JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 106, 180–183 (1985)

On Fourier Transforms of Functions Supported on Sets of Finite Lebesgue Measure

MICHAEL BENEDICKS

Department of Mathematics, Royal Institute of Technology, S-100 44 Stockholm 70, Sweden

Submitted by R. P. Boas

Let G be a locally compact abelian group and \hat{G} its dual group. Denote the Haar measure on G and \hat{G} by m and \hat{m} , respectively. In the paper by Matolcsi and Szücs [3] the following theorem is proved:

THEOREM 1. Let $f \in L^1(G)$ and \hat{f} be its Fourier transform

$$\hat{f}(\gamma) = \int_{G} (-x, \gamma) f(x) \, dm(x),$$

where $(x, \gamma) = \gamma(x)$ establishes the duality between G and \hat{G} . Let $A = \{x \in G; f(x) \neq 0\}$ and $B = \{\gamma \in \hat{G}; \hat{f}(\gamma) \neq 0\}$. Then

 $m(A) \cdot \hat{m}(B) < 1 \implies f = 0$ a.e. |m|.

The intention of this note is to improve this result in the case $G = \mathbb{R}^n$, $\hat{G} = \hat{\mathbb{R}}^n$. For $f \in L^1(\mathbb{R}^n)$, the Fourier transform of f can be written

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-i\langle x,\xi\rangle} dx, \qquad \xi \in \hat{\mathbb{R}}^n,$$

where $\langle x, \xi \rangle = x_1 \xi_1 + \dots + x_n \xi_n$.

Our main result is:

THEOREM 2. Let $f \in L^1(\mathbb{R}^n)$ and \hat{f} be its Fourier transform, and let $A = \{x \in \mathbb{R}^n; f(x) \neq 0\}$ and $B = \{\xi \in \hat{\mathbb{R}}^n; \hat{f}(\xi) \neq 0\}$. Then

$$m(A) < \infty$$
 and $\hat{m}(B) < \infty \Rightarrow f = 0$ a.e. $[m]$.

Here m and \hat{m} denote Lebesgue measure on \mathbb{R}^n resp. $\hat{\mathbb{R}}^n$.

Proof. Without loss of generality we can assume $m(A) < (2\pi)^n$, since we can replace the function f by its dilatation $f_a(x) = f(ax)$. Its Fourier

transform is $\hat{f}_a(\xi) = (1/a^n)\hat{f}(\xi/a)$, so $\hat{m}(B)$ will remain finite. Let $\varphi(\xi)$ be the characteristic function of B, i.e.,

$$arphi(\xi) = egin{cases} 1 & ext{if} \quad \xi \in B \ 0 & ext{if} \quad \xi \notin B. \end{cases}$$

Form the function

$$\tilde{\varphi}(\xi) = \sum_{v \in \mathbb{Z}^n} \varphi(\xi - v).$$

The function $\tilde{\varphi}$ clearly is positive, measurable and periodic with period 1. Let $K = \{\xi \in \widehat{\mathbb{R}}^n; 0 \leq \xi_i \leq 1, i = 1, 2, ..., n\}$. Then

$$\int_{K} \tilde{\varphi}(\xi) d\xi = \int_{\hat{\gamma}_n} \varphi(\xi) d\xi = \hat{m}(B) < \infty.$$

This implies that $\tilde{\varphi}(\xi) < \infty$ a.e., i.e., for almost all ξ_0 , $\varphi(\xi_0 + k) \neq 0$ only for a finite number of $k \in \mathbb{Z}^n$ and consequently:

(I) for almost all $\xi_0 \in \widehat{\mathbb{R}}^n$, $\widehat{f}(\xi_0 + k) \neq 0$ only for a finite number of $k \in \mathbb{Z}^n$.

