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Abstract

Following a suggestion of Zvonkin and Levin, we generalize Martin-L€oof�s definition of infinite random
sequences over a finite alphabet via randomness tests to effective topological spaces with a measure. We

show that under weak computability conditions there is a universal randomness test. We prove a theorem

on randomness preserving functions which corrects and extends a result by Schnorr and apply it to a

number of examples. In particular, we show that a real number is random if, and only if, it has a random b-
ary representation, for any bP 2. We show that many computable, continuously differentiable real func-
tions preserve randomness. Especially, all computable analytic functions which are not constant on any

open subset of their domain preserve randomness. Finally, we introduce a new randomness concept for
subsets of natural numbers, which we characterize in terms of random sequences. Surprisingly, it turns out

that there are infinite co-r.e. random sets.

� 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Informally, a sequence of zeros and ones is random, if it has no detectable regularity. Precise
definitions are based on recursion theory. One possibility for defining random sequences is via the
program-size complexity of the finite prefixes; compare, e.g., [13]. Another approach is via ran-
domness tests and due to Martin-L€oof [14], who, in fact, gave the first definition of this randomness
notion. Martin-L€oof�s idea was to call a sequence non-typical, i.e., not random, if there is an
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effectively testable property which the sequence shares only with few other sequences. This is made
more precise be demanding that the sequence lies in the intersection of a computable sequence ðUnÞn
of open sets Un whose measure tends to 0 quickly. Martin-L€oof�s approach has been generalized by
Zvonkin and Levin [23] to spaces which allow the formulation of computable sequences of open sets
with fast decreasing measure. In this paper, we extend and generalize this work.
In Section 3 we introduce effective topological measure spaces, ETMSs, for short. We prove the

existence of a universal randomness test under rather weak conditions, and consider various basic
properties of the resulting randomness notion. It should be mentioned that this approach allows
for example the introduction of random real numbers without referring to random sequences.
Furthermore, some examples of ETMSs and random elements are given. In Section 4 we ask
under which conditions a function between ETMSs preserves randomness. Our main invariance
result gives sufficient conditions and corrects and extends a corresponding result by Schnorr [17].
In Section 5 we concentrate on the ETMS of real numbers. The invariance result is used to show
that the randomness notion introduced directly on the real numbers is identical with the ran-
domness notion for real numbers introduced via randomness of the b-ary representation of a
number. This also gives a new proof of the result by Calude and J€uurgensen [2] that randomness of
a real number defined via randomness of its b-ary representation does not depend on the base b.
Furthermore, we consider real vectors and sequences. Further main results in this section state
that many computable, continuously differentiable real functions and every computable analytic
function which is not constant on any open subset of its domain preserve randomness. In the last
section, we consider another ETMS: the power set of the natural numbers, endowed with the
natural topology as a complete partial order. This point of view leads to a new and interesting
notion of randomness for sets of natural numbers, which is different from the usual one defined
via randomness of characteristic functions. The first main result of the section is a characterization
of randomness for sets in terms of usual random sequences. The second main result is a theorem
which implies that there are infinite random co-r.e. sets.
This paper and the paper Hertling and Weihrauch [7] are abridged versions of the more detailed

technical report [8] by Hertling and Weihrauch.

2. Notation

The power set fA jA � Xg of a set X , containing all subsets of X , is denoted by 2X . By
f :� X ! Y we mean a (partial or total) function f with domain domðf Þ � X and range
rangeðf Þ � Y . The notation f : X ! Y indicates that the function is total, i.e., domðf Þ ¼ X . We
denote the set of natural numbers by N ¼ f0; 1; 2; . . .g. We use the notions of a computable
function f :� N ! N and of an r.e. set A � N in the usual sense. A sequence is a mapping
p : N ! X to some set X and usually written in the form ðpnÞn2N or just ðpnÞn. The infinite product
of X is the set of all sequences of elements in X , denoted by Xx :¼ fp jp : N ! Xg. For any k P 0
the finite product X k :¼ fw jw : f1; . . . ; kg ! Xg is the set of all vectors w ¼ wð1Þwð2Þ 
 
 
wðkÞ
over X of length k. The empty word, the only element of X 0, is denoted by e. The length of a word
w is denoted by jwj.
We use the standard bijection h; i : N2 ! N defined by hi; ji :¼ 1

2
ðiþ jÞðiþ jþ 1Þ þ j. We define

higher tupling functions recursively by hn1; n2; . . . ; nkþ1i :¼ hhn1; . . . ; nki; nkþ1i, for k P 2. The
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inverses pk
i are defined by hpk

1n; . . . ;p
k
kni ¼ n. We also use the standard bijective numbering

D : N ! fE � N jE is finiteg of the set of all finite subsets of N, defined by
D�1ðEÞ :¼

P
f2i j i 2 Eg, and the numbering mQ : N ! Q of the set of rational numbers defined by

mQðhi; j; kiÞ :¼ ði� jÞ=ðk þ 1Þ.
For notions like topology, base, subbase, r-algebra generated by a class of sets, measure, r-

finite measure, finite measure, probability measure, and Lebesgue measure, the reader is referred
to standard textbooks on topology and measure theory.

3. Effective topological measure spaces

Zvonkin and Levin [23, pp. 110–111], observed that Martin-L€oof�s [14] definition of randomness
tests and of random elements can easily be generalized from the space of infinite sequences over a
finite alphabet to any separable topological space with a given numbering of a base and with a
measure. In this section we provide a convenient framework based on the notion of an effective
topological measure space. Among other things we prove the existence of a universal randomness
test under rather weak assumptions.
The basic setting in which we work is given by the following definition. It is fundamental in

effective descriptive set theory. It also fits well into Type-2 Theory of Effectivity; seeWeihrauch [22].

Definition 3.1. An effective topological measure space, ETMS for short, is a triple ðX ;B; lÞ,
where X is a topological space, B : N ! 2X is a total numbering of a base of the topology
of X , and l is a measure defined on the r-algebra generated by the topology of X (notation:
Bi :¼ BðiÞ).

Fundamental to our approach is the notion of computability for sequences of open sets ex-
plained in the following definition. Furthermore, often we shall consider ETMSs which satisfy the
following intersection property.

Definition 3.2. Let X be a topological space and ðUnÞn be a sequence of open subsets of X .
1. A sequence ðVnÞn of open subsets of X is called U -computable if, and only if, there is an r.e. set

A � N such that Vn ¼
S

hn;ii2A Ui for all n 2 N.
2. We say that U satisfies the intersection property if, and only if, there is an r.e. set A � N with

Ui \ Uj ¼
[

fUk j hi; j; ki 2 Ag for all i; j 2 N:

Remark 3.3. If the numbering B does not satisfy the intersection property, or if one is given only a
numbering B of a subbase of the topology (this is the usual setting in Type-2 Theory of Effectivity;
see Weihrauch [22]), then one can in a natural way define a numbering B\ of a base satisfying the
intersection property: B\ðiÞ :¼

T
j2Di

Bj. It is clear that B is B\-computable. If B satisfies the in-
tersection property, then B\ is B-computable as well.

The next definition generalizes Martin-L€oof�s [14] definition of random sequences to elements from
an arbitrary ETMS.
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Definition 3.4. Let ðX ;B; lÞ be an ETMS.
1. A randomness test on X is a B-computable sequence ðUnÞn of open sets with lðUnÞ6 2�n for all

n 2 N.
2. An element x 2 X is called non-random if, and only if, x 2

T
n2N Un for some randomness test

ðUnÞn on X . It is called random if, and only if, it is not non-random.

Remark 3.5. Zvonkin and Levin [23] gave a similar generalization of Martin-L€oof�s randomness
tests, though is seems that in their approach the numbering B needs to satisfy an additional
technical condition which we do not need.

In the following examples of ETMSs the numberings of bases satisfy the intersection
property.

Example 3.6.
1. The simplest example of an ETMS is a finite discrete space ðR;B; lÞ, where R ¼ fs0; . . . ; sjRj�1g
is a finite set containing at least 2 elements, where each singleton set has measure 1=jRj, and
where Bi :¼ fsi mod jRjg. In this case every non-empty open set has positive measure. Hence, ev-
ery point in R is random.

2. The original ETMSs are the spaces ðRx;B; lÞ of infinite sequences over a finite alphabet R with
at least two elements, where B is the standard numbering of the set fwRx jw 2 R�g given by
Bi :¼ mðiÞRx where m is the length-lexicographical bijection between N and R� (given some or-
dering on R), and where lðwRxÞ ¼ jRj�jwj

for w 2 R� [14]. Clearly, every computable sequence
p 2 Rx is non-random (choose Ui :¼ p0p1 
 
 
 pi�1Rx).

3. For the real numbers R we consider the ETMS ðR;B; