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Abstract 
In the world, the greenhouse culture is getting more and more developed to meet the needs of a more competitive 
market that is conditioned by very strict norms of quality. Greenhouse production systems are getting highly 
sophisticated but extremely expensive. That is the reason why the greenhousers, who want to be competitive must 
optimize their investments thanks to strict production conditions. Nowadays, it is commonly admitted that the 
decisions related to the management of a greenhouse can be classified into different levels, starting from the on –line 
control, through the optimization of the environment, to the seasonal planning of the behaviour of the agriculture.  
The main purpose of our work is to optimize the physical sizes of a reduced model of a greenhouse under 
Mediterranean conditions. Thus, we use a digital simulation based genetic algorithm (GA) and a particle swarm 
optimization (PSO). The design goal is successfully achieved using the PSO and compared with that obtained using 
the GA. For the problem at hand, it is found that the PSO outperforms the GA in some of the presented design cases. 
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1. Introduction 

Since the 1970's, improvements in computing facilities together with theoretical and experimental 
studies have increased our understanding on the physical and physiological processes involved in the 
Biophysics greenhouse system. Mathematical simulation models for predicting inside climate control have 
primarily focused on the determination of heating requirement; however other climate control systems 
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have been largely ignored although they play an important role, particularly under Mediterranean 
conditions where the greenhouse production area has tremendously increased over the last ten years. 
These climate control systems include natural ventilation, evaporative cooling, shading and irrigation 
control. Analysis of these problems requires consideration of coupled mechanisms involving heat and 
mass (air, water vapor).  

Non linear models describing the above processes are complex and not easy to use in practice because 
they require a significant solving time together with the knowledge of a large number of model parameters 
as well as meteorological inputs. In addition, the numerical iterative solution can diverge if the choice of 
initial conditions is wrong [1]. 

In order to deal with this important question, our paper presents the theory and the methods involved in 
the development of a reduced thermal and mass (water vapor) model of the greenhouse and the on-line 
estimation of its parameters. We mainly focus on a method for identifying the parameters which is based 
on the genetic algorithms and which optimizes the choice of parameters by minimizing a cost function.  

 
Nomenclature 

Al  And C Parameters of the model of natural ventilation (.). 

B Parameters of the model of transpiration (Wm- 2hPa-1)  

Cp  thermal capacity of the greenhouse air component (Kg-1K-1) 

d0 leakage (m3s-1) 

h air/sol convective exchange coefficient (Wm-2K-1) 

K Overall heat loss coefficient through greenhouse covers (Wm-2K-1) 

Kl Latent heat transfer coefficient driven by ventilation (Wm-2hPa-1) 

Ks Sensible heat transfer coefficient driven by ventilation (Wm-2K-1) 

r Ratio (s/m) 

S Exchange surface between two constituents of the greenhouse (m2) 

s0 Leakage surface (m2) 

v greenhouse volume (m2) 

 Rate absorption of the global radiation by the aerial compartment of the greenhouse (.). 

 Rate absorption of the global radiation by the thermal mass compartment of the greenhouse (.). 

t time step of discretization (s) 

 psychrometric constant (hPaK-1)  

i power of the evaporative cooling fog system (Wm-2) 

 air density (kgm-3) 

 Time constant or characteristic time (s) 

’ Greenhouse cover transmitivity (.) 

 Intermediate parameters of the system 

 Intermediate parameters of the system 
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 Intermediate parameters of the system 

All fluxes are expressed per m2 of soil. Dimensionless values are indicated by (.) 

2. Problem formulation 

Our objective is to optimize a reduced greenhouse model which controlled variables are indoor 
temperature and relative pressure and actuators are the fog system (amount of generated water vapour), 
the vent opening (vent opening angle), the soil and the air heating.  

Heat and water vapour balances have been first formulated in order to obtain the main equations of the 
whole model. Then particular equations have been added to complete the model.  

Table 1. Notations 

Qair Air heating loads(Wm-2)   s Vents opening surface (m2) 

Qsol Soil heating loads(Wm-2) Ti Indoor temperature (°C) 

l Injected evaporative cooling by fog system (Wm-2) Te outdoor temperature (°C) 

p(Ti) Water vapor saturation pressure at Ti (hPa) Pi Indoor pressure(hPa) 

V Wind speed (m/s) Pe outdoor pressure(hPa) 

Rg Outside global radiation (Wm-2)   

  
3. The identification problem 

As already exposed with more details in a previous paper [7], identification techniques in the case of 
greenhouse requires a system approach of the thermal and mass transfers which can be described by 4 
types of variables describing the greenhouse and its environment: the entry vector U(t), which describes 
the initial conditions from which the system evolves; the output vector Y(t), or the set of state variables 
which can be observed and measured; the current state of the system X(t), which includes the state 
variables of the system evolving as a function of time and the vectors of unknown system parameters. The 
dynamic behavior of the system can be described by a set of 2 equations: 
A state equation:   

PtUtXf
dt

tdX ,,    (1) 

An observation equation:  

PtUtXgtY ,,   (2) 

4. Physical modeling of greenhouse climate 

4.1 The heat and water vapour balances 

In order to reduce the system order of the thermal model; we have considered an empirical approach 
based on considerations about the characteristic time scales of each thermal component of the system. We 
have thus considered two main components: The soil and heavy structural elements. With characteristic 
time scale much longer than our observation time scale. They will be collectively gathered under the form 
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of a virtual thermal mass characterized by its virtual temperature Tm and thermal capacity Cm. The crop - 
greenhouse superstructure and the enclosed air space, which characteristic time scale ( c) is low (200< c< 
500s) and rather similar to our observation time scale (3600s or 900s). It can be characterized by its 
temperature Ti   and water vapour pressure Pi. The virtual thermal mass equation can be represented by the 
following differential equation [6]) :  

RgQTTh
dt

dTC solmi
m

m )(   (3) 

Where the first term on the right hand side is the heat exchanged with the greenhouse air, the second 
one is the soil heating flux and the last one, the solar gain directly absorbed by the thermal mass. 

Neglecting air inertia in front of the the heavy structure, one can represent the air thermal balance as 
follows [8]: 

)()()()(0 ieliesieimair PPKTTKTTKTThQRg  (4) 

where the first term on the right hand side is the solar gain, the second one the air heating, the third 
one the thermal exchange with the thermal mass, the fourth one is the overall heat exchange between 
inside and outside and the fifth and last term represents the sensible and latent heat exchanges by 
ventilation and leakages.The air water vapour balance takes into account the crop transpiration, the water 
vapour added by fogging and the exchanges with outside, it can be represented by the following equation 
[9]:  

leilii
i

l PPKPTPBRgA
dt
dP

C )())((  (5) 

Where the first term of the right hand side represents the crop transpiration (simply described as a 
linear function of global radiation and saturation deficit), the second one the exchanges by ventilation and 
the last one the contribution of the fog system[1].  

4.2 Solving the equations 

Simultaneous integration of the equations of energy (eq.3 and 4) and water vapour balances (eq.5) 
leads to a system of 3 equations with 3 unknowns (Tm, Ti, Pi) which can be presented in a recursive form 
as a function of the past (time n), the instantaneous input vectors (Rg, T0, V, P0, P(Ti)), of the command 
variable (Qsol, Qair, l) and of model parameters (included in the matrices line) which are partially to be 
identified. 

The complete system can then be represented is as follows [1]: 

l

TiP
eP

gR

SBSBSr
ttniPniP exp1exp1

 (6) 

With 



Abdelhafi d Hasni et al. / Energy Procedia 6 (2011) 371–380 375

v

pC
SBdVsCAlsVCAl 00

 (7) 

SBdpCVsCAlpCVsCAlpC 00  (8) 

SB   (9) 

Inside greenhouse temperature gives rise to the following equation [3, 4 & 7] : 

iP
eP
airQ

gR
eT

v
lK

v
lK

vvv

h
nmT

v

h
niT

1
11

  (10) 

Where  

iP
eP
airQ
solQ

gR
eT

lKK
lK

sKK
lK

sKKsKKhsKKh

htt
nmTnmT

1
1exp1exp1

 (11)  

5. Principle of Model parameters identification 

The first optimizer which was used for the model parameters identification is a Genetic Algorithm 
(GA) based on the laws of species evolution, with at each generation a species evolves spreading in order 
to better adapt to their environment. To apply this method to an optimization problem, we start from an 
initial population (first generation) which is composed of a set of points in a search space domain. All the 
searching space points have an assigned chromosome type; this is a different string for each position in 
the searching space. Binary codification is usually selected to mime chromosomes. Starting from this 
initial population, a genetic operator set is applied to obtain a new population (new generation). The result 
of genetic operator application depends on the cost index value of each individual. [2,10,11,12] 

PSO is basically developed through simulation of bird flocking in two-dimension space. The position 
of each agent is represented by XY axis position and also the velocity is expressed by vx (the velocity of 
X axis) and vy (the velocity of Y axis). Modification of the agent position is realized by the position and 
velocity information. Bird flocking optimizes a certain objective function. Each agent knows its best 
value so far (pbest) and its XY position[4,5,6]. This information is analogy of personal experiences of 
each agent. Moreover, each agent knows the best value so farin the group (gbest) among pbest. This 
information is analogy of knowledge of how the other agents around them have performed. Namely, each 
agent tries to modify its position using the following information [10,13,14,15]: 
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- The current positions (x,y), - The current velocities (vx,vy), -The distance between the current 
position and pbest, 4) The distance between the current position and gbest 

This modification can be represented by the concept of velocity. Velocity of each agent can be 
modified by the following equation: 

k
ii

k
ii

k
i

k
i sgbestrandcspbestrandcwvv 2211

1     (12)     

 

Where 
vi velocity of agent i at iteration k; w weighting function; ci weighting factor; rand random number 

between 0 and 1; k
is current position of agent i at iteration k; pbesti p best of agent i;  gbest of the group. 

The following weighting function is usually utilized in(13). 

iter
iter

www
max

minmax   (13) 

Where: wmax initial weight; wmin final weight; itermax maximum iteration number; iter current iteration 
number. 

Using Eqs. (13) and (14) a certain velocity, which gradually gets close to pbest and gbest can be 
calculated. The current position can be modified by the following equation: 

11 k
i

k
i

k
i vss   (14) 

Eq. (13) consists of three terms: the first one depends on the particle’s previous speed, the second term 
depends on the distance between the particle’s best previous and current position. The last term shows the 
effect of the swarm’s best experience on the velocity of each individual in the group. This effect is 
considered through the distance between swarm’s best experience (the position of the best particle in the 
swarm) and the ith particle’s current position. Eq. (15) simulates the flying of the particle toward a new 
position.  

The role of the inertia weight w is considered very important in PSO convergence behavior [15,16]. 
The inertia weight is employed to control the impact of the previous history of velocities on the current 
velocity. In this way, the parameter w regulates the trade-off between the global and local exploration 
abilities of the swarm. 

 A large inertia weight facilitates global exploration (searching new areas), while a small one tends to 
facilitate local exploration, i.e. finetuning the current search area. A suitable value for the inertia weight w 
usually provides balance between global and local exploration abilities and consequently a reduction on 
the number of iterations required to locate the optimum solution.  

The reminding parameters of the temperature and pressure balance equations to be optimized are the 
following:Tm0, h, , , , B, CAl , s0, d0, Pi0. 

Once we have chosen the parameters to be optimized, one must define also their numerical limits. 
Thus, we have defined the search space for the different parameters as shown in Table2[1,17]. 
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Table 2: Search space of the parameters 

 
As objective function, we have considered the equations of air temperature Ti defined by the relations 

(10), our objective being to minimize the difference between measured and calculated values with the 
selected parameters. 

6. Results and Discussion 

The inside air temperature and humidity simulation models were identified using the described 
approaches for a greenhouse between 01 and 08 july located near Avignon in south-east France. The 
greenhouse had a tomato-crop area of 416 m2, in a double roof plastic house. Several actuators and 
sensors were installed and connected to an acquisition and control system based on a personal computer 
and a data acquisition and control card using a sampling interval of 1 hour. Only few seconds are required 
to identify the parameters of the reduced model with a personal computer.  

Since the PSO and GA algorithms depend only on the objective function to guide the search, it must be 
defined before the algorithms are initialized. With experimental to (5), a Mean Quadratic Errors (MQE) is 
chosen as the objective function in this study defined by[18]: 

 
N

j
ii jTjT

N
MQE

1

2
exp

1   (15) 

Where N is the number of data; Ti the indoor temperature calculates Tiexp the indoor temperature 
experimental The contribution of this paper is to apply the proposed PSO algorithm to minimize the MQE 
value. 

In the present simulations, the packet software of Matlab is programmed to implement the above PSO 
algorithm, the related values assigned to the variables of the PSO algorithm are given by sampling 
number N = 161, the number of the population particles = 2000, the velocity decline parameter w = 0, the 
strength parameter for the local attractors and the global attractor c1=2, c2=2, and number of iterations 
Niter=1000 in the current search.  

 
For the genetic algorithm, a simple crossover and a binary mutation were performed. Fitness is also 

defined as an indicator for measuring the individual’s quality for survival. Its concept is similar to that of 
an objective function in conventional optimization problems. Relatively good individuals with higher 
fitness reproduce, and relatively bad individuals with lower fitness die during evolution. An individual 
with maximum fitness means an optimal solution. The evolution speed is significantly affected by the 
degree of diversity of the population. A lower diversity prevents the evolution of the population. In this 
study, therefore, several (200) individuals in another population are added to the original population in 
order to maintain the diversity of the population. The search procedure by the genetic algorithm is as 

 CAl  s0(m) d0(m)  h (Wm-2K
-1

) 
Min 0 0 0 0 0.5 

Max 0.3 1 1 0.2 30 

  B (Wm-2hPa-1)  (s) Tm0 (°C) Pi0(Pa) 

Min 0.2 1 2 10 13 

Max 0.8 9.5 1100 32 30 
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follows. Step 1: the initial population is generated at random. Step 2: some individuals are added to the 
original population from another population. Step 3: genetic operations, crossover and mutation, are 
applied to those individuals. Through the crossover, some individuals are newly created according to the 
crossover rate (80%), and other sorts of individuals are then newly generated according to the mutation 
rate (0.5%). From these operations, new individuals are obtained. Step 4: the fitness of all individuals is 
calculated using the identified neural-network model. Step 5: the individuals with higher fitness are 
selected and retained for the next generation. An optimal value can be obtained by repeating these 
procedures [19, 20]. 

Table 3: Best parameter values identified by the particle swarm optimization. 

CAl  s0(m) d0(m)  h (Wm-2K
-1

) 
0.2996 0.4700 0.1768 0.0630 15.7719 

 B (Wm-2hPa-1)  (s) Tm0 (°C) Pi0(Pa) 

0.2152 5.0746 738.8353 18.9187 23.5662 

Table 4: Best parameter values identified by the genetic algorithm. 

CAl  s0(m) d0(m)  h (Wm-2K
-1

) 
0.2933 0.9841 0.9444 0.03 4.0156 

 B (Wm-2hPa-1)  (s) Tm0 (°C) Pi0(Pa) 

0.3711 3.8472 949.5763 15.1894 29.9254 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Temperature inside greenhouse 
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The selection of models is done comparing the errors between the experimental data and the model 
identified by a genetic algorithm and the errors between the experimental, and the calculus with the model 
identified by the PSO, calculating the Mean Relative Error (MRE), the Mean Absolute Error (MAE), the 
Standard Error (SE) and the Mean Quadratic Errors (MQE). The four-error measures are given by the 
following relations[21]: 

 
N

j
ii jTjT

N
MAE

1
exp

1   (16) 

N

j i

ii

jT

jTjT

N
MRE

1

exp 1001   (17) 

N

j
ii jTjT

N
MQE

1

2
exp1

1   (18) 

Table 5: Statistical accuracy measures 

SE MRE MAE MQE The errors 
0.1349 2.7633e-004 1.2735 0.1341 Model identified by GA algorithm 
0.1288 2.5834e-004 1.2373 0.1280 Model identified by PSO algorithm 

The best results obtained by the genetic algorithm and particle swarm optimization are given in Table3 
and Table4. Fig1 compare the results given by the PSO and GA Algorithms with the experimental values. 
It's clear from fig1 that a good agreement can be seen between the experimental results and the simulation 
obtained from the tow algorithm, both in terms of dynamics and intensity of the signal. In order to 
estimate the validity of our algorithms, we have calculated the errors between the experimental and 
simulated results. We can see (Table 5) that, for the present problem the performance of the PSO is better 
than GA. The PSO Algorithm improves very significantly the precision of the simplified greenhouse 
model. Identification of the physical parameters of a simplified model describing the interactions between 
crop and climate in a horticultural greenhouse can be seriously improved in terms of calculation time and 
accuracy of the results, by using a PSO algorithm instead of the GA Algorithm. 

7. Conclusions 

The application of particle swarm optimization (PSO) to optimized parameters of a greenhouse climate 
model with Continuous Roof Vents has been carried out. Comparison with GA has been made. The PSO, 
a recently developed stochastic efficient optimization algorithm, shows excellent ability to optimized a 
greenhouse climate model. An attractive advantage of PSO is the ease of implementation in both the 
context of coding and parameter selection. The algorithm is much simpler and intuitive to implement than 
complex, probability based selection and mutation operators required for evolutionary algorithms such as 
the GA. Furthermore, the obtained results showed that the PSO outperforms the GA for the problem at 
hand. 



380  Abdelhafi d Hasni et al. / Energy Procedia 6 (2011) 371–380

References 
[1] T.Boulard, B.Draoui. In-situ Calibration of a greenhouse climate control model including sensible heat, water vapour and 

CO2 balances. IMACS/IFAC bruxelles, BELGIUM; 1995/05/09-12.pVI.A.1-1 ; VI.A.1-6  
 [2] Electromagnetic Optimization by Genetic Algorithms, edited by Y. Rahmat-Samii and E. Michielssen, John Wiley & Sons, 

New York, 1999. 
 [3] A. Hasni, B. Draoui, T. Boulard, R. Taibi , A. Hazzab, 2008, Evolutionary Algorithms In The Optimization Of Greenhouse 

Climate Model Parameters. International Review on Computers and Software, (I.RE.C0.S.)  
[4] Kennedy J, Eberhart R. Particle swarm optimization. In: Proc IEEE Int Conf Neural Networks, vol. IV, Perth, Australia, 

1995. p. 1942–8. 
[5] Eberhart RC, Shi Y. Comparison between genetic algorithms and particle swarm optimization. In: Proc IEEE Int Conf Evol 

Comput, Anchorage, AK, May 1998. p. 611–6. 
[6] Angeline PJ. Using selection to improve particle swarm optimization.  In: Proc IEEE Int Conf Evol Comput, Anchorage, 

AK, May 1998.p. 84–9. 
[7] T. Boulard, B. Draoui and F.Neirac, Calibration and validation of a greenhouse climate control model. Workshop: 

Mathematical & Control Application in Agriculture and Horticulture. Silsoe Grande  Bretagne. Acta Horticulturae. 1994. 
[8]T. Boulard and B. Draoui. Natural ventilation of greenhouse with continuous roof vents: Measurements and data analysis. 

Journal of Agricultural Engineering Research, (61):27{36, (1995). 
[9] T. Boulard and R. Jemaa. Greenhouse tomato crop transpiration model application to irrigation control. Acta Horticulturae 

335. 1993. p 381-387. 
[10]EL-Zonkoly, A.M(2006). Optimal tuning of power systems stabilizers and AVR gains using particle swarm optimization. 

International Journal of Expert Systems with Applications (Vol.31(939)). pp.551–557 
 [11]Chau KW. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. Journal of 

Hydrology 2006;329: 363–7. 
[12]Geethanjali M, Mary Raja Slochanal S, Bhavani R. PSO trained ANN-based differential protection scheme for power 

transformers. Neurocomputing, 2007, in press (corrected proof). 
[13]Liao CJ, Tseng CT, Luarn P. A discrete version of particle swarm optimization for flowshop scheduling problems. 

Computer & Operations Research 2007;34:3099–111. 
[14]Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G. A particle swarm optimization algorithm for makespan and total 

flowtime minimization in permutation flowshop sequencing problem. European Journal of Operational Research 2007;177:1930–47. 
 [15]Long Liu &al, Culture conditions optimization of hyaluronic acid production by Streptococcus zooepidemicus based on 

radial basis function neural network and quantum-behaved particle swarm optimization algorithm Enzyme and Microbial 
Technology44 (2009) 24–32 

[16] Y. Shi, R. Eberhart, Parameter selection in particle swarm optimization, in: Proceedings of seventh Annual Conference on 
Evolutionary Program, March 1998, pp. 591–600. 

[17]B.Draoui, Caractérisation et analyse du comportement thermo-hydrique d'une serre horticole. Thèse de Doctorat de 
l'université de Nice-Sophia Antipolis,(1994). 

[18]Yih-Lon Lin and al, A particle swarm optimization approach to nonlinear rational filter modeling, Expert Systems with 
Applications 2007, in press (corrected proof) 

[19]Hasni et al., Evolutionary algorithms in the optimization of natural ventilation parameters in a greenhouse with continuous 
roof vents. Acta Hortic 2006. (ISHS). v719. 49-56. 

|20] A. Hasni, B. Draoui, T. Boulard, R. Taibi , B.Dennai. A Particle Swarm Optimization of Natural Ventilation Parameters in a 
Greenhouse with Continuous Roof Vents, Sensors & Transducers Journal, Vol. 102, Issue 3, March 2009, pp. 84-93,  

|21] A. Hasni, B. Draoui, M.Latfaoui, T. Boulard. Identification of Natural Ventilation Parameters in a Greenhouse with 
Continuous Roof Vents, using a PSO and GAs. Sensors & Transducers Journal, Vol. 119, Issue 8, August 2010, pp. 182-192 
 


