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Two critical defensive functions of the outer epidermis, the permeability barrier and antimicrobial defense,
share certain structural and biochemical features. Moreover, three antimicrobial peptides (AMPs), i.e., mouse
b-defensin 3 (mBD3), mouse cathelicidin antimicrobial peptide (mCAMP), and the neuroendocrine peptide,
catestatin (Cst), all localize to the outer epidermis, and both mBD3 and mCAMP are secreted from the epidermal
lamellar bodies with other organelle contents that subserve the permeability barrier. These three AMPs are
upregulated in response to acute permeability barrier disruption, whereas conversely, mCAMP�/� mice
(unable to combat Gram-positive pathogens) also display abnormal barrier homeostasis. To determine further
whether these two functions are co-regulated, we investigated changes in immunostaining for these three
AMPs in skin samples in which the permeability barrier function in mice had been either compromised or
enhanced. Compromised or enhanced barrier function correlated with reduced or enhanced immunohisto-
chemical expression of mCAMP, respectively, but conversely with Cst expression, likely due to the role of this
AMP as an endogenous inhibitor of cathelicidin expression. mBD3 expression correlated with experimental
barrier perturbations, but poorly with developmental changes in barrier function. These studies show that
changes in cathelicidin and Cst expression parallel changes in permeability barrier status, with a less clear
relationship with mBD3 expression.
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INTRODUCTION
The stratum corneum (SC) of mammalian epidermis mediates
several critical protective functions (Elias, 2005), two of which,
maintenance of permeability barrier homeostasis and cuta-
neous antimicrobial defense (distal innate immunity), exhibit
certain physical–chemical and biochemical features that
contribute simultaneously to both functions (Supplementary
Table S1 online) (reviewed in Elias (2007), Elias and Steinhoff
(2008), and Elias and Schmuth (2009)). For example, the low

pH of the SC creates an ecological milieu that is hostile to
microbial pathogens, while simultaneously favoring growth
of the normal flora (Aly et al., 1978; Korting et al., 1990).
Moreover, the highly cohesive and anhydrous characteristics
of the normal SC comprise a formidable physical barrier to
invading microorganisms, whereas, conversely, pathogens
invade between dyshesive corneocytes when the permeability
barrier is compromised (Miller et al., 1988; Elias, 2007).
Furthermore, certain lipids that are required for the permeability
barrier, such as free fatty acids of both epidermal (Miller et al.,
1988; Drake et al., 2008) and sebaceous (Bibel et al., 1989;
Georgel et al., 2005) origin, as well as the sphingoid bases of
ceramides, also exhibit potent antimicrobial activity. Thus, the
increased residence of Staphylococcus aureus and other
pathogens on lesions of atopic dermatitis (AD) could be
explicable not only by alterations in barrier function and innate
immunity (Radek and Gallo, 2007), but also by the (i) high pH
(cited in Hatano et al., 2009); (ii) lipid-depleted extracellular
matrix (Chamlin et al., 2002); (iii) reduced free fatty acid/
sphingosine content (Arikawa et al., 2002; Proksch et al.,
2003); and (iv) poor cohesion (Cork et al., 2006) of the SC in
lesional AD. Notably, the cathelicidin protein, hCAP18, and its
carboxy-terminal peptide, LL-37, also are downregulated in
lesional AD, which is explicable by the increased T helper type
2 signaling (Howell, 2007) and/or excess serine protease
activity (Morizane et al., 2010).
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The link between permeability barrier status and anti-
microbial defense is shown not only by their shared physical
and biochemical characteristics, but also by the fact that
acute perturbations in permeability barrier function stimulate
metabolic responses that rapidly restore permeability barrier
homeostasis in parallel with enhanced antimicrobial peptide
(AMP) expression, e.g., mouse cathelicidin AMP (mCAMP),
mouse b-defensin 3 (mBD3), catestatin (Cst), RNase 7, and
psoriasin production all increase rapidly after acute barrier
disruption (Elias and Choi, 2005; Aberg et al., 2008; Radek
et al., 2008; Glaser et al., 2009a). Conversely, mCAMP
knockout mice display abnormal permeability barrier home-
ostasis, demonstrating that cathelicidins are required for
normal permeability barrier function (Aberg et al., 2008).
Notably, both the lipids that mediate permeability barrier
function (Grayson et al., 1985), and at least three AMPs, i.e.,
mCAMP (LL-37), mBD3(hBD2), and Cst, were expressed in
the outer epidermis. Moreover, both mCAMP (LL-37) and
mBD3 (hBD2) are cargoes within the epidermal lamellar
bodies (Oren et al., 2003; Braff et al., 2005; Aberg et al.,
2007). Hence, their colocalization and presumed co-secre-
tion insures that constituents of both the permeability and
antimicrobial barriers are delivered in parallel to SC
extracellular domains.

