 
subset of R”) it never happens that bothfandf’ vanish simultaneously. In 
other words, a generic f does not have 0 as a critical value. Although we 
shall not need to restrict our theory to a generic function f, nevertheless 
this shows that the examination of Eq. (2.12) in the assumption 

f'(%)zo> (2.13) 

is of primary importance when f(xO ) = 0. Whenever f(x,, ) = 0 and (2.13) 
holds, we shall say that x0 is a noncritical singular point of Eq. (2.12). From 
the implicit function theorem, the set of singular points near a noncritical 
one is a hypersurface which, by continuity, consists only of noncritical 
points. Also, the null-space of the linear form ,f’(x,) at a noncritical 
singular point x0 is a hyperplane in R”. Then, for a generic choice of the 
mapping HE Vi(R”, R”) (restriction to %” mappings H is unnecessary at 
this stage, but will be needed later), one has 

f'txo) H(x,)+O. (2.14) 

We have found it convenient to call standard singular point of Eq. (2.12) a 
noncritical singular point for which (2.14) holds. A given Eq. (2.12) may 
perfectly have many singular points, none of whose is standard. But all of 
them become standard after replacing f and H by arbitrarily small pertur- 
bations. This statement remains essentially, but not completely, true when 
f and H are bound to have the form prescribed in (2.8) and (2.11), respec- 
tively. In other words, to justify the terminology introduced above, one 
must answer the question: How general is it to assume that the point x0 in 
Eq. (2.6) is a standard singular point of the canonical form (2.12)? To do 
this, one first needs to characterize standard singular points of the canoni- 
cal form (2.12) of Eq. (2.6) in terms of the data A and G. This is done in 

PROPOSITION 2.1. The point x0 is a standard singular point of the canoni- 
cal form (2.12) if and only if 

(i) dim Ker A(x,) = 1, 

(ii) (A’@, 1 e. 1 e. 4 Range 4x0 ), t/e, E Ker A(x,) - (0), 

(iii) G(x,) $ Range A(x,). 

ProoJ: Suppose that x0 is a standard singular point of the canonical 
form (2.12) of Eq. (2.6). Identifying ,4(x) with its columns a, (x), . . . , a,(x), 
one has 

f(x) = A(a, (x), ..., a,(x)), 

409,144,2-9 
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where /i is a n-linear antisymmetric form. Hence, for h E R” 

.f“(X) h = 1 A(u, (.K), . . . . u, ~, (x), u: (.K) 17, u, + , (x), . ..) u,, (-K)). 
I= I 

Since A(x,) is singular, at most (n - 1) columns are linearly independent 
for x = x0. On the other hand, if each of the n families of (n - 1) columns 
of A(x,) are linearly dependent, it is obvious from the above formula 
that f’(x,) = 0, a contradiction with x0 being noncritical. Hence rank 
A(x,)=n- 1, namely, dim Ker A(x,)= 1. Next, using (2.8) and (2.9), 
relation (2.7) reads 

f(x) I= A(x) C(x) = C(x) A(x). 

In particular, A(x,) C(x,,) = C(x,) A(x,) = 0. As C(x,) # 0 since one at 
least among the n* principal minors of ,4(x,) is nonzero, this yields 

Ker C( x0 ) = Range A (x0 ) and Range C(x, ) = Ker A ( x0 ). 

Now, the condition f’(x, ) H(x, ) # 0 requires H(x, ) # 0. But H(x, ) = 
C(x,) G(x, ) and hence G(x,) 4 Range A(x, ). Also, the former relation 
shows that H(x,) is a (nonzero) element of Ker A(x,). Differentiating the 
identityf(x) I= C(x) A(x), one finds 

(S’(x0 1 e0 ) I= (c(xo 1 eo) At-x0 ) + C(xo )(A’(x, ) e. 1. 

Thus, (f’(xo)eo)eo=C(xo)(A’(xo)eo)e, and hence (A’(xo)eo)eo~ 
Range A (x0 ) from f’(xo ) e, # 0. 

Conversely, if (i) of the proposition holds, then C(x,) has rank one with 
Ker C(x,) = Range A(x,) and Range C(x,) = Ker ,4(x,). Thus, H(x,) = 
C(x,) G(x,) is a nonzero element of KerA(x,) as soon as (iii) is 
satisfied. If so, one finds again (f’(x, ) e,) e, = C(xo)(A’(xo) e,) e, and 
f’(x,) #O from (ii) and Ker C(x,) = Range A(x,). 1 

From now on, we shall refer to x0 as being a standard singular point of 
Eq. (2.6) whenever conditions (i), (ii), and (iii) of Proposition 2.1 are 
fulfilled. This is of course equivalent to saying that x0 is a standard singular 
point of the canonical form (2.12) of Eq. (2.6). 

