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We study the boundary value problem FI#’ = - A#, (I- P) d(O), P#(T) =O, where 
T= T*, A = A*, P2 = P, P*T= TP, T invertible. The motivation to consider such 
problem comes from the transport theory. The behavior of values of T for which 
there is a nontrivial solution (exceptional values) is investigated using the indicator 
function. This is an analytic hermitian valued function of the real parameter I which 
reflects, in particular, the characteristic properties of exceptional values. 0 1988 

Academic Press, Inc. 

1. INTRODUCTION 

Let T and A be linear bounded selfadjoint operators in a Hilbert space H 
such that Ker T= (0) and Z-A is compact. Denote by P, (P-) the 
orthogonal projection corresponding to the positive (negative) part of the 
spectrum of T (so that P+ T= TP,, P, + PM =Z, o(TIImp+)c [0, co), 
4 TI i,,, P_ ) c ( - co, 01). Consider the following boundary value problem: 

(V)‘(t) = -Ad(t) +f(t); o<t<2; (1.1) 

ji~P+40)=~+; l$P-qqt)=&; T > 0 is given. (1.2) 

Here f(t) is a given H-valued function of the real variable t; 4 + E Im P, 
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are given vectors. Concrete boundary value problems of type (l.l), (1.2) 
appear in the theory of radiation transfer and neutron transport (see, e.g., 
[2, 31). Abstract boundary value problems of type ( 1.1 ), (1.2) have been 
extensively studied recently (see [8, 111). For positive semidefinite A, it 
turns out that the problem (l.l), (1.2) has always a unique solution [8]. 
However, in the case A is not positive semidefinite, this is not always so 
(this case is physically meaningful and important; in the problem of 
radiation transfer, it reflects the presence of sources of radiation in the 
medium). So it is of interest to obtain information concerning those values 
of t for which the homogeneous boundary value problem 

(Td)‘(t) = -J@(t); o<t<q 

l$ p, d(t) = 0, ‘I’i P-d(t)=0 

(1.3) 

(1.4) 

has a nontrivial solution. 
In this paper, we shall consider the boundary value problem (1.3), (1.4) 

in the finite dimensional case (dim H< co). This case is important from the 
physical point of view (it appears in description of transport phenomena 
when only a finite number of scattering angles is feasible; see, e.g., [12]), 
and is, of course, much more tractable mathematically. We also believe 
that investigation of the finite dimensional case will help to understand 
better the infinite dimensional problem. 

In fact, we shall study here the more general problem 

T&(t) = -Ad(t), o<t<z 

(Z-P-) q+(O) = 0; P- qqT) = 0, 

(1.5) 

(1.6) 

where T and A are n x n hermitian matrices with invertible T, and P- is a 
projection (not necessarily orthogonal) such that PF T= TP_ . Clearly, 
(1.3), (1.4) (with finite dimensional H) is a particular case of (1.5), (1.6). 
The reason to consider the more general problem is that (1.5), (1.6) 
behaves well (i.e., transforms to a boundary value problem of the same 
type) under the transformation T+ S*TS, A -+ S*AS, P- + S-‘P- S with 
invertible S, while (1.3), (1.4) does not. 

The values of r( >O) for which there is a nontrivial solution to (1.5), 
(1.6) will be called exceptional values. Observe that for the nonexceptional 
values, the corresponding inhomogeneous problem is well posed. We shall 
show in Section 2 that there is an analytic (on the real variable t) hermitian 
value matrix function V(t) whose properties are intimately related to the 
properties of the exceptional values. In particular, the exceptional values 
are precisely the (real) zeros of det V(t). The function V(t) will be called 
the indicator of the problem (1.5) (1.6). Recently obtained results on per- 
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turbations of analytic hermitian matrix functions (see [6]), when applied 
to the indicator, allow us to obtain certain facts concerning the behavior of 
exceptional values under small perturbations of the initial data T, A, 
and P_. 

Of particular interest, motivated by the transport theory background, 
are cases when A is semidelinite, or A has only one negative eigenvalue. 
These cases are investigated in detail in Sections 3 and 4. Here we assume, 
in addition, that the subspace Im P- is maximal T-negative (which 
obviously holds in the boundary problem (1.3), (1.4)), and we take the full 
advantage of the possibility to apply the transformation T + S*TS, 
A+S*AS, P- -+ S-‘P-S. One of the obtained results, perhaps not 
unexpected, is that for positive semidelinite A, there are no exceptional 
values. The underlying reason is that in this case the indicator is negative 
definite for t = 0 and decreases monotonically for positive t. 

We shall use the notation diag(Z,, . . . . Z,) or Zi 0 Z, 0 . . . @Z, for the 
block diagonal matrix 

i z, 0 0 . . . z, 0 0 . . ... ... ‘.’ z 0 0 

I, stands for the m x m unit matrix. When convenient, n x m complex 
matrices will be considered as linear transformations @” + @” with the 
norm induced by the standard euclidean norms in @” and @“. 

2. THE INDICATOR 

Consider the problem (1.5), (1.6) where T and A are selfadjoint n x n 
matrices, Ker T= (0), and P- is a projection with P? T= TP_ . A number 
of r >O will be called exceptional if (1.5), (1.6) has a nonzero solution. 
Introduce the function 

k’(t)=P:[Te~‘~-‘~ ]P-:Im P- +Im P*. 

The function V(t) will be called the indicator of the boundary value 
problem ( 1.5), (1.6); it will play a crucial role in our analysis of exceptional 
points. Observe that V(0) is always invertible. 

The significance of the indicator is immediately seen from the following 
theorem. 

THEOREM 2.1. The number T > 0 is exceptional if and only if the indicator 
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V(t) is not invertible for t = t. Moreover, the dimension of the space of 
solutions of (1.5), (1.6) coincides with dim Ker V(z). 

Proof: The general solution of T@ = -Ati is d(t) = eP”-‘“4(O). 
Assume that d(t) satisfies also the boundary conditions (1.6). Then 

$(z)=e- 7Tm’AP_ d(O), 

so 

0= P-b(z)= Pp[e-‘T-lAP-] d(O), 

which is equivalent to 

0= TP-d(z)= TP-[e- 7=-‘AP-] d(O) = V(r) #I). (2.1) 

If 4(r) # 0, then P-&O) = 0, and (2.1) implies that V(r) is not invertible. 
Conversely, if V(z) is not invertible, then there is 4, in Im P- such that 
4, #O but V(z)q4+ =O. Then 

d(t) = e-tT-‘A#+ 

satisfies (1.5), (1.6) and is not identically zero. 
The above argument proves also the second statement of the 

theorem. u 

The following basic property of the indicator lies at the heart of our 
approach. 

THEOREM 2.2. Let fi, . . . . f, be an orthonormal basis in Im Pp. Then 
P* fi ) . ..) P? f, is a basis in Im P* , and with respect to these bases, the 
indicator V(t) is a hermitian matrix for all t > 0. 

Theorem 2.2 follows from a general statement on hermitian matrices and 
projections: 

PROPOSITION 2.3, Let B be a hermitian n x n matrix, and let P be a pro- 
jection. If f,, . . . . f, is an orthonormal basis in Im P, then P*f,, . . . . P*fp is a 
basis in Im P*, and with respect to these bases the linear transformation 
P*BP: Im P -+ Im P* is given by a hermitian matrix. 

Proof: If P*f,, . . . . P*f, were not a basis in Im P*, then (P*f, g) = 0 
for some g E Im P*, g # 0. So 

uj,pg>=o for j = 1, . . . . p 

and since fi, . . . . f, is a basis in Im P, this implies Pg = 0. We have obtained 
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a contradiction with the fact that Ker P and Im P* are orthogonal com- 
plements to each other. 

For the proof of the second part of the proposition, observe first that 
without loss of generality, we can assume that 

P= 
IO [ 1 x 0 (2.2) 

(Let us justify this step. Let g,, . . . . g, be a basis in C” such that g,, . . . . g, is 
a basis in Ker P and g,, 1, . . . . g, is a basis in Im P. Let h,, . . . . h, be the 
orthonormal basis obtained from g,, . . . . g, by Gram-Schmidt 
orthogonalization. In this basis, P has the form P = [g f]. Since P2 = P we 
have [i] B= [i], i.e., [i](B - I) = 0. Since Ker[f] = 0 it follows that 
B = I. Interchanging the order of the basis elements yields P = [ ‘, :I). Then 

Cfi, f2, . ..? f,l= [;I u, 

where U is an invertible matrix such that 

u*[Ix*] ;- 
[1 

u= z. 

Now, write 

B= B, =B:, B,=B: 

with respect to the same orthogonal partition of @” as in (2.2). Then 

P*BP[fi, . . . . hl=[ 
(B, +B,X+X*B,+XB,*X)U 

0 l- 
On the other hand, 

P*cfi,-, fJ=[ 
v+x;*x)u] = [ “‘0’1. 

So the matrix A = [a,]:j, i which represents P*BP with respect to the 
bases f 1, . . . . f, and P*f,, . . . . P*f, is defined by the equalities 

(B,+B,X+X*B:+X*B3X) 
0 



TRANSPORTTHEORYBOUNDARY VALUEPROBLEM 205 

where vi is thejth column in U. It follows that 

A=U*(B, +B,X+X*Bf+X*B,X)U, 

which is hermitian. 1 

The indicator is an analytic matrix function which is invertible at t = 0. 
Hence, the number of real zeros of its determinant (which are exactly the 
exceptional values) is either finite of countable, and in the latter case, the 
only accumulation point of the set of exceptional values is at infinity. A 
simple sufficient condition for finiteness of the number of exceptional values 
is that a11 eigenvalues of T-‘A be real. Indeed, in this case case it is easily 
seen that the determinant of the indicator V(t) is a linear combination of 
functions of the type tje- . Pt Let p0 be the smallest among the numbers ,n in 
the exponent of functions tjeep” which appear in det V(t) with a nonzero 
coefficient. Then 

P’det V(t)=p(t)+q(t), 

where p(t) is a polynomial, not identically zero, and q(t) is analytic and 
tends to zero as t goes to infinity. Now it is clear that the number of (real) 
zeros of det V(t) is finite. 

3. PERTURBATIONS OF EXCEPTIONAL VALUES 

Let V(t) be the indicator of the boundary value problem (IS), (1.6). 
Since V(t) is hermitian and analytic (as a function of the real variable t), by 
Rellich’s theorem (see, e.g., [9] or Chap. A.6 in [4]) there is a represen- 
tation 

PI(t) 0 
... U(t)-’ 0 /= . p*(t) . 
... 0 

0 V(t)= I U(t), (3.1) 

0 0 ... P,W 

where U(r) is an analytic matrix function of the real variable t which takes 
unitary values and pr(t), . . . . pP(t) are real analytic functions of t in Iw. 
Clearly, t > 0 is an exceptional point if and only if z is a zero of at least one 
of the functions ,~~(t). For a given exceptional value r let pi,(t), . . . . pi,(t) be 
all the functions among pl( t), . . . . p,(t) which vanish at r (here r = r(z) 
depends on 7). Denote by m, =ml(z), . . . . m, =m,(~) the positive integers 
defined by the equalities 

/p’(z) = 1 
0 for a=O, . . . . m,-- 1; 

‘q #O for a=m,. 
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The integers m,, . . . . m, are called the partial multiplicities of V(t) at r; their 
number r is exactly dim Ker V(z) which coincides with the dimension of 
the set of solutions of (1.5), (1.6). The signs E, =E~(z), . . . . E, =&Jr) (+l or 
- 1) of the nonzero real numbers pj;l)(r), . . . . am,“+) form the sign charac- 
teristic of V(t) at r. For more information and other descriptions of the 
sign characteristic of meromorphic hermitian matrix functions, see [5]. We 
shall need also the quantity 

S(T) = {i 1 1~ i < r, mi is odd, E; = + 1 } # 

-(iI l<i<r, miisodd,si=-I}“, (3.2) 

where by A # we denote the number of different elements in a finite set A. 
We use now the notions of partial multiplicities and sign characteristic in 

order to describe the behaviour of exceptional values under perturbations 
of the initial data (i.e., T, A, and P-.) of the boundary value problem. 

THEOREM 3.1. Let z be an exceptional value for the boundary value 
problem (1.5), (1.6), and let a < z < /? be positive real numbers such that T is 
the only exceptional value in (a, B). Then there is E > 0 with the following 
property. For every system 

F&(t) = -a$qt,, 
(I-i”-)qqO)=O, P_&)=O 

with 

(3.3) 

IIT- TII + IIA-AII + 1IP-m - Pp II <E 

the distinct exceptional values (tf any) ?,, . . . . ?,, of (3.3) in (a, 8) satisfy the 
inequality 

2 i S(?,)= sig V(B)-sig V(a), 
j=l 

(3.4) 

where S(z) is the quantity defined for (3.3) analogously to (3.2), and sig H 
denotes the signature (i.e., the difference between the number of positive 
eigenvaiues and the number of negative eigenvalues, counting multiplicities) 
of an invertible Hermitian matrix H. 

This theorem follows from a general result on perturbations of analytic 
hermitian matrix functions proved in [6, Theorem 2.11. 
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In particular, when sig V(b) # sig V(U), there is always an exceptional 
value for the perturbed system (3.3) in (~1, fl). However, if sig I’(a) = 
sig V(p), then the perturbed system may have no exceptional values in 
(~1, fl) at all, as the following example shows. 

EXAMPLE 3.1. Let 

Then, with respect to the orthonormal basis 

(with which we shall work throughout this example) we have 

~~ - fT-‘A = 

-,+; 2 -- t$ t2 
4 

L 
t2 4 
4 4 

I+, I 
Now for a complex number x with 1x1 # 1 let 

fl --x 01 
Pp =a 

L 
x -1x12 0 ) 

1 
a = (1 - IX12))‘. 

0 0 0 

One easily checks that PC = P_ and P? T = TP- . A straightforward com- 
putation shows that the indicator is 

V(t)= V(t,x)= a 
1+(x124 L 

f2+&tRex+jx12-1 1 
In particular, 

V(t, --I+&/+ -;(;-&)2, 
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and clearly, for any x with 

(Imx)2-(Rex)2- l>O 

the indicator V(r, x) has no real zeros. 

In the particular case when all partial multiplicities are equal to 1 (in 
such case we shall say that the exceptional value is simple) and all signs are 
the same, one can say more about the perturbed exceptional values. 

THEOREM 3.2. Let z be a simple exceptional value for (1.5), (1.6) and 
assume that the signs ~~(7) are all equal. Let (a, B) be a real positive interval 
such that r is the only exceptional value of (1.5), (1.6) in (a, /?). Then for 
E > 0 sufficiently small there are exactly dim Ker V(r) exceptional values for 
(3.3) in the interval (a, /?). Moreover, all these exceptional values are simple 
and the signs in their sign characteristics are all equal to the signs Ed. 

Theorem 3.2 is a particular case of Theorem 3.1. 
If one restricts the class of admissible perturbations of the data of the 

boundary value problem, then sometimes it is possible to obtain more 
precise information about the perturbed exceptional values than in 
Theorem 3.1. For example: 

THEOREM 3.3. Let t, a, /I be as in Theorem 3.1. Let B be a hermitian 
matrix such that 

AT- lB= BT-‘A (3.5) 

and Be-‘Tm’A is negative definite (note that (3.5) implies that BeeTT-lA is 
selfadjoint). Then for E > 0 small enough the exceptional values T,, . . . . z, (tf 
any) of the boundary value problem 

T&(t) = -(A + EB) d(t); (I-Pp)qqO)=O; P-4(z)=O (3.6) 

which are in the interval (a, p), enjoy the following properties: Each ~~ is a 
simple exceptional value whose signs in the sign characteristic are all + 1 tf 
tl < 7 and all - 1 $rj > T. The number of 7;s (counting multiplicities) which 
are smaller then z is exactly 

{j~mj(z)iseven;~j(~)=-1}~+(j~mj(~)isodd;~j(t)=+1}~. 

The number of z,‘s (counting multiplicities) which are bigger than T is exactly 

{j( mi(z)iseven;Ei(T)= -l}#+ {jl mj(z)isodd;Ej(t)= -l}“. 

An analogous result holds if Be- rT--‘A is assumed to be positive definite. 
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In this case “ + 1” and “ - 1” in the statement of Theorem 3.3 should be 
interchanged. 

Proof. Let F’,(t) be the indicator for (3.6). We claim that V,(r) - V(r) is 
positive definite for sufficiently small E > 0. Indeed, denote 

f(c) = Texp( -rT-‘(A + &)} 

Then 

f’(~)Ie=o = Te- IT-‘A( -zT-‘B) = -z~e-‘T-‘A, 

which is positive definite, and our claim follows. Now Theorem 3.3 follows 
from Theorem 5.1 in [6]. 1 

4. SEMIDEFINITE MATRIX A 

Throughout this and the next section, we consider the problem (1.5), 
(1.6) under the additional assumption that Im P- is a maximal T-negative 
subspace. This means that, denoting by ( ., . ) the standard inner product 
in C”, we have (TX, x) <O for every x in Im P- \{O) and that Im P- is a 
maximal subspace in @” with this property. Clearly, this is the case in the 
boundary value problem in transport theory, where Im P- is spanned by 
all the eigenvectors of T corresponding to negative eigenvalues. 

Note that the subspace Ker P- is maximal T-positive. Indeed, suppose x 
in Ker P- \{ 0) is such that ( TX, x ) d 0. Then, for all y in Im P _ we have 

(Tx,y)=(Tx,P-y)=(TP-x,y)=O, 

so 

for every z in Span{x, Im P_ }. This contradicts the assumption that 
Im P- is maximal T-negative (any subspace M c @” which is strictly bigger 
than a maximal T-negative subspace must contain a vector y with 
(Ty, y) > 0, see, e.g., Theorem Il.3 in [7]). 

Observe also that the indicator V(t) is negative definite for t = 0. 
In this section, we shall study the behavior of the indicator when the 

matrix A is semidefinite. The notation X2 Y (X> Y) for hermitian 
matrices X and Y means that X- Y is positive semidefinite (positive 
definite ). 
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THEOREM 4.1. Assume that A is positive semidefinite, and let V(t) be the 
indicator qf the boundary value problem (1.5), (1.6). Then 

V(h) 2 V(t1) for t, > t, >O. (4.1) 

In particular (taking into account that V(0) is negative definite), V(t) < 0 for 
all t > 0, and there are no exceptional values. 

For the case when P- is the spectral projection corresponding to the 
negative eigenvalues of T, the nonexistence of exceptional values is known, 
even in the inlinite dimensional case (see [ 81). 