Our results suggest close, bidirectional changes in
mCAMP expression under a variety of conditions where
permeability barrier function is either compromised or
enhanced, but an apparent, converse relationship with Cst
expression, which could reflect its function as a b-muscarinic
inhibitor of cathelicidin expression (Radek et al. (2010) and
cited therein).

RESULTS
Permeability barrier status in various models

In normal mice, acute abrogations of the epidermal perme-
ability barrier function, induced by either organic solvent
applications or repeated tape strippings, provoke a transient
decline in AMP levels, followed by rapid upregulation of the
expression of several AMPs, i.e., mCAMP, mBD3, Cst, and
psoriasin, over 2–6 hours in parallel with barrier restoration
(Schroder and Harder, 2006; Aberg et al., 2008; Radek et al.,
2008; Glaser et al., 2009a). In these studies, we assessed
changes in AMP expression in four situations in which
permeability barrier homeostasis is subnormal, i.e., after
sustained psychological stress (PS) (Denda et al., 1998; Choi
et al., 2006), in young adult male mice (testosterone replete)
(Kao et al., 2001), after erythemogenic UVB exposure
(Haratake et al., 1997), and in chronologically (intrinsically)
aged epidermis (Choi et al., 2007). As our previous studies
showed that PS downregulates both mCAMP and mBD3
expression (Aberg et al., 2008), samples from PS mice served
as positive controls for the other models. AMP status also was
assessed in a library of paraffin-embedded materials from our
previously published studies where permeability barrier
homeostasis had been altered either experimentally or
developmentally (Kao et al., 2001) (Table 1) in testosterone-
replete and chronologically aged mice. In these studies,
erythemogenic UVB induced a dose- and time-dependent

abnormality in permeability barrier function (see below), as
reported previously (Haratake et al., 1997).

Compromised permeability barrier function correlates closely
with decreased mCAMP expression

Psychological stress. As reported previously, immunostaining
for both mCAMP and mBD3 declined following PS
(Figure 1a; see also Aberg et al., 2007). Moreover, we now
show further that Cst immunostaining also declines after
short-term PS (i.e., 24–36 hours), but Cst instead appears to
normalize, or even supernormalize, following exposure to
more prolonged periods of PS (4 days of restraint) (Figure 1b).

Androgen status (gender). Previous studies have shown that
testosterone-replete (adult) mice and humans display normal

Table 1. Changes in barrier function in various mouse
models

Basal barrier
function

Barrier recovery
kinetics

Barrier perturbant

Psychological stress Declines1,2 Delayed1,2

Testosterone replete (male) Declines3 Delayed3

Erythemogenic UVB (5–10 MED) See Figure 5b4 Delayed4

Intrinsic aging Declines5,6 Delayed6

Improved barrier

Suberythemogenic UVB Improves7 Accelerates7

Calcipotriol Improves8 N/D

Endogenous GC blockade Improves9 Accelerates1,2

Imiquimod Improves10 Accelerates10

Triple lipids Improves11 Accelerates11

Petrolatum N/D Accelerates11

PPARa No changes Accelerates12

LXR No changes Partially

normalizes13

Chinese herbal mixture No changes Accelerates14

Urea Improves15 N/D

Abbreviations: GC, glucocorticoid; LXR, liver X receptor; MED, minimal
erythema doses; N/D, not demonstrated; PPAR, PP activated receptor.
1Denda et al. (2000).
2Choi et al. (2006).
3Kao et al. (2001).
4Haratake et al. (1997).
5Ghadially et al. (1995).
6Choi et al. (2007).
7Hong et al. (2008).
8Bikle et al. (2010).
9Aberg et al. (2007).
10Barland et al. (2004).
11Man et al. (1995). Arch Dermatol 131:809–16.
12Man et al. (2004).
13Komuves et al. (2002). J Invest Dermatol 118:25–34.
14Man et al. (2011).
15Grether-Beck et al. (2011).
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basal barrier function, but delayed permeability barrier
recovery (Kao et al., 2001) (Table 1). Therefore, we next
compared epidermal mCAMP, mBD3, and Cst immunostain-
ing in library skin samples from young adult male versus
female mice. Although male mice displayed a marked
decline in immunostaining for mCAMP, they appeared to
display a modest enhancement of immunostaining for mBD3,
and a marked increase in Cst expression (Supplementary
Figure S1 online). These results suggest that the decline in
permeability barrier with testosterone repletion is paralleled
by a concomitant reduction in mCAMP, whereas mBD3
and Cst expression instead appear to increase in androgen-
replete males.

Erythemogenic UVB. Although suberythemogenic doses of
UVB have been shown previously to enhance permeability
barrier function (Hong et al., 2008), erythemogenic UVB
instead provokes a transient, delayed (by 48–96 hours), and
dose-dependent barrier abnormality, as we reported pre-
viously (Haratake et al., 1997) (Figure 2). Therefore, we next
examined whether erythemogenic UVB produces parallel
alterations in AMP expression in mice. In these studies, the
intensity of AMP immunostaining was quantitated by a
blinded observer on multiple, pooled, coded images at each
time point. Erythemogenic UVB (5 minimal erythema doses
(MED)) resulted in a progressive decline in mCAMP levels,
which returned to normal at day 5 (Figure 2; Supplementary
Figure S2A online). In contrast, erythemogenic UVB did not
alter mBD3 immunostaining (Supplementary Figure S2B
online), whereas it simultaneously stimulated a sustained
increase in Cst expression immediately after exposure, with

immunostaining remaining elevated until day 5, when it
began to decline (Figure 2; Supplementary Figure S2C
online). Taken together, these results suggest that the transient
defect in permeability barrier function, which resulted from
erythemogenic UVB irradiation, is paralleled by a marked
decline in mCAMP, a minimal decline in mBD3, but a
marked enhancement of Cst expression.

Chronologically aged mouse skin. Permeability barrier
homeostasis progressively declines during chronologic aging
(Ghadially et al., 1995; Choi et al., 2007) (Table 1). There-
fore, we next examined age-related abnormalities in AMP
expression in library tissue samples from young versus
moderately aged mouse epidermis (15–18 months), analo-
gous to human age 50–65 years (Choi et al., 2007). Under
basal conditions, the epidermis of young mice displayed low
constituent levels of immunostaining for both mCAMP and
mBD3, with a prominent decline in mCAMP immunostaining
in chronologically aged mouse epidermis. In contrast, both
mBD3 and Cst levels appeared to markedly increase in aged
mouse epidermis (Supplementary Figure S3 online).