When Eq. (2.6) is derived from an equation of the form (2.2), namely 
A(x) and G(x) must be replaced by (x, y)-dependent families as indicated 
in (2.4), it is readily checked that conditions (i) through (iii) in Proposition 
2.1 are equivalent to 

dim Ker $,F(xo, y,) = 1, 

W’(xO~ Y,) et 4 Range $,.W,, Y, ), Veo E Ker d,J’(x,, Y, I- {O), 

M’(xo, Y, ) Y, 4 Range ~vf’(xot Y, 1. 
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Using this characterization and now turning to the case when Eq. (2.2) is 
derived from a nonautonomous equation as in (2.1), the above conditions 
become 

dim Ker $$(t,,, x0, yO) = 1, (2.15) 

J,.,,F(to, x~,Y,) ei+Rawe J,F(to, x~,Y~), 

~eo~KerJ,~(~o,xo,yo)-{O}, (2.16) 

J,~(~o~xo~~o)+J,~(~o~xo,~o)~o~RangeJ,.~(~o,xo,~o). (2.17) 

Note if F is independent of t that the previous conditions are recovered: no 
discrepancy is introduced by reducing Eq. (2.1) to the form (2.2). Also, if 
n = 1, the above conditions may be rewritten as being a,, F(t,, x0, yo) = 0, 
J,,.F(t,, x0, yo) Z 0 and J,F(to, x0, yo) + J,F(t,, x0, Y,) Y, Z 0. They 
characterize (to, x0, yo) as what is called a simple fold point in [6, 12, 161 
and a regular singular point in [2] (a rather inappropriate terminology 
suggesting a connection with Fuchs-Frobenius theory which does not 
exist). 

PROPOSITION 2.2. Suppose that F= F(t, x, y) is of class ‘Z2 and condi- 
tions (2.15) to (2.17) hold. Then, the R” x R-valued mapping 

(F, det c?,F) (2.18) 

has full rank at (to, x0, yo), so that the solutions to the system 

F(t, x, Y) = 0, 

det a,.F(t, x, y) = 0, 
(2.19) 

consist of a n-dimensional submanifold of R*” + ’ near (to, x0, y, ). Moreover, 
this manifold is diffeomorphic to its projection to the (t, x)-space, which is 
then a hypersurface A4 of R x R” containing (to, x0). 

Proof To prove that the Jacobian matrix of the mapping (2.18) at 
(to, x0, yo) has full rank n + 1, it is equivalent to show that its transpose 
has maximum rank n + 1, namely that 

[J,F(to, xo> yo )I T h + @ a,b(to, xo, YO I= 0, 

CJ.xF(to, xo, yo )I T h + 4~,4(to, xo, Y, )I T= 0, 

CJ,F(tot xo, YO 11’ h + 43,4(to, xo, YO )I’= 0, 

if and only if h = 0 E R” and tx = 0 E R, where we have set $(t. x, y) = 
det d,,F(t, x, y). 
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To see that cr=O, note that [8,&t,, .yO, ,,0)]’ 4 Range [d,.F(r,, xc,, ro)]’ 
= [Ker d,.F(r,, x0, yO)]‘. Otherwise, (7,,q5(to, x0, y,) e,, = 0 for every 
e, E Ker ?, F(to, x0, ,I’(, ). But this is impossible. Indeed, by definition of 4, 
one has 

(2.20) 

and adj a,,F(t,, x,,, y,) # 0 from (2.15). Hence 

Ker (a@ ~,f’(t,, x0, y. 1) = Range a,.F(r,, x0, Y, 1, 
(2.21) 

Range (a4 a,JYro, x0, Y, 1) = Ker &Oc,, x0, y. ). 

Differentiating (2.20) wrt y in the direction e, E Ker a,.F(t,, x0, y,) yields 
the relation 

(8,,4(f0, x0, y. 1 e. 1 e. = Cadj QYt,, x0, y. )I ~~,.~(~o, -x0, Y, 1 $I + 0, 

as soon as e, # 0 from (2.16) and (2.2 1). In particular, a,+( to, x0, y, ) e, # 0. 
Next, we must show that for PER”, one has [a,F(t,, ~~,y,)]~h = 

OER and [~.,~(to,xo,~o)]Th=[~~F(to,xo,yo)]Th=O~R” if and only 
if h = 0. These assumptions are equivalent to h being orthogonal to 
the vector a,F(t,, x0, y,) and to the spaces Range a,F(t,, x0, yo) 
and Range a?F(t,, x0, yo). In particular, h is orthogonal to the 
space Range a,P(t,, x0, yo) and to the vector d,F(t,, x0, yo) + 
a,F(t,, x0, yo)yo. But then, from (2.15) and (2.17), h is orthogonal to 
Range d,J’(ro, -yo, y. 1 0 wan {a2’(to, x0, I?~) + .f’(fo, x0, .Y~)Y~) = R”. 
This proves h = 0. 

From the above, the system (2.19) is solved through the implicit function 
theorem near the point (to, x0, yo). To complete the proof, it sufices to 
show that the tangent space to the solution set of (2.19) at (to, x0, yo) con- 
tains no “vertical” vector of the form (0, 0, h), h E R”. Equivalently, we must 
show that a,F(t,, x0, y,) h=O and ~?,,&t,, xo,yo) h =0 if and only if 
h = 0. The first equation means h = e, E Ker a,F(t,, x0, yo). The second 
equation ensures that e,=O since 8,&t,, x0, yo) e,#O for e,#O in 
Ker d,,F(t,, x0, y,) was seen earlier in the proof. i 

Regarding Eq. (2.1), Proposition 2.2 means that whenever (rot x0, y, ) 
with F(t,, x0, yo) = 0 is a standard singular point of the corresponding 
Eq. (2.6thenceforth abbreviated as standard singular point of 
Eq. (2.1 )-there is a hypersurface M through (to, x0 ) such that for each 
singular point (t, x, y) of (2.1) close enough to (to, x0, yo) one has 
(t, x) E M. Further, for each (t, n) E M, there is a unique y E R” such that 
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(t, x, y) is a singular point of (2.1) and (t, x, y) is close to (to, x0, yO). Of 
course, all the singular points close to (to, x0, y,) are standard, too. 