ProoJ: Consider first the case when A is positive definite. Using the 
transformation T-r S*TS, A -+ S*AS, P- + S- ‘P- S, we can assume that 

T= 
-Ik 0 [ I 0 I,’ 

A = diag(l,, . . . . A,), 

where Aj are positive numbers and k + I= n (indeed, since A is positive 
definite, T and A are simultaneously diagonalizable). The conditions that 
Im P- is maximal T-negative and Ker P- is maximal T-positive translates 
into 

Im P- =Im 
I [I x’ Ker P- = Im 

where X and Y are contractions: llXl[ < 1, 11 YII < 1. Then 

I 
Imp* =Im -y* , [ 1 

The condition PT T= TP- means Y = X*. Now 

T~-‘T-‘A = Q,(t) 0 

0 1 Q*(t) ’ 

where 

Q,(t) = diag( -e’“l, . . . . -e’““), 

Q2(t) = diag(e-‘“k+l, . . . . e-‘“n), 

(4.2) 

and (up to a congruence by a constant matrix) we have 

V(t) = Q,(t) + X*QAt)X 
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(cf. the proof of Proposition 2.3). The derivative 

V’(t) = diag( - A1 e”l, .,., --J,c?“~) 

+ X*diag( --Ak+ ,c’“~+I, . . . . -A,e-‘““)X 

is clearly negative definite, and (4.1) is proved. 
Assume now A is positive semidefinite but singular. Let {A,,,}:= 1 be a 

sequence of positive definite matrices such that A, --) A as m + co, and let 
V,,,(t) be the indicator of the problem (1.5), (1.6) with A replaced by A,. 
By the already proved part of the theorem, (4.1) holds with V replaced by 
V,. Taking into account that lim,, ~ V,(t) = V(t) for every t >, 0, the 
inequality (4.1) follows. 1 

The case when A is negative semidefinite is more complicated. We start 
the analysis assuming first that A is negative definite. 

THEOREM 4.2. Assume that A < 0, and let v = min(k, I), where k is the 
number of negative eigenvalues of T and I is the number of positive eigen- 
values of T (counting multiplicities). Then the derivative V’(t) of the indicator 
V(t) is positive definite. Moreover, there are not more than v positive zeros of 
det V(t) (counted with multiplicities), and all partial multiplicities of V(t) at 
any exceptional value are equal to 1 with the signs in the sign characteristic 
all being + 1. 

Proof Arguing as in the proof of Theorem 4.1, we have (up to con- 
gruence by a constant matrix) 

V(t) = Ql(t, + x*Qz(t)X 

where /IX11 < 1, 

Q,(t)=diag(-e”‘, . . . . -e’lk), 

Q(t) = diag(e-“k+‘, . . . . e”“), 

and all numbers lj are negative. Because of the latter condition, V’(t) > 0 
for all real t. Now use formula (3.1), and let r be an exceptional value so 
that pi(r)=0 for some i. Let y(t) be the ith column of U(t)-‘; then 
V(z) y(r) = 0. On the other hand, 

Pi(t) = (V(t) Y(t)> Y(l)> 

and consequently 

/4(z) = (V(t) Y(T), Y’(T)> + (V(t) Y(T), Y(T)> 

+ (V(t) Y’(T), Y(T)> = <V’(z) Y(r), Y(T)> >o. 
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It remains to prove that det V(t) has not more than v positive zeros. 
When t -+ cc we have 

and 

(recall that all ij are negative). Hence, F’(t) has exactly rank X positive 
eigenvalues for t large. Taking into account that pi(r) > 0 for every excep- 
tional value z such that ,D((z) = 0, it follows that det V(t) has exactly rank 
X positive zeros. But rank X,< v, and our assertion follows. 1 

COROLLARY 4.3. Assume A is negative dejkite. Then there is E > 0 such 
that for every system 

Tqr(t)= -&(t); (z-P~)qqo)=O;~~fqt)=O (4.3) 

with 

~=~‘*,J&pJ~ =p, pT’=p 

and 

the number of exceptional values of (4.3) ( counted with multiplicities) is not 
smaller than the number of exceptional values of (1.5), (1.6) (also counted 
with multiplicities). Moreover, all exceptional values of (4.3) are simple with 
all the signs + 1 in the sign characteristic. 

Proof: Combine Theorems 4.2 and 3.2. 1 

It can happen that the number of exceptional values for (4.3) is bigger 
than that of (1.5), (1.6) (for instance, let 

T=T= A” = A = diag(i,, . . . . A.,) 

with Aj < 0, 

Z 
ImP-=Im o, [I Z 

ImP- =Im x [I 
with XfO and (/X(1 small). In such case the new exceptional values are 
“coming from infinity.” 
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The case when A is negative semidefinite is more complicated. Some 
results will be summarized in the next theorem. 

THEOREM 4.4. Assume that A is negative semidefinite and singular. Let v 
and V(t) be as in Theorem 4.2. Then V’(t) B 0 for t > 0. If, in addition, at 
least one of the following conditions is satisfied: 

(i) V’(t)>0 for t>O; 
(ii) Ker A is T-negative; 
(iii) Ker A is T-positive; 

then ait the exceptional values are simple with all signs + 1 in the sign 
characteristic, and the total number of exceptional values (counted with mul- 
tiplicities) does not exceed v. 

Proof The inequality V’(t) >/ 0 follows by considering a sequence of 
negative definite matrices {A,}:= 1 which converges to A and using the 
result of Theorem 4.2 (cf. the proof of Theorem 4.1). If (i) holds, then the 
conclusion follows by repeating the proof of Theorem 4.2. 

Consider the case when either (ii) or (iii) holds. Using the transfor- 
mation T-,S*TS, A+ S*AS, P- -+S-’ P- S with invertible S, and using 
the canonical form for a pair of hermitian matrices (see, e.g., [lo], also 
[4,7]), we can assume that 

T= A = diag(h, . . . . L ply . . . . P,), 

where in the case (ii) holds we have A1 = . . = A,, = 0 for some p <k and 
1”; < 0 for p < id k and pi < 0 for 1 d i G 1, while in the case (iii) holds we 
have~,=...=~~=Oforsomep<Iand~i<Ofor1di~kand~i<Ofor 
p<i<I. Now, 

V(t) = diag( -e’“l, . . . . -erLk) + X*diag(e-“‘I, . . . . eP’P’)X, 

so in the case (iii) holds we obtain V’(t)>0 for all real t, and the con- 
clusion follows. Assume now (ii) holds. Let 

0 
M=ImX*+Im I,~, L I c c?; 

then with respect to the orthogonal decomposition Ck = A4’- 0 M we have 

v(t)=[; &]? V’w=[; &,l’ 
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where V,(t) >O for t > 0. Applying the arguments of the proof of 
Theorem 4.2 to V,(t) rather than to V(t) we obtain Theorem 4.4. m 

It should be noted that for a negative semidefinite A it can happen that 
Ker A is neither T-positive nor T-negative (this case is not covered by 
Theorem 4.4). The canonical form for a pair of hermitian matrices shows 
that Ker A is T-definite (either T-positive or T-negative) for a negative 
semidefinite A if and only if TP ‘A is diagonalizable. 

In any case, if A is negative semidefinite, then T- ‘A has only real eigen- 
values and hence, the number of exceptional values is finite (cf. the remark 
at the end of Section 2). 

5. THE MATRIX A HAS ONE NEGATIVE EIGENVALUE 

Here, we study behavior of the indicator in the case when A is non- 
singular and has only one negative eigenvalue (counting with mul- 
tiplicities). This case is important in applications (transport in supercritical 
media; see, e.g., [ 11). We start with general information (which follows 
from the canonical form for a pair of hermitian matrices [ 10,4, 71) about 
the eigenvalues of T-IA when A is nonsingular and has only one negative 
eigenvalue. T-IA may be diagonalizable or not. If TP’A is diagonaiizable, 
then all its eigenvalues, with the possible exception of two (counting with 
multiplicities) nonreal mutually conjugate eigenvalues, are real. If TP’A is 
not diagonalizable, then all its eigenvalues are real and there is precisely 
one Jordan block in the Jordan form of T- ‘A of size bigger than 1. The 
size of this exceptional Jordan block is either 2 or 3, and in the latter case it 
must correspond to a positive eigenvalue. Let x,, . . . . xy be a Jordan chain 
of TP ‘A corresponding to a real eigenvalue & : 

(T-‘A-i,Z)x, =O; Xl #O; (T-IA-&Z)x, =xu_,, u = 2, . ..) q. 

(In view of the previous discussion q < 3.) If this chain is maximal, i.e., 
there is no vector xy+ , such that x1, . . . . xy+ , is also a Jordan chain of 
T-IA corresponding to A,, then (TX,, x,) = 0 for r = 1, . . . . q - 1 and 
<TX,> x4) is a nonzero real number. 

This information is taken into account in the following statement. The 
number of positive eigenvalues of V(t) (as a hermitian matrix for every 
fixed t) is always considered with multiplicities counted. 

THEOREM 5.1. Assume A is nonsingular with precisely one negative eigen- 
value, and let V(t) he the indicator of (1.5) (1.6). 
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(i) Assume that x,, x2 is a maximal Jordan chain of T- ‘A 
(necessarily corresponding to a reul eigenvalue) and 

<TX,, x,)>O. 