Improved permeability barrier function correlates with
enhanced mCAMP expression

Imiquimod and calcipotriol treatment. Both the immune
enhancer, imiquimod (IMQ), and the 1,25(OH)2 vitamin D3
analog, calcipotriol, improve barrier function under a variety
of experimental and clinical conditions (Barland et al., 2004).
Therefore, we next delineated the effects of repeated
applications of topical IMQ or calcipotriol on mCAMP
expression in normal mouse epidermis. Untreated murine

mCAMP

PS-ST

PS-ST

PS-ST+A

PS-ST+A

PS-ST+T

PS-ST+T PS-LT

N

N

Cst

Figure 1. Psychological stress (PS) decreases immunostaining for mouse cathelicidin antimicrobial peptide (mCAMP), b-defensin 3 (mBD3), and catestatin

(Cst) in both a glucocorticoid (GC)- and a b-adrenergic-dependent manner. Hairless mice (n¼4 or 5 each) were exposed to either insomnia-induced PS for

36–48 hours (short-term PS, PS-ST) or restraint-induced stress for 96 hours (long-term PS, PS-LT), while parallel groups of PS mice (n¼4 or 5 each) were co-

treated with intraperitoneal antalarmin or Ru486 (not shown; see Aberg et al., 2008), or topical timolol (T) (0.38% in saline) (see Materials and Methods for

further details). In all, 5 mM frozen sections were labeled with primary antibodies against mCAMP, mBD3, or Cst. Propidium iodide was used to counterstain the

nuclei. Green immunostaining represents AMP labeling. Bar¼ 40mm. A, antalarmin; N, normal; red staining, propidium iodide.
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epidermis again clearly demonstrated low, but readily
detectable immunostaining for both mCAMP and mBD3,
localized to the outer epidermis (Aberg et al., 2007, 2008).
Although both IMQ and calcipotriol treatments appeared to
increase immunostaining for mBD-3 and mCAMP in com-
parison to vehicle alone, the increase in mCAMP appeared to
be greater than that achieved in parallel, calcipotriol-treated
mice (Supplementary Figure S4A vs. S4B online). The
increase in mCAMP and mBD3 in calcipotriol- and IMQ-
treated mice displays a linear pattern in the SC, correspond-
ing to membrane domains, and it also further localized to
vesicles in the cytosol of stratum granulosum cells (Supple-
mentary Figure S4B online, inset, arrows), consistent with its
known localization in epidermal lamellar bodies (Oren et al.,
2003; Aberg et al., 2007). Finally, we examined AMP
expression after several other unrelated maneuvers previously
shown to enhance barrier function. In each of these
examples, mCAMP expression inevitably increased, but
mBD3 and Cst did not always change in parallel (Table 2).
Taken together, these results demonstrate first that IMQ and
calcipotriol treatment appear to increase the expression of
both mCAMP and mBD3 in the outer epidermis. Second,
several other, unrelated approaches that improve barrier
function also enhance mCAMP expression, with more
variable results for mBD3 and Cst (not shown).

DISCUSSION
We addressed here the hypothesis that permeability barrier
function and antimicrobial defense are integrated and co-
regulated functions (Elias, 2005), examining whether experi-
mental perturbations or developmental changes that either
reduce or enhance permeability barrier status are accom-
panied by parallel changes in epidermal AMP expression.
The impetus for these studies came first from a previous work
that showed that these two functions are co-regulated and
interdependent in the normal epidermis (Aberg et al., 2008;
Hong et al., 2008; Proksch et al., 2008) and that at least one
perturbant of the permeability barrier (PS) downregulates
mBD3 and mCAMP expression (Aberg et al., 2007). Several
studies have already shown that the converse is true; e.g.,

epidermal AMP expression, including Cst expression (Radek
et al., 2008), increased after acute barrier insults in parallel
with barrier recovery (Elias and Choi, 2005; Aberg et al.,
2008) and after blockade of both glucocorticoid production
and action in PS mice (Aberg et al., 2007). We extend these
previous observations here by showing not only that short-
term PS reduces mCAMP (LL-37) and mBD3 (hBD2)
expression, but also that as PS is prolonged, Cst expression
also begins to decline.