Remark 2.1. If F is independent of t, Proposition 2.2 remains obviously 
valid but the above interpretation regarding Eq. (2.2) may be slightly 
modified: the hypersurface M lies in R” (hence dim M = n - 1) and 
contains x0. In other words, the variable t can be eliminated from the 
statement. This is consistent with the origin in time being irrelevant in an 
autonomous system. 1 

For a generic F of class %‘“, it follows from Thorn’s transversality 
theorem and the usual stratification of the set of noninvertible n x n 
matrices (see Arnold [2] or Arnold et al. [3]) that the set of points 
(t, x, y) such that dim Ker 13,.F(t, x, y) = 1 is a manifold with dimension n 
(possibly a), all other singular points lying in manifolds with dimen- 
sion $ n - 3. Since the additional conditions (2.16) and (2.17) are satisfied 
unless (t,, x0, y, ) assumes exceptional values, standard singular points 
(and their projections onto the (t, x)-space) are the only ones to occupy a 
variety with dimension n, a fact whose importance was already explained 
in the Introduction. 

3. FURTHER REDUCTION IN THE NONCRITICAL CASE 

We now come back to the study of Eq. (2.6) or, equivalently, of its 
canonical form (2.12). Here, it is our purpose to show that another reduc- 
tion is possible when x0 is a noncritical point, not necessarily standard. 
However, the generic character of standard singular points stresses that 
solutions x(t) should be sought in ‘%‘([O, r]) n%“((O, T]), for if x0 is 
standard, the derivative 1(O) just cannot exist in view of the standing 
assumptions f’(x,) = 0 and f’(x,) H(x,) # 0. In other words, it is of 
primary importance to not require that the differential part of the 
Eq. (2.6)/(2.12) be satisfied at the singular point x0. For simplicity of nota- 
tion, [0, T] (resp. (0, T]) must be understood as [T, 0] (resp. [T, 0)) 
when TcO. 

A noncritical singular point x0 of Eq. (2.12) was defined to be one at 
which f’(x, ) # 0. Iff is %?‘, the zero set off near x0 coincides with a hyper- 
surface of R” through x0 as a result of the implicit function theorem. It is 
well known and incidentally straightforward to check that an equivalent 
version of the implicit function theorem asserts the existence of a local 
V1-diffeomorphism CD such that 

G(O) =x0, CD’(O) = z, (3.1) 
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and 

.f(@(-c:)) = I(-?), (3.2) 

for 2 on a neighborhood of the origin in R”, where I is the linear form 

1 =f’(xo ). (3.3) 

For x=@(Z) in (2.12), one finds 1(Z) @‘(,C).$= (Ho@)(Z), namely, 
l(Z) $= (G’(Z)))’ (Ho @)(a). The initial condition x(0) =x0 amounts to 
Z(O) = 0, so that Eq. (2.12) is equivalent to 

I(2) i = R(a), 
(3.4) 

I(0) = 0, 

where we have set 

II(Z) = (Q’(Z)) -’ (Ho Q)(T). (3.5) 

Obviously, the above transformation and its inverse preserve the 
regularity %?‘([O, 7’1) n%‘i((O, r]) of the solutions. Also, Eq. (3.4) is a 
special case of (2.12) where x,=0 is noncritical and f is linear. From 
(3.1), (3.3) and (3.5), it is immediate that the transformation of (2.12) into 
(3.4) and conversely preserves standard singular points, too. Another cru- 
cial notion which is preserved but still has to be defined at this time is that 
of transversal solution. Intuitively, a transversal solution should be one that 
intersects the zero set off transversely at x = x0. As the solutions typically 
are not 59’ at x0, an appropriate definition must be made, which is as 
follows 

DEFINITION 3.1. The solution XE%?‘([O, T])nV’((O, T]) to Eq. (2.12) 
is said to be transversal if 

(i) f’(x(t))$t)#O’for te(0, T] and ItI >O small enough, 

(ii) lim x(t) - x0 
r-0 .0X(f)) 

exists. 1 

Note from (i) in Definition 3.1 that f(x(t)) # 0 for t E (0, T] and It/ small 
enough. In particular, ‘(x(t) - x0 )/f (x( t)) is well defined in (ii). Also, this 
ensures, when (2.12) is the canonical form of (2.6), that a transversal solu- 
tion to (2.12) is a solution to (2.6) as well. Definition 3.1 can then be 
extended to equations having the form (2.6) provided that x0 is a noncriti- 
cal singular point. The interpretation is that such a solution intersects the 
set of singular points of A( ) transversely at x=x0. At first sight, it may 
not be clear that Definition 3.1 has this meaning. But consider the case 
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when x is a @?I function near x0: transversality is equivalent to 
x(0) # Kerf’( x0 ), namely, f’( x0 ) x(0) # 0, which guarantees (i). Also, 

x(t)--0 t.?(O) + o(t) 
.0x(t)) = tf’(xo 1 W) + o(t)’ 

tends to x(0)/“(xO) $0) as t tends to 0, which is (ii). Conversely, if x is W’ 
and transversal in the sense of Definition 3.1, thenf’(x,) x(0) # 0 from the 
above relation. 

The fact that the transformations from (2.12) to (3.4), and conversely, 
preserve transversal solutions deserves a proof, given in 

PROPOSITION 3.1. Assuming that x,, is a noncritical singular point of 
Eq. (2.12), the function x E V”( [0, T]) n W’((0, T]) is a transoersal solution 
if and only zy, with @ as in (3.1)-(3.2), 1 = @- ‘(x) is a transversal solution 
to (3.4).’ 

