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Let G be a locally compact abelian group and G its dual group. Denote 
the Haar measure on G and d by m and A, respectively. In the paper by 
Matolcsi and Sziics [3] the following theorem is proved: 

THEOREM 1. Let f E L’(G) and f be its Fourier transform 

where (x, y) = y(x) establishes the duality between G and e. Let A = {x E G; 
f(x)#O} andB={yE6;j’(y)fO). Then 

m(A).fi(B)<l => f=O a.e. [ml. 

The intention of this note is to improve this result in the case G = R”, 
G = 6 ‘. For f E L ‘(IF?“), the Fourier transform off can be written 

where (x,<)=xi~,+-..+x,&. 
Our main result is: 

THEOREM 2. Let f T? L ‘(IA”) andf be its Fourier transform, and let A = 
(xElR”; f(x)#O}andB=(<E~“;~(~)#O}. Then 

m(A)<ooandA(B)<oo 3 f=O a.e. [ml. 

Here m and 4 denote Lebesgue measure on R” resp. R”. 

Proof. Without loss of generality we can assume m(A) < (27c)“, since we 
can replace the function f by its dilatation f,(x) = f(ux). Its Fourier 
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transform is jb(<) = (l/a”)~(T/ a ) , so G(B) will remain finite. Let (p(r) be the 
characteristic function of B, i.e., 

40 = I 
if (EB 

if (66 B. 

Form the function 

The function (p’ clearly is positive, measurable and periodic with period 1. Let 
K=(~El?“;O<&<l,i=1,2 ,..., n}.Then 

This implies that G(r) < 03 a.e., i.e., for almost all to, rp(& + k) + 0 only for 
a finite number of k E 8” and consequently: 

(I) for almost all lo E ?“,S(& + k) z 0 only 
for a finite number of k E J’“. 

Fix &, E Rn and form the function 

J,,(x) = ,,x” f? -i(h..c- Zn~,)f(~ _ 2nv~. 

& has the following properties: 

(i) &E L’( r “), 1 ’ being the n-torus T ” = V”/2nL”; 

(ii) A, has the Fourier coefficients 

(.&j(k) = ( w)Wro + 0 k E 7”; 

(iii) m( (X E - “i&(x) # 0)) < (2n)“. 

(i) easily follows from f E L’(V”), (ii) is the result of a simple computation 
and (iii) is an immediate consequence of m(A) < (2n)“. 

Together (I) and (ii) show that for almost all C$ E L;“, x,, is a 
trigonometrical polynomial. But now (iii) implies that &= 0 a.e., since a 
non-null trigonometrical polynomial certainly cannot be zero on a set of 
positive measure. It follows that for almost all c$, f(& + k) = 0 for all 
k E P “, i.e., F= 0 a.e. By th: uniqueness theorem for the Fourier transform 
f = 0 a.e. and the proof of the theorem is complete. 
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Note that the sets A and B are nor the supports 0ffresp.f in the sense of 
distribution theory. In fact we have by definition 

supp(f) = A, 

supp(f) = B, 

where supp(f) as usual denotes the distributional support off and 2 is the 
closure ofA. Thus A and B could a priori be, e.g., dense open sets. 

COROLLARY 1. Theorem 2 also holds if we assume instead off E L ’ (;i “) 
rhafJ’E L”(E”), 1 < p < 00. 

COROI.I.ARY 2. Le/ p he a measure oJJnite lolaI varialion on ‘*J” und 
let 

3(t) = !:.,, e W) 44) 

be its Fourier wansforrn. Suppose that m(supp(lu)) < co and 
rit(supp(@)) < 00, where [he supports are to be laken in the sense oj 
distribution lheory. Then ,u = 0. 

The proofs of these corollaries are immediate. 

Remark. Theorem 2 does not hold for the space of tempered 
distributions .Y ’ as the following example shows: 

Let T E .Y ‘(K) be defined by 

T= : 6,,.,, 
I’ -2. 

where atL,, denotes the Dirac measure at the point a E K:. It is well known 
(Poisson’s summation formula) that its Fourier transform is 

TX 2 24h., 
1’ -r 

so T and F are both supported on sets of measure zero. 

Remark. There are proofs from 1977 of the results of this paper by 
Amrein and Berthier [ 1 1 based on Hilbert space methods. They refer to the 
preprint of this paper from 1974. Nevertheless it was thought that the 
original proof should be available in the literature. 
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