Our results provide several additional examples to support
a putative relationship between permeability barrier and
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Figure 2. Quantitation of decline in mouse cathelicidin antimicrobial peptide (mCAMP) immunostaining parallels development of a permeability barrier

abnormality. (a) UVB-induced changes in permeability barrier function are modified from Haratake et al. (1997). (b) Micrographs (X10 each) from mice

treated with erythemogenic UVB (n¼4, as in Supplementary Figure S2 online) were coded, randomized, and graded according to the intensity of

staining for mCAMP, b-defensin 3 (mBD3), and catestatin (Cst) by a blinded observer. AMP, antimicrobial peptide; MED, minimal erythema doses;

TEWL, transepidermal water loss.

Table 2. Changes in antimicrobial peptide expression
in relation to altered barrier function

AMP expression

Permeability barrier status mCAMP mBD3 Cst

Decreased

PS k k m

Exogenous GC k k N/D

Testosterone replete k No change No change

Erythemogenic UVB k (k) mm

Aging k m m

Increased

PS+Ru486/antalarmin m1 m m

Suberythemogenic UVB m2 m2 N/D

Imiquimod m m N/D

Chinese herbal medicine m m N/D

Calcipotriol m m N/D

Urea m m N/D

Abbreviations: AMP, antimicrobial peptide; Cst, catestatin; GC, gluco-
corticoid; mBD3, mouse b-defensin 3; mCAMP, mouse cathelicidin
antimicrobial peptide; N/D, not demonstrated; PS, psychological stress.
1Aberg et al. (2007).
2Hong et al. (2008).
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antimicrobial status, at least for mCAMP. Testosterone
depletion by either surgical or medical means improves
permeability barrier function, whereas conversely, testoster-
one-replete mice and humans display diminished perme-
ability barrier function (Kao et al., 2001). Although we
showed here an apparent, parallel decline in mCAMP
expression in male versus female mice, immunostaining for
both mBD3 and Cst instead appeared to increase in the
epidermis of adult male mice. Thus, it is possible that changes
in androgen status could impose potentially important
variations in cutaneous antimicrobial defense.

Suberythemogenic doses of UVB have been shown to
upregulate permeability barrier function and mBD3/mCAMP
expression simultaneously (Aberg et al., 2007), further
supporting a putative relationship between these two func-
tions. Conversely, we now show that erythemogenic doses
of UVB that compromise permeability barrier function
(Haratake et al., 1997) also markedly appear to downregulate
mCAMP, but produce only minimal, transient alteration in
mBD3 expression. The progressive decline (and recovery) of
mCAMP expression parallels the time course over which the
permeability barrier defect evolves and then recovers. Yet,
Cst expression instead appeared to increase at all time points
after erythemogenic UVB irradiation. Our previous studies
showed that the UVB-induced permeability barrier abnor-
mality correlates with passage of a band of secretion-
incompetent, apoptotic cells through the stratum granulo-
sum–SC interface (Holleran et al., 1997). Although such a
toxic mechanism could contribute to the observed decline in
production of mCAMP, it certainly did not impede Cst
expression. Thus, toxicity alone likely cannot account for the
selective decline in mCAMP expression after UVB irradiation.
The anti-parallel changes in Cst can be explained instead by
its role as a muscarinic inhibitor of cathelicidin expression
(Radek et al., 2008). Thus, these studies further support a
close link between UVB-induced changes in permeability
barrier function and cathelicidin expression. Furthermore,
together with the work of Hong et al. (2008) on suberythe-
mogenic UVB, these studies provide potential clinical
implications on how UVB irradiation should be deployed
for the treatment of inflammatory dermatoses. Although
current recommendations propose ‘‘pushing’’ UVB photo-
therapy doses upwards into the erythemogenic range, this
approach clearly could pose adverse consequences not only
for permeability barrier function but also for cutaneous
antimicrobial defense.