Proof: Assuming that x is transversal, we shall prove that I is transver- 
sal, too. The converse will follow by simply reversing the arguments. From 
(3.2), f(x(t))=l(@-‘(x(t)))=l(l(t)). H ence f’(x(t))i(t)=l($(t))#O for 
t E: (0, r], and ItI small enough. Next, using @‘(O)=Z (cf. (3.1)) write 

___ = @-‘(x(t)) = x(t) -x0 + 4 lb(t) - xoll ) 2(t) 
G(t)) fb(t)) fb(t)) . 

As limI-o(x(t)--o)lf(x(t)) exists by hypothesis, the term o( 11x( t) - x0 (I )/ 
f(x(t)) tends to 0 with t. This shows that 

-f(t) ’ -slim 
k l(T( t))= 

x(t) - x0 
r-0 f(x(t)) ' 

and the proof is complete. m 

Finding the transversal solutions to Eq. (3.4) can be done according to 
a procedure that we now explain. The general principle consists in arriving 
at a suitable splitting of the equation in two parts that can be solved 
successively. The technicalities are as follows: suppose that 
,7 E %?:“( [0, T] ) n ‘$?l((O, T] ) is a transversal solution to Eq. (3.4). Then, 
from l(i(t)) # 0 for t E (0, T] and I tl small enough, and after shrinking ) TI 
if necessary, the mapping 

t E [O, 7-1 + A(t) = l@(t)), (3.6) 

’ Of course, it is implicit that I7j is small enough for x(r) to lie on a neighborhood in which 
@-’ is a diffeomorphism. 
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is continuous and monotone, hence a homeomorphism of [0, r] to some 
interval [0, &] with (i”, 1 > 0 (again, [0, &,I must be understood as 
[&, 0] if 1,” < 0). Moreover, i, is a %’ diffeomorphism of (0, T) to (0, i,, ) 
since i.’ does not vanish on (0, r]. 

As j*(t) # 0 for t E (0, T), one may write 

I(t)=A(t)4;(t), (3.7) 

where jj~V?‘( [0, T]) n %“((O, r]). To see that j is continuous at the 
origin, recall that Z(t)/n(t) = a( t)/l(.Z(t)) has a limit as r tends to 0 from the 
hypothesis that R is transversal. Thus, in view of (3.6) and (3.7) 

U(f)) = 1, VrE [O, T-J. (3.8) 

From (3.7) and for ZE (0, T), it is obvious that k= Aj+ Aj. Therefore, 
the equation 1(Z) k = R(Z) may be rewritten as 

i%j + 12j = I?( ij). (3.9) 

At this stage, observe that the initial condition Z(O) = 0 is guaranteed by 
L(O)=0 and ME R”. On the other hand, one infers from (3.8) that 
1$(:(t)) = 0, for every t E (0, T]. Together with (3.8) and (3.9), this yields 

A% = I( A(@)). (3.10) 

A crucial point is now that the function A( . ) defined in (3.6) being a 
homeomorphism of [0, T] to [0, &] and a diffeomorphism of (0, 7’1 to 
(0, A,], one has 

Y(t) = C(4t)), (3.11) 

with 1? E V”( [0, Lo]) n ‘%“((O, io]). Upon differentiating (3.1 l), one gets 
,$= (&/dA) /I so that (3.9) may be rewritten as ni(il+ i dii/dA) = A(Z). 
But (3.10) and (3.11) give ni in terms of ;1 and ii(A), namely, 

2% = f(A(&)), (3.12) 

and hence 

A(hq ri+Ig=-+)=- f(H(lii))’ (3.13) 

While Eq. (3.12) goes along with the initial condition i(O)=O, no condi- 
tion except continuity is required of ii as in (3.13) at the origin. 

In summary, the problem of finding the transversal solutions to 
Eq. (2.12) when x0 is a noncritical singular point reduces to finding 
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the transversal solutions to Eq. (3.4). In turn, these solutions can be 
determined by splitting the problem into finding the solutions 
ii E V”( [0, A,]) n ‘Z’((O, 3Lo]) to Eq. (3.13) and, next, solving Eq. (3.12) for 
2 E G%‘( [0, r]) n 9?‘((0, ZJ) and initial condition 1(O) = 0. 

4. SOLUTIONS ABOUT STANDARD SINGULAR POINTS 

In this section, we shall take up the problem of solving Eq. (3.4) when 
0 is a standard singular point, namely [(A(O)) # 0. If so, the right-hand side 
of Eq. (3.13) is defined without ambiguity at the origin. Of course, our 
approach will be as summarized at the end of Section 3. 

Solving Eq. (3.13) is straightforward. Indeed, setting G(A) = C(A), one 
has, equivalently 

dt? R(C) 

z=i(@$ 

If Z? is of class %?’ (or, more generally, Lipschitz-continuous) near the 
origin and v”(0) is given, this equation has a unique solution 
CE%“([ -A,, io]) where A,>0 is small enough. But ii(A) = v”(A)/1 is 
continuous at the origin if and only if v”(0) = 0. Existence and uniqueness 
of a solution ii E V’“( [ -I,, A,]) to (3.13) follows. Obviously, ii is V’ away 
from the origin. Note also that ii(O) = (dG/dk)(O), namely 

With ii as has just been obtained, the next step consists in solving the 
equation 

nl= l(zT(iii(%))), 

l(O) = 0. 