Then V(t) has at most one positive eigenvalue for ta2 and at most two 
positive eigenvalues for 0 d t -c 2. 

(ii) Assume that x, , x2 is a maximal Jordan chain of T- ‘A and 
(TX,, xz) < 0. Then V(t) has at most one positive eigenvalue for 0 < t d 2 
and at most two positive eigenvalues for t > 2. 

(iii) Assume that T-IA has a nonreal eigenvalue p. If Rep>0 then 
V(t) has ut most one positive eigenvalue. If Re u < 0 then V(t) has at most 
two positive eigenvalues (for t > 0). 

(iv) Assume that T- ‘A is diagonable with all eigenvalues real. Then 
V(t) has at most one positive eigenvalue. 

(v) Assume that x,, x2, x, is a maximal Jordan chain of T- ‘A 
(necessarily corresponding to a real eigenvalue) and ( TX,, x3) > 0. Then 
V(t) has at most one positive eigenvalue (t > 0). 

(vi) Assume that x,, x2, x, is a maximal Jordan chain of T- ‘A and 
<TX,, x3 > < 0. Then V(t) has at most two positive eigenvalues for t < 2 and 
at most one positive eigenvalue for t 2 2. 

Before we proceed to the proof of Theorem 5.1 (which amounts basically 
to checking each case by reducing first T, A to the canonical form for a 
pair of hermitian matrices) let us indicate how Theorem 5.1 can be used to 
derive information on the exceptional values. For this, we need the follow- 
ing proposition (where A = A* is not necessarily nonsingular with one 
negative eigenvalue). 

PROPOSITION 5.2. Let V(t) be the indicator for (1.5), (1.6) and suppose 
that for each t in an interval (a, b) the hermitian matrix V(t) has at most k 
positive eigenvalues. Assume that there are at least k + 1 odd partial 
multiplicities of V(t) with same sign E in the sign characteristic corresponding 
to some exceptional values in the interval (a, b). Then there must be an odd 
partial multiplicity of V(t) corresponding to an exceptional value in (a, b) 
whose sign in the sign characteristic is -E. 

ProoJ: Arguing by contradiction, assume that the required partial mul- 
tiplicity is absent. Consider the representation (3.1) of V(t). Then the eigen- 
values of V(t) are the numbers pi(t), i= 1, . . . . p. Due to the fact that the 
required partial multiplicity is absent, there is a point t in (c(, B) for which 
V(t) has at least k + 1 positive eigenvalues. This contradicts our 
hypothesis. 1 
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Combining Theorem 5.1 and Proposition 5.2, we obtain certain infor- 
mation about exceptional points in case A is nonsingular with one negative 
eigenvalue. Note also that in cases (i), (ii), (iv), (v), (vi) (but not 
necessarily in the case (iii)) of Theorem 5.1, the number of exceptional 
points is finite. 

The rest of this section is devoted to the proof of Theorem 5.1. 

Proof of Theorem 5.1. Cases (i) and (ii). Using the canonical form for a 
pair of hermitian matrices [ 10,4, 71, we can assume that 

where E = 1 (in case (i)) and E = - 1 (in case (ii)), the numbers ij and vj are 
positive, and p is a nonzero real number. Then 

Write Te-‘T-‘A in the following orthonormal basis in C”: The first k vec- 
tors in the basis are the standard ones e,, . . . . ek (here and in the sequel 
eq = [0, . . . . 1, 0, . . . . 01’ with 1 on the qth place); the next two vectors are 
(ll&)ek+, - (d&)ek+,, (l/,b’kk+l + (E/&‘)e,+,; the last 1 vectors 
are the standard ones e,-,+ , , . . . . e,. Then in this basis T has the form 
[ ;’ ‘j] and TeptTmIA has the form 

@,-w @3 . . @ e ~ I”‘. 

As in the proof of Theorem 4.1, write 

Im Pp =Im 
I 

[1 x’ IIW < 1, 

and then (up to congruence by a constant matrix) 
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where K is the (I + 1) x (k + 1) matrix with the upper right corner 
c(t/2)eC”p and zeros elsewhere. Observe that X* K + K* X = Eepfep( t/2) B, 
where 

x1 
0 

B= xk 

x, ...Xk xk+l +tk+, 

and [x,, . . . . xk+ 1]T is the first column of X. So 

where 

It will be convenient to rewrite V(t) in the form 

V(t) = 0, + X*Q2X+ C, 

where 

&, = -eil’@ . . . @ -e”“‘@ -1 

and 

Consider two cases: 

(1) s=l. Then Q, d-Z for all t>,O and Q24Z for t&2. So 
Q, + X*Q,X< 0 for all t > 2. Since C has at most one positive eigenvalue, 
it follows that V(t) has at most one positive eigenvalue for t 3 2. 