Permeability barrier function begins to decline in adult
humans above the age of 50 years (Choi et al., 2007),
becoming further compromised above age 75 years
(Ghadially et al., 1995), and/or with superimposed photo-
aging (Reed et al., 1997). We showed here that 15–18-month-
old mice, analogous to humans over age 50 years, displayed
reduced mCAMP levels, whereas both mBD3 and Cst
immunostaining instead appeared to increase in this age
group (Table 2). In attempting to explain these and other
divergent results for mCAMP versus mBD3, it should be
noted that these families of AMPs are regulated by entirely
different mechanisms (Oren et al., 2003; Braff et al., 2005;

Choi et al., 2005; Aberg et al., 2007; Peric et al., 2008;
Eyerich et al., 2009). Although endogenous 1,25(OH)2
vitamin D3 and other VDR ligands regulate cathelicidin
expression (Zasloff, 2005; Elias, 2007; Aberg et al., 2008;
Drake et al., 2008; Hong et al., 2008; Schauber and Gallo,
2008), a variety of cytokines instead stimulate b-defensin
production (Nomura et al., 2003; Elias and Choi, 2005; de
Jongh et al., 2005; Yano et al., 2008; Kobayashi et al., 2009).
Accordingly, endogenous vitamin D levels typically decline
with age (Holick, 1987), perhaps accounting for the decrease
in mCAMP levels that were observed here in aged murine
epidermis. In contrast, cytokine levels vary widely during
aging (Ye et al., 1999; Corsini et al., 2009), but IL-1a levels in
particular decline with chronologic aging, and are associated
with decreased epidermal lipid production (Ye et al., 1999;
Barland et al., 2005). In contrast, other epidermal cytokines
(e.g., TNFa) increase in the aged epidermis (Corsini et al.,
2009), consistent with our observation that mBD3 immunos-
taining persists or even increases in moderately aged mouse
skin. The basis for the apparent, age-related increase in Cst
expression is unclear at present, but it could again be related
to the role of this neuropeptide as an endogenous inhibitor of
cathelicidin production. Whether further abnormalities in
antimicrobial defense occur in the moderately aged epider-
mis and/or with still more-advanced aging and/or photoaging
is not yet known. Nevertheless, these age-related differences
in AMP expression, which do not strictly parallel changes in
permeability barrier status, could also have important clinical
implications, as they suggest that cutaneous antimicrobial
defense becomes compromised relatively early during the
aging process.

We also examined here the opposite situation, asking
whether maneuvers that are known to enhance barrier
function also upregulate AMP expression. The immune
response modifier, IMQ, acts through two members of the
Toll-like receptor family, Toll-like receptor 7 and/or 8, which
recognize microbial pathogens or their metabolic products
and function as primary sensors of the innate immune system
(Ambach et al., 2004; Sauder, 2004; Lai and Gallo, 2008).
These Toll-like receptors are cell surface receptors that, when
activated, stimulate production of epidermis-derived, IFN-a,
TNF, and IL-1a (Sauder, 1990; Barland et al., 2004; McInturff
et al., 2005; Takeuchi and Akira, 2009). We have shown that
topical IMQ enhances barrier function in normal and aged
epidermis, by stimulating IL-1a production, which in turn
stimulates epidermal lipid synthesis (Ye et al., 1999; Barland
et al., 2004). As human b-defensins are upregulated by
multiple cytokines, it is highly likely that hBD2 (mBD3)
upregulation by topical IMQ is signalled by epidermal
production of cytokines. Yet, although the apparent increase
in mBD3 immunostaining after calcipotriol treatment was
unexpected, it could be linked to the well-known effects of
VDR ligands on epidermal differentiation (Bikle et al., 2010).
Finally, we examined changes in AMP expression in two
other unrelated situations where barrier function is enhanced,
i.e., after treatment with topical 5–20% urea (Grether-Beck
et al., 2011) and after topical applications of Chinese herbal
medications to normal mouse skin (Man et al., 2011). In both
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of these situations, mCAMP expression increased in parallel
with enhanced permeability barrier function (Figure 3 and
Table 2).