Fix $\xi_0 \in \hat{\mathbb{R}}^n$ and form the function

$$\tilde{f}_{\xi_0}(x) = \sum_{v \in \mathbb{Z}^n} e^{-i\langle \xi_0, x - 2\pi v \rangle} f(x - 2\pi v).$$

 \tilde{f}_{ξ_0} has the following properties:

(i) $\tilde{f}_{\xi_0} \in L^1(\Gamma^n)$, \mathbb{T}^n being the *n*-torus $\mathbb{T}^n = \mathbb{R}^n/2\pi\mathbb{Z}^n$;

(ii) \tilde{f}_{t_0} has the Fourier coefficients

$$(\tilde{f}_{\xi_0})(k) = (1/(2\pi)^n) \hat{f}(\xi_0 + k), \qquad k \in \mathbb{Z}^n;$$

(iii) $m(\{x \in [n]; \tilde{f}_{\xi_0}(x) \neq 0\}) < (2\pi)^n.$

(i) easily follows from $f \in L^1(\mathbb{R}^n)$, (ii) is the result of a simple computation and (iii) is an immediate consequence of $m(A) < (2\pi)^n$.

Together (I) and (ii) show that for almost all $\xi_0 \in \mathbb{R}^n$, \tilde{f}_{ξ_0} is a trigonometrical polynomial. But now (iii) implies that $\tilde{f}_{\xi_0} = 0$ a.e., since a non-null trigonometrical polynomial certainly cannot be zero on a set of positive measure. It follows that for almost all ξ_0 , $\hat{f}(\xi_0 + k) = 0$ for all $k \in \mathbb{Z}^n$, i.e., $\hat{f} = 0$ a.e. By the uniqueness theorem for the Fourier transform f = 0 a.e. and the proof of the theorem is complete.

Note that the sets A and B are not the supports of f resp. \hat{f} in the sense of distribution theory. In fact we have by definition

$$supp(f) = A,$$
$$supp(\hat{f}) = \bar{B},$$

where supp(f) as usual denotes the distributional support of f and \overline{A} is the closure of A. Thus A and B could a priori be, e.g., dense open sets.

COROLLARY 1. Theorem 2 also holds if we assume instead of $f \in L^1(\mathbb{T}^n)$ that $f \in L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$.

COROLLARY 2. Let μ be a measure of finite total variation on \mathbb{R}^n and let

$$\hat{\mu}(\xi) = \int_{\mathbb{R}^n} e^{-i\langle x,\xi\rangle} d\mu(x)$$

be its Fourier transform. Suppose that $m(\operatorname{supp}(\mu)) < \infty$ and $\hat{m}(\operatorname{supp}(\hat{\mu})) < \infty$, where the supports are to be taken in the sense of distribution theory. Then $\mu = 0$.

The proofs of these corollaries are immediate.

Remark. Theorem 2 does not hold for the space of tempered distributions \mathscr{S}' as the following example shows:

Let $T \in \mathscr{F}'(\mathbb{R})$ be defined by

$$T=\sum_{r=-\infty}^{\infty}\delta_{(r)},$$

where $\delta_{(a)}$ denotes the Dirac measure at the point $a \in \mathbb{R}$. It is well known (Poisson's summation formula) that its Fourier transform is

$$\hat{T} = \sum_{v=-\infty}^{\infty} 2\pi \delta_{(2\pi v)}$$

so T and \hat{T} are both supported on sets of measure zero.

Remark. There are proofs from 1977 of the results of this paper by Amrein and Berthier |1| based on Hilbert space methods. They refer to the preprint of this paper from 1974. Nevertheless it was thought that the original proof should be available in the literature.

FOURIER TRANSFORMS

Acknowledgment

I wish to thank Professor H. S. Shapiro for calling my attention to this problem and for several inspiring discussions on it.

References

- I. W. O. AMREIN AND A. M. BERTHIER, On support properties of L^p-functions and their Fourier transforms, J. Funct. Anal. 24 (1977), 258-267.
- 2. M. BENEDICKS, The support of functions and distributions with a spectral gap, *Math. Scand.*, in press.
- 3. T. MATOLCSI AND J. SZÜCS, Intersection des mesures spectrales conjugées, C. R. Acad. Sci. Paris Sér. A 277 (1973), 841-843.