Since this equation also reads 

$ (A’) = 2r(l7(qn))), (4.1) 

and from r(&O)) # 0, a solution I E V”( [0, r]) with T > 0 can only exist if 
/(i??(O)) > 0. Similarly, a continuous solution can exist for negative T only 
if [(R(O)) < 0. Therefore, the sign of /(if(O)) determines whether solutions 
must be sought over [0, T] with T> 0 or T< 0. In what follows, we shall 
assume !(J?(O)) > 0, so that solutions may exist on [0, T] with T> 0 only. 
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Since (4. I ) ensures that E.’ is necessarily a strictly increasing % ’ function 
on [0, r] it follows from 1(O) = 0 that i(t) is either positive or negative on 
(0, 7’1 (assuming T> 0 small enough). In other words, i(t) = (i.‘(t))” or 
i.(t) = - (i*(t))’ * on the entire interval [0, T]. Thus, the problem comes 
down to solving the equation 

/i=21(fi(f/P fi( +p' '))), 
(4.2) 

p(0) = 0. 

A solution 1= p’l2 (resp. E. = -p’!*) is obtained when the plus (resp. 
minus) sign is chosen in (4.2) and all the solutions 1 have this form. Exis- 
tence of at least one solution to Eq. (4.2), for either choice of sign in it, 
follows from the fact that the right-hand side is a continuous function of 
p E [0, ,B~] with cl0 > 0 small enough. More precisely, to make standard 
results available (see, e.g., [lo]), one may first extend the right-hand side 
of (4.2) for negative values of p by setting it equal to 21(R(O)). This does 
not affect continuity and one gets existence of a 65” solution defined on 
some neighborhood of the origin, which satisfies (4.2) for t > 0 from 
~(0) = 0 and b being positive near the origin. 

In general, continuity of the right-hand side of an explicit differential 
equation does not guarantee uniqueness of the solution. Uniqueness is 
standard only under hypotheses of local Lipschitz continuity which are not 
fulfilled by the right-hand side of (4.2). Showing that uniqueness is true 
here will then require a little extra work. Consider for instance the case 
when the plus sign is chosen in (4.2), namely p is characterized by 

li = a1 2)3 (4.3) 
P(O) = 0, 

with 

g(i) = f(R(h?(n))). (4.4) 

The function g is V’ near the origin as soon as A is Vi. Indeed, 1 is %7’ 
away from the origin and so is then g. Next, for ;i # 0 

(dg/dl)(l) = f(B(nii(n)) ~(~n(n)))/f(8(na(;l))), 

as is easily seen from ii solving Eq. (3.13). Thus, since 11 is continuous at 
the origin and from ii(O) = Z?(O)/l(A(O)), 

jiflo 2 (A) = @P(O) E7(0))/f(A(O)). 
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On the other hand, 

sEi(i)) ii(A) ds 
> 

. 

Thus, ii being continuous one finds, as desired 

lim f (g(L) -g(O)) = /(R,(O) ii(O)) 
1-o ” 

= l(R,(O) A(O))/l(A(O)). 

If pi and pz are two solutions to (4.3) defined on [0, r], and T>O is 
small enough for both p, ( . ) and p2 ( . ) to be positive and increasing on 
[0, T], it follows that 

l/J1 (1) - P*(f)1 G Cl s-y-, IP:‘*(s) - P:‘*m, (4.5) 

where C > 0 is a constant depending only on g’ that can be taken inde- 
pendent of T> 0 small enough. If p, and p2 do not coincide on [0, T], one 
has 

max \~~‘*(s)--~~‘*(s)~ = ~~~“(to)-~~~*(tO)~ >O, 
SE [O, T] (4.6) 

for some to E (0, T]. Taking t = to in (4.5) and using (4.6) one gets 

~~‘*(t0)+II:‘*(f0)~Cf0. (4.7) 

Now, from (4.3), it is clear that 

/Q(t) = Q(O) + 4th j= 1,2, 

for t E [IO, T] small enough. As g(0) > 0 by hypothesis, it can be assumed 
that T> 0 is so small as 

PjLi(f) +7(O). b’t~ [0, T]. 

In particular, for t = to and due to (4.7), one finds [2g(O)]‘/* tA’* < Ct,. As 
to > 0, this means t, > 2g(O)/C*. But to < T and a contradiction is reached 
provided that T is chosen according to T-c 2g(O)/C* in the first place 
(recall that C is independent of T > 0 small enough). Of course, g(0) # 0 is 
essential to uniqueness: g(1) = ,! yields an obvious counterexample to 
uniqueness in (4.3). 
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The above shows that any two solutions to (4.3) coincide on some inter- 
val [0, r] with T> 0. Then, they coincide as long as they are defined since 
the function ,g(p’,*) is locally Lipschitz continuous away from the origin. 
The same arguments obviously apply when the minus sign is chosen in 
(4.2). 

Regarding Eq. (3.4) with i? being % r and /(A(O)) # 0, we thus have that 
it possesses exactly two transversal2 solutions in @‘( [0, T]) n %T'((O, T]). 
both defined either for T > 0 or for T< 0 with / TI small enough. Moreover, 
whether T> 0 or T< 0 depends only on the sign of /(R(O)). The two 
solutions Z(t) are distinct, which follows from a(t) = I(r) G(I.(t)), and 
i(t) = A PI!‘(~) according to the choice for the sign in (4.2). Together with 
u”(0) = A(O)/l(fi(O)) #O, this shows that the two solutions a(t) start 
tangent to ii(O), but in opposite directions. Also, the derivative -i(t) blows 
up as t tends to 0. To see this, it suffices to show that /(k(r)) tends to 
infinity as t tends to 0. But this is obvious from f(k(t)) = i(t) (cf. (3.6)) and 
2i(t) i(t) = fi(t) with jb(0) = 0 and p solving Eq. (4.2) so that b(O) # 0. 
These results are summarized in 

THEOREM 4.1. Assume that R is class WI and Q&O)) # 0 (i.e. 0 is a 
standard singular point). Then, Eq. (3.4) has exactly two transversal solu- 
tions in 97’ ([0, T]) n W’((0, T]), both defined either for T> 0 or for T< 0 
depending onfy on the sign of /(R(O)), and with 1 TI > 0 small enough. These 
solutions are distinct and their derivatives blow up at t = 0. 

Figure 4.1 provides a schematic representation of the transversal solu- 
tions to Eq. (3.4) in the assumptions of Theorem 4.1. As usual, the arrows 
represent evolution in increasing time. 

To complete the study of Eq. (3.4) in the hypotheses of Theorem 4.1, it 
remains to examine whether nontransversal solutions may exist. A negative 
answer is given in 

THEOREM 4.2. In the assumptions of Theorem 4.1, Eq. (3.4) has no 
nontransversal solution C? E %“( [0, T] ) n %‘I( (0, T] ).’ 

Proof Let K E %?‘( [0, T]) n %“((O, T]) denote any solution of Eq. (3.4) 
with 1 TI > 0 arbitrarily small. According to Definition 3.1, one must first 
check that /(k(t)) # 0 for t # 0 and ) tI small enough. This is immediate from 
1(1)i = A(Z), yielding 

/(Z(t)) l($(t)) = l(A(,qt))), (4.8) 

* Recall that the procedure we have followed is justified for transversal solutions only. 
’ For any I TI > 0, but this is obvious from transversality being independent of the interval 

of definition. 
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(a) (b) 

FIG. 4.1. Transversal solutions of Eq. (3.4). 

and from /(R(O)) # 0. Proving that the limit 

lirn -f(t) 

t-0 l(Tqt))’ 
(4.9) 

necessarily exists requires slightly more sophisticated arguments. To begin 
with, (4.8) may be rewritten as 

f (I(3)’ = 21(8(a)) on (0, 77, 

so that (I(Z))’ is %’ on (0, T]. From sign considerations, it easily follows 
that (Z(Z(t)))*, hence Z(t), is defined only for t>O (resp. t<O) if 
/(A(O)) > 0 (resp. < 0). In the sequel, we assume I(A(O)) > 0. Therefore, 

&?(t)) = AZ (ii(t))“*, (4.10) 

where d is the W’ function of t E [0, T]( T> 0) 

ii(t) = j-‘2Z(&i(s))) ds. 
0 

If T is small enough, the function 6 is positive on (0, T] and strictly 
increasing. In particular, continuity requires the sign in (4.10) to be the 
same on the entire interval [0, T]. Suppose for instance that 

f(.qt))= (k(t))“‘, (4.11) 

so that the equation 1(Z) i= ii(a) may be rewritten as $= fi(+f)/&‘/*. Intro- 

ducing the function 

m= 
2@:(t)) 

&(t) 3 

defined and continuous on [0, T] with p(O) = H(O)/Z(A(O)), one has 

(4.12) 
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Hence, using (4. 1 

- 

I ), one finds 

Z(f) 
I(.?( t)) 

R(O) Z(l) 
i$qF)) 

=--B(O) 
(E(t))’ 2 

[/J(s) -J(O)] g (ii’ ‘)(.s) d.s. (4.13) 

In this formula, convergence of the integral ~;B(s) d/dt (E’ ‘)(.T) d.s is 
guaranteed by continuity of I at the origin since, from (4.12) 

f(t) -f(e) = /‘i?(s) ; (~2’ ‘)(.s) ds, 
f : 

for every E > 0 small enough. Since E, hence L?’ 2, is increasing on [0, T], 
relation (4.13) yields a fortiori 

T(t) R(O) 
I(n(t))-qgrj) 

so that existence of the limit in (4.9) (i.e. fi(O)/f(i7(0))) follows from 
continuity of B at the origin. The same conclusion is reached if ^ 
l(.f(t)) = - (.?(t))“L (compare with (4.11)) and also if /(R(O)) < 0. 1 

5. INTERPRETATION OF THE RESULTS 

Combining Proposition 3.1 and Theorems 4.1 and 4.2 immediately yields 
a statement regarding Eq. (2.6) when x0 is a standard singular point. 
However, this statement makes references to the sign of /(R(O)) where 
I=f’(.u,) and A(O) = H(x,) = C(x,) G(x,) with f(x) = det A(x) and 
C(x,) = adj A(x, ). The sign of [(R(O)) will now be determined in terms of 
the data in Eq. (2.6). Recall, as a result of x0 being a standard singular 
point, that H(x,) is a nonzero element o. of Ker A(x,) (cf. Section 2). 
Also, in the proof of Proposition 2.1, we obtained that f(e,) e,, = 
C(x,)(A’(x,) e,) eg. Hence 

w  4&O)) = wGWo )(A’(xo 1 e0 1 e0, e0) 

= sgn((.4’bo) eo) PO, C(xo )’ e. 1. 

Note that C(x,)*e, is a (nonzero) element e,* of Ker A(x,)? This follows 
from C(X,)~ being the adjugate of Am and dim Ker ,4(x,)‘= 1. In this 
notation 

en I(fi(O)) = sgn((A’(x,) e,) e,, e,* ). (5.1) 
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On the other hand, eo( = H(x,)) = C(x,) G(x,), so that 

(WO ), 4 I= (W. 1, W. )’ e. 1 

= (C(XO 1 G(xo he,) = (eo, eo) > 0. 