MATERIALS AND METHODS
Models with compromised permeability function

Psychological stress. Our previous studies have shown that both

sustained PS and exogenous glucocorticoids downregulate barrier

function (Denda et al., 2000; Choi et al., 2005) in parallel with

reduced expression of mCAMP and mBD3 (Aberg et al., 2007).

Hence, library biopsy samples from PS (short-term) served as positive

controls for the additional conditions studied here, where barrier

function also is compromised.

Male hairless mice (Skh1/hr) were purchased from Charles River

Laboratories (Wilmington, MA). To assess the effects of more long-

term PS, animals were placed in motion-restricted environments for

12 hours once daily during nighttime for 72–96 hours. Food and

water were restricted in parallel in a control non-motion-restricted

group. A plastic container (4.0 (W)� 3.0 (H)� 11.5 (L) cm3) with

mesh walls on the top was used for PS environments, of which the

inner space was minimized to allow animals to rotate their bodies.

All animals were studied between 8 and 10 weeks of age. The

animal experiments described in this study were conducted in

accordance with accepted standards of humane animal care, under

the protocols approved by the local institutional animal care and use

committee at the San Francisco VA Medical Center.

Testosterone-replete (adult male vs. adult female) mice. To

assess the impact of physiological levels of testosterone, previously

shown to compromise permeability barrier function (Kao et al.,

2001), we compared AMP expression in library samples of adult

male versus female mice (aged 8–10 weeks; n¼ 4 each), processed

for immunofluorescence, as described below. Serum testosterone

levels were 4500 pg ml�1 in the male animals and o200 pg ml�1 in

the female animals (Kao et al., 2001).

Erythemogenic UVB exposure. Hairless, 8–10-week-old female

hairless mice were purchased from Charles River Laboratories

(Wilmington, MA), and fed Purina mouse diet (Ralston Purina,

St Louis, MO) and water ad libitum. Natural sunlight was excluded

and animals were exposed only to low levels of incandescent light

before UVB irradiation. UVB irradiation was delivered with Phillips

TL20W/12 fluorescent lamps (Eindhoven, The Netherlands), emitting

280–320 nm. The dorsal skin of each mouse was either sham

irradiated or irradiated with single-dose equivalents of either 5 or 10

minimal erythemal doses (n¼ 5 each). One minimal erythema dose,

determined previously on the same strain of mice, equals

approximately 20 mJ cm�2 (60–100 mJ cm�2 hour�1 equals 1 mini-

mal erythema dose in human beings with type II/III pigmentation). In

all, 20 animals were treated in each group, and samples were taken

before, immediately after, and then 1, 3, and 5 days following UVB

exposure, followed by processing for immunofluorescence studies

(see below).

Chronologically aged mouse skin. Epidermal AMP expression

was compared in library samples from aged (15–18 months,

equivalent to an age range of 50–60 years in humans) versus young

adult (3–4 months) hairless mice (Skh1; Jackson Labs, Bar Harbor,

ME; n¼ 4 each) (Choi et al., 2007). The analogous age of mice and

humans was determined from optimal life spans (E120 years in

humans and 24 months in mice). Hairless mice began to display a

progressive permeability barrier abnormality after 15 months

(Ghadially et al., 1995; Choi et al., 2007).

Models with enhanced permeability barrier function

Not only blockade of glucocorticoid production/action (Aberg et al.,

2007), but also suberythemogenic UVB irradiation has already been

shown to stimulate mCAMP and mBD3 production (Hong et al.,

2008; Glaser et al., 2009b) (Table 1). Here, we assessed changes in

mCAMP expression after several additional approaches that enhance

barrier function. We focused on changes in mCAMP in this subset of

studies, because it most closely paralleled changes in barrier status

in the previously assessed models with reduced function.