(2) s=-l.Asb f eore,&,<-Zforallt>O.NowQ,<Zfort<2.So 
V(t) has at most one positive eigenvalue for I d 2. 

To cover the remaining values of t write 

V(t) = Q, + x*&x+ c+ x*zlx, 
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where 

Qz =OQep’“!Q . . . Qe-‘“f, 

and 

Clearly, C+ X*DX has at most two positive eigenvalues, and 
0, +X*&,X is negative definite. So V(t) has at most two positive eigen- 
values. 

Consider the case (iii). Using the canonical form again, we can assume 
that 

T= -I, Q A=L, @ ... 02, @ Qv, Q ... Qv,, 

where Aji, vi are positive and p is nonreal. Then 

~~-1T-b = _ e%I’Q . . . Q -e’k’Q [eo’p e,‘“] _ Qe-‘“IQ . . . Qep’“‘. 

Passing to a new basis, as in the cases (i) and (ii), we obtain 

Te-‘T-IA = -e”l*Q . . . Q -e”k’Q 
-i(u+U) i(U-U) 

i(u-ii) f(u+ii) I 

where u = e -l/1. Write V(t) in the form 

V(t)=Q, +X*Q2X+X*K+K*X+(OQ . ..@O@(-+(~+ii)+l)). 

where 

Ql = -e’l’Q . . . Q -e”k’Q -1; 

Q2 =,-rReti cos(t Im p)@e-‘“I@3 ... @e-‘“‘; 

and K is the (I + 1) x (k + 1) matrix with the right upper corner f (u - U) 
and zeros elsewhere. If Re p 2 0, then the conclusion is that V(t) has at 
most one positive eigenvalue. If Re p < 0, then V(t) has at most two 
positive eigenvalues. 

Case (iv). Here we can assume 

T= -I, QI,, A=L, 0 ... O/2,@&+, 0 ... @I&+,, 
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where Aj are nonzero real numbers and precisely one of them is negative. 
We leave the verification of this case to the reader. 

Cases (v) and (vi). Here we can assume 

0 0 1 
T=-I,@& 0 1 0 @I,, [ 1 1 0 0 0 0 P A=& @ ... O&O 0 p 1 @v,O . ..ov. [ 1 P 1 0 

where Lj, vi, and p are positive and E = f 1. Applying similar ideas, as in 
the cases (i)-(iii), we pass to a new basis given as follows: The first k, last 1, 
and the (k+ 2)th vector are the standard ones, the (k+ 1)th and (k+ 3)th 
given by 

[ 
0 ,..., O,-$,O,$,O ,..., O]T and [0 ,..., 0,s,O,$,O ,..., Or, 

respectively, where the first k and the last I coordinates are zeros. 
In this basis, we have 

T= -Ik+, OEOI,,~ 

and 

If E = + 1 (i.e., the case (v) holds) we have 

V(t)=Q,(t)+X*Q2(t)X+X*K+K*X, 

where 

Ql(t) = -e”‘@ . . . @ -eik’@e-*p (-l+;P). 
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and 

K= 

0 . . . 0 Ite-‘” 
Jz 

0 . 0 +-w 

0 ... 0 0 . 

Writing V(t) in the form 0, +X*0,X+ X*K+X* DX+b, where 

Q, = -eh’e . . 0 -e”i~~ -e-w, 

ij=O+p, 

D= 

we see that 0, +X*&,X< 0. Further, 

X*K+K*X+X*DX+b= [IX*, [; ;][;I. 

Now, we have (ignoring zero rows and columns) 

b K* 
K D 1 =e f@ 

’ -t 2 

4 
St +: 

$t 0 -+ 

1 
-- t2 

1 1 
4 

-7=t - t2 
d.2 4 
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and a computation shows that [{ T ] has exactly one positive eigenvalue. 
Then V(t) has at most one positive eigenvalue. If c = - 1, we obtain 

V(t) = Q,(f) +X*&(t)X+ X*K+ K*X+ B, 

where 

Q2 =(I -~t2)eQ‘@e m”l’@ . . . @e-““, 

and K is the (1+ 1) x (k + 2) matrix whose right upper corner is -d t2e’{’ 
and zeros elsewhere. 

Now Q,(r)< -1, Q2(f)<Z for t>2, and X*K+K*X+d has at most 
one positive eigenvalue. So for t 3 2, V(t) has at most one positive eigen- 
value. 

Next, rewrite 

where 

l’(t) = Q,(t) + X*e,(t)X+ X*K+ KX+ ij + X*0X, (5.1) 

Q2(f)= -ft2e’~@e-Yl’@ . . . @ep”f’ 

and 

It is easily seen from (5.1) that V(t) has at most two positive eigenvalues 
for O<t<2. 1 
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