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A conjecture of 2. Ditzian on Bernstein polynomia!s is proved. This yields 
additional information on the problem of characterizing the rate of convergence for 
Bernstein polynomiak. ‘6Z 1992 Academic Press, Inc. 

The Bernstein polynomials on C[O, l] are given by 

B,(f, x) = i f (k/n) Pnk(-xh 
k=O 

where 

P&(x)= ; xk(l -.y)n-k. 0 (2) 

The relation between the rate of the polynomials’ convergence and the 
smoothness of the function they approximate has been investigated in 
many papers. Some of these results can be stated in the following theorem, 

THEOREM A. For f~ C[O, 11, X=,X( 1 -xi, 0 <a < 2, 0 < /3 < 2, :he 
following statements are equivalent : 

(1) XPzl’IB,(f, x)-f(x)/ <MM,n-g~r; 13) 

(2) rx;‘If(x- t)-2f(x)+f(x+ t)l Gif,(t2/X)“? 141 

Here Ml, M, are constants independent of n, x, and t. 

In 1972, H. Berens and G. G. Lorentz [l] proved this theorem for X= p. 
M. Becker [Z] gave an elementary proof of this case. The case z = 0 was 
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proved by Z. Ditzian [3] and V. Totik [9]. Z. Ditzian [4] proved this 
theorem for 0 < a < /? < 2 as well in 1980. 

Theorem A had remained open for the case 2 > IX > p > 0 for a few years. 
In 1987, Z. Ditzian [S] gave the proof of this case with the restriction 
c( + /I f 2. In that paper he also gave the following conjecture which allows 
us to complete the proof for the remaining cases. In this paper we give a 
proof of this conjecture, and show that Theorem A holds. 

THEOREM (Conjecture of Z. Ditzian). Suppose for 0 < /? < CY < 2, 
f E C[O, 1 ] satisfies f (0) = f (1) = 0 and 

xY2 If(x-t)-2f(x)+f(x+t)lqt’/X)B’2 (5) 

for any x E (0, l), x-t t E [0, 11; then we nzust have .for the case a + /I > 2 

(1) f(x)=A,x+f,(x), 

where fi(x) = O(X(~+P)/~) us x + O+; 

(2) f(x) = A*(1 -x) +fz(x), 

where f2(x) = O(( 1 - x)@+fl)12) us x + 1 -. 

ProoJ We need only prove (1). 

From (5), we have for XE(O, $) 

) f (x) - 2f (x/2)1 <x(=++)‘2, 

which implies 

1 f(x)/x-2f(x/2)/xl <X(“+fl)‘l-l. (6) 

Define g,(x) = 2”f (x/2”)/x for XE [a, $1, then g,E C[f, $1. For these 
functions we have from (6) for n E N, p E N, x E [i, 41 

I b%(x) - gH+,w = 1 (2kf (x/2Vx -2k- ‘f (x/2kp1)/x) 
k=n+l 

n+P 
< 1 (X/2k--)(~+8)/2-- 

k=n+l 

n-t-p 
< 1 (2’-(“+8W)k-l. 

k=n+l 
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Thus by E + p > 2, we know that (g,, > is convergent uniformly on 
[i, f]. So we can define 

g(s) = lim g,,(x) = lim 2”fc(s/2”)~~. (7) 12 + 22 n--x 
then g E CC;, $1. 

Now we prove that g is constant on [a, $1. 
Let h(x)=,yg(.x). From (5), for x~[$,iJ, t~(O,$j, x&t~[$,i]~ and 

n EN, we have 

and 

1(x-t)g,(x-t)-Zxg,(x)+ (x+t)g,(x+ r)i ~IP~~t-(l-P”22”(1~iZ+8),‘2’~ 

By letting II --+ co, we have from the definition of 12 

h(x-t)-2h(x)+h(x+tj=O, 

where x, x 2 t E [b, i] are arbitrary. From this fact, we know [8] that A 
is linear on [a, 41, say, 

h(x) = ux $ b. 

Hence g(,u) = a + b/.x. 
Now from (7), we know that 

g($,=g(+)=J~mX 2nf(2--n); 

therefore, we must have b = 0 and 

g(x) = a. (8) 

On the other hand, as for every SE (0, $), there exists n, such that 
.Y~“OE [i, 41; in view of (7) and (8) we get 

Thus, by (6), 

where the constant C is independent of n and x by LX +/I > 2. 
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By letting n -+ 1y3, we have for any x E (0, b) 

1 f(x) - nxl d Cx’” + fl)12. 

The proof is complete. 

Proof of Theorem A (For 2>a>b>O and ol+/-I>2). By [l], we need 
only prove that (4) implies (3). 

It is sufficient for us to prove the theorem on [0, $1, and to prove from 
(4) that 

IB,(f, X)-f(X)\ a!f,x~~*n-~‘* (9) 

with a constant M, independent of n and XE [0, 41. 
In this case we can assume that f 1 13,1, i, = 0 and 1 f(x)\ $ Mx(” + P)D with 

the constant A4 independent of XE [0, 11. We divide the proof into two 
parts. 

For 0 < x < 2/n, the proof is easy: 

IBJf, x)-f(x)1 GM i (k/n)‘“+8)!2-11P,k(x)/n + Mx’@+PJ12 
k=O 

dMx i (k/lz)(a+P)‘*-lP,_L,k--(X)+Mx(a+p)lZ 
k=l 

l-(~+P)/*+Mx c 
( 

’ $$P,-1,&-l(x) 
1 

(LI+p)/2-1 

6 Mxn 
k-2 

+ 4/fx(“‘+B)12 

$ 8Mxa12n-P’2. (10) 

For f 2 x > 2/n, n > 8, let d = (x/n)“’ <x and define a Steklov function 
as 

.fJt) = (2/d)’ j-Joq2 (2f(t + u + u) -f(t + 224 + 2~)) du du, (11) 

where f has been extended to y E [ 1,2] as f( v) = 0. 
Then we have 

If(t)-&(t)/ 4M~(2/d,‘jjo” (u+u)~ (t+u+u)‘a-~“2dudu 

6 M,dB(t+ d)‘“-B”2 

and 

If:(t)1 <9M2dB-‘(r+d) (C(-8)/2~gM2dB~*(di*-8)/*+t(a--8)/2) t12) 
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where we have used the estimate 

B,, 
> 

=B,((t3-ff.?i2)/2-(f3-X3j!3,.~) 

= (B,,( t3. x) - x3)/6 

<.xn-2+3x2.ci 

< 4x “/h. 

Combining (10) and (13), we have proved (9) for n 2 8. 
For y1< 8, it is trivial since lB,(f, x) -f(x)1 Q B,(.Mt, xj + M.x < IM.x d 

14Mx”“n mmp’2. Our proof is therefore complete. 
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