IMQ and calcipotriol. Previous studies have shown that both 1,25

(OH)2 vitamin D3 and its analogs (Bikle, 2010), as well as IMQ

(Barland et al., 2004), enhance barrier function in a variety of

settings. The dorsal skin of each mouse was treated with topical

IMQ (Aldara, Bristol, TN) 5% cream, calcipotriol (Dovonex,

Rockaway, NJ) cream 50 mg g�1, or vehicle two times daily for

7 days (n¼ 4 mice in each group). Parallel control groups of hairless

mice were treated with the vehicles for the equivalent drug alone at

the same time points.

Library biopsy samples from comparable cohorts of 4–5 normal

hairless mice each also were assessed after following approaches

that are known to enhance barrier function.

Chinese herbal mixture and urea. We recently showed that

various Chinese herbal mixtures improve barrier function in normal

hairless mice (Man et al., 2011). Recent studies also have shown that

topical urea at concentrations X5% improves barrier function in

normal human and mouse skin (Grether-Beck et al., 2011).

Tissue processing and immunofluorescence
Biopsy specimens for immunostaining were obtained at time points

when maximal changes in barrier function occurred (see figure and

table legends, as well as cited references for further details). Full-

thickness skin biopsy specimens, which had either been snap-frozen

Super
normalP

erm
eability barrier

C
athelicidin expression

Normal

Sub
normal

(–)

(+)

Erythemogenic UVB
Psychological stress

(aging)*
Testosterone repletion

Suberythemogenic UVB
Psychological stress +

RU486/antalarmin
calcipotriol, imiquimod

urea
Chinese herbal mixture

Figure 3. Summary of results—maneuvers that alter barrier functions are

paralleled by bidirectional changes in cathelicidin expression. *Parentheses

indicate changes in CAMP, but not other AMPs. AMP, antimicrobial peptide;

CAMP, cathelicidin antimicrobial peptide.
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in liquid nitrogen or library samples embedded in paraffin, were

utilized for immunofluorescence studies. Frozen sections (5 mm)

were soaked in acetone for 10 minutes, washed in phosphate-

buffered saline (PBS), and blocked with 4% BSA and 0.5%

cold-water fish gelatin in PBS for 30 minutes. In all, 10mm

paraffin-embedded tissue sections were de-paraffinized, rehydrated,

and then rinsed with de-ionized water, followed by three washes in

PBS. Sections were incubated for 30 minutes in blocking buffer

(4% BSA, 0.5% cold water fish gelatin in PBS), and then incubated

overnight at 4 1C with the primary antibodies in blocking buffer. The

next morning, sections were washed three times in PBS and

incubated for 40 minutes at room temperature with the Alexa Fluor

488-conjugated goat anti-rabbit secondary antibody, diluted 1:2,000

in blocking buffer. Slides were then incubated overnight at 4 1C with

primary antibodies (1:500 or 1:1,000) against Cst (from Phoenix

Labs, Phoenix, AZ, and Richard Gallo, University of California, San

Diego, San Diego, CA), mBD-3 (Alpha Diagnostics, Owings Mills,

MD), or mCAMP (from Dr Richard Gallo, UCSD), followed by

incubation with FITC-conjugated, goat anti-rabbit secondary anti-

body (Alpha Diagnostics) for 45 minutes at room temperature, as

described (Aberg et al., 2007; Radek et al., 2008). Sections were

counterstained with propidium iodide and visualized on a Leica

TCS-SP laser confocal microscope at excitation and emission

wavelengths of 488 and 532 nm, respectively, photographed at

original magnification � 40, and the intensity of AMP immunostain-

ing was scored blindly in randomly mixed micrographs (n¼ 20 in

each group) as 0 (subnormal), 1 (normal¼ basal), or 2–5 (increased,

with 5¼most intense, antigen-positive immunostaining). Sections

labeled with only the secondary antibody, and/or sections from

mCAMP knockout mice (Nizet et al., 2001; Aberg et al., 2008),

served as controls.
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