Using this, relation (5.1) is equivalent to 

sgn 4iftO)) = sgn(Gb, ), e,* )(A’(xo) e. ) e,, 4 1. (5.2) 

In this form, the right-hand side is independent of the nonzero elements e, 
and e,* of KerA(x,) and Ker Am, respectively, which can then be 
arbitrarily chosen. With this, we can now state 

THEOREM 5.1. Suppose that A and G are of class CC?’ and that x0 is a 
standard singular point. Then, Eq. (2.6) has exactly two solutions in 
W‘“( [0, T]) n %‘((O, T]), both defined for T> 0 or T-C 0 depending only on 
the sign of (G(x,), ez )((A’(x,) eo) eo, e,* ) where e, and e,* are arbitrary 
nonzero elements of Ker A(x,) and Ker Am, respectively, and provided 
that 1 TI > 0 is small enough. Moreover, these solutions are distinct and their 
derivatives blow up at t = 0. 

Recall that the conditions characterizing x0 as a standard singular point, 
expressed in terms of A and G, are listed in Proposition 2.1. Also, the 
solutions are defined for T> 0 (resp. T < 0) if (G(x,), e,* ) 
((A/(x,) e, ) e,, e,* ) > 0 (resp. < 0). The solutions can be pictured as in 
Fig. 4.1, except that 0 is replaced by x0 and Ker 1 by the hypersurface of 
singular points of A(x) near x0. The “tangent” line R&O) = RH(x,) = 
RC(x,) G(x,) has only to be shifted through x0. 

The constrast between the two diagrams in Fig. 5.1 is evident. On 
Fig. 5.1 (a), the point x0 cannot be reached in increasing time: no solution 
to (2.6) starting at any point will ever go through the “repelling” point x0 
at any later time. The same comment is true regarding every singular point 
near x0 since such a point is necessarily standard and the sign condition 
(G(x, ), ez )( (A’(x, ) eo) e,, e$ ) > 0 is unaffected by small variations of x0. 

(a) (bl 

FIG. 5.1. Solutions to Eq. (2.16) near a standard singular point. 
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This is because the one dimensional null-space varies smoothly with the 
standard singular point. While such points are harmless to evolution in 
positive time, just the opposite is true for those at which (G(x,,),P,* ) 
((A’(x,,) eo) r,,, e$ ) < 0. Indeed, any point on the solid trajectory pictured 
on Fig. 5.1 (b) will reach the “attracting” point .yg in finite time and cunnot 
continue beyond it. In practice, when Eq. (2.6) represents a mathematical 
model, this means that a “catastrophe” of some kind occurs as x,, is met 
and that, in any case, further evolution of the system is not governed by 
Eq. (2.6) alone. Again, the same conclusion is true if x0 is replaced by any 
neighboring singular point. The main consequence of this remark is that 
the set of those initial data for which the aforementioned “catastrophe” will 
happen at some later time (i.e. an “attracting” standard singular point like 
x0 will be met) is certainly not negligible. Moreover, since existence of 
standard singular points fulfilling the sign condition of Fig. 5.1 (b) is un- 
affected by small perturbations of A and G, their presence can only mean- 
assuming the model is accurate-that sudden and discontinuous 
phenomena must take place in finite time for a non negligible set of initial 
data. 

The above comments are valid in particular when Eq. (2.6) is derived 
from an equation such as (2.1). The condition ensuring that (to, x,,, yO) is 
a standard singular point are listed in (2.15), (2.16), and (2.17). An elemen- 
tary calculation shows that the corresponding discussion is based on the 
sign of the quantity 

- (J,:,.F(to, x0, yo) e&e,* )(J,F(to, x0, Y,) + J,F(t,, x0, Y,) yo, e,* 1, 

where e, and e,* denote arbitrary nonzero elements of Ker Z,P(t,, x0, vo) 
and [Range 8,. F( to, x0, y, )] c, respectively. 

Two things must be mentioned regarding the solutions to Eq. (2.1) near 
a standard singular point, which are not a priori evident from the reading 
of Theorem 5.1. First, FE %Y2 is required and the solutions obtained are of 
class %?’ on their interval of definition [to, I, + T). This is not in contra- 
diction with Theorem 5.1 since the variable x in (2.12) represents the 

(a) (b) 

FIG. 5.2. Solutions to Eq. (2.1) in the (I, x)-space. 
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triple (t, x, v), where y occupies the slot of the derivative i in Eq. (2.1). A 
solution x E V” ([IO, T]) thus means a solution (t, x, a) E 97’ ([to, to + T]) 
of Eq. (2.1). Accordingly, the component x is 97’ on [to, to + T] and 
g2 away from to, and its second derivative blows up at t = to. Next, 
Fig. 5.1 represents the curves (t, x(t), i(t)), so that (t, x(t)) is recovered 
after projection onto the (t, x)-space. This introduces a singularity, for 
the “tangent” line RH(x,) corresponds with the “vertical” line 
((0, O)} x Ker $F( to, x0, yo). This results in the diagram for (t, x(t)) 
having the shape of a semi-cubic parabola as indicated in Fig. 5.2 above, 
in agreement with what is known for n = 1. The manifold A4 is the same as 
in Proposition 2.2. The multiform character of the equation justifies that 
the trajectories intersect those emanating/terminating at nearby singular 
points. 

Above, we have emphasized the importance of the “attracting” standard 
singular points regarding evolution in increasing time. But it would be a 
mistake to underestimate the role of the “repelling” singular points in the 
dynamics. The following example is meant to duplicate the strange bifurca- 
tion-like phenomenon observed in a problem of metal forming by Hall and 
Rheinboldt already mentioned in the Introduction. The peculiar aspect is 
that trajectories originating at arbitrarily small perturbations of some 
symmetric initial condition all largely deviate from the symmetric trajectory 
after approximately the same time. A model equation exhibiting such a 
behavior is as follows. 

Consider the sytem in the two real variables x1,x2 

Xl =x1, 

2 
x2x2=x*+x,, 

which has the form required in (2.6) upon setting x = (x1 ,x2 ) and 

(5.3) 

) G(x)= . 

The singular points of this system are those with x2 = 0, i.e. the points of 
the x,-axis. Also, it is straightforward to check that all of them except the 
origin are standard and “repelling”. 

Now, associate with (5.3) the initial condition at t=O and the point 
(0, 6) of the x,-axis. The first equation yields x, (t) = 0 and the second one 
has the solution x2(t) = t + b. The corresponding trajectory is the half-line 
[b, cc) on the x,-axis. In particular, if b < 0, the origin is reached at time 
t = - b > 0, when the trajectory enters the upper half-plane and remains in 
it. 

Next, with b < 0 as above, associate with (5.3) the initial condition at 
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FIGURE 5.3 

t = 0 and the point (E, 6) with 1~1 > 0 arbitrarily small. The value of E is the 
only difference with the previous initial conditions. The first equation 
yields x1 (t) = se’. If E > 0 (resp. < 0), the point (x, (t), x2(t)) thus moves to 
the right (resp. left) of (E, b). Therefore, if the trajectory ever enters the 
upper half-plane, it must do so at a point of the x,-axis with /.K, 1 > E. But 
this is impossible from (x1 ,O) being a repelling point for x, # 0. As a result, 
the trajectory emanating at (E, h) remains in the lower half-plane irrespec- 
tive of E # 0. 

The examination of Fig. 5.3 above clearly shows why the phenomenon 
may be taken for a bifurcation-although it is not one-on the basis of 
numerical results. It also demonstrates that large discrepancies may be 
observed in finite time between an ideal and hence irrealistic situation and 
the slightest of its perturbation: the trajectory pictured on Fig. 5.3 that 
deviates from the vertical axis has been obtained with h = - 5 and 
E = 1op2. 

6. REMARKS ON THE INFINITE-DIMENSIONAL CASE 

Because our approach heavily relies on properties of determinants and 
adjugates, it seems that the method we have used previously cannot be 
extended to the infinite dimensional setting. Still, it is the purpose of this 
section to indicate how simple tools can be introduced that allow for an 
identical analysis. The key observation is that existence of determinants 
and adjugates was not used for arbitrary matrices, but only for those that 
are “close” to the matrix A(0). This may be exploited as follows: let X be 
a Banach space and A E Y(X) Fredholm with index zero. Then, one can 
find a neighborhood of A in Y(X) such that smooth (even analytic) 
mappings 

6: %+R, 

A: %-2’(X), 
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exist that generalize the notions of determinant and adjugate, respectively. 
This generalization possesses the property that, for BE %, one has 6(B) # 0 
if and only if B E Isom (X) and 

6(B) I= A(B) B= Bd(B), V BE%. 

The pair (6, A) is by no means unique and cannot be extended to the whole 
space .9’(X). To obtain a pair (6, A) as above, one can use decompositions 
X= X, 0 X,, X= Y, @ Y, where X, = Ker A, Y, = Range A, and X, and 
Y, are topological complements of X, and Y,, respectively. These decom- 
positions allow for a decomposition of BE 3(X) in the form 

B= (5:: Bg::) 
As B,, E Isom (X,,Y,) for B close enough to A in 9(X), appropriate 
choices for 6 and A are dictated by performing a “block LU decomposi- 
tion” of B under which B becomes block triangular. Details are omitted for 
brevity and will be presented elsewhere. As far as we are concerned here, 
the main properties of the pair (6, A) are 

dimKerA=loKerA=RangeA(A)andRangeA=KerA(A) 

(6.1) 

and 

dimKerA=lo6’(A)#O. (6.2) 

Going back to a parametrized family A(x) E .9(X) with x E X and A( . ) 
being %” near some point x0 such that ,4(x,) is Fredholm with index zero, 
consider a pair (6, A) as above associated with A = A(x,). For x near x0, 
one may then set 

f(x) = &A(x)). 

On the other hand, let G(x)EX with G being %?’ near x,,. Setting 

H(x) = 44x)) G(x), 

one can derive from (6.1) and (6.2) that the analog of Proposition 2.1 
holds, namely that f’(xo) H(x,) # 0 if and only if 

(i) dim Ker A(x,) = 1, 

(ii) (A’b, ) e,) e. 4 Range A(x, ), Ve,EKerA(x,)- {0}, 

(iii) G(x, ) $ Range A(x, ). 
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The above equivalence is all that is needed to extend the definition of 
standard singular points and to follow exactly the same procedure as in 
Sections 3 and 4 to generalize the results to the Banach space setting. 
Caution must only be exercised regarding genericity statements. Indeed, for 
one thing, genericity involves a notion of measure that does not exist on an 
infinite dimensional Banach space. This difficulty can be overcome (Smale’s 
density theorem; see Abraham and Robbin [ 11) but, still, other problems 
arise when one wants to speak of generic mappings between Banach spaces. 
However, the basic fact remains that standard singular points form a 
smooth hypersurface in X since the implicit function theorem is still 
available. 

The hypothesis A(x) E 2’(X) can be generalized to A(x) E 2(X, Y) with 
X and Y different Banach spaces, while G(x) E Y for consistency. This is 
immediate, for existence of a Fredholm operator with index zero between 
X and Y (i.e. A(x,)) guarantees that X and Y are isomorphic, and it is 
straightforward to check that none of the assumptions depends on the 
isomorphism used to identify X and Y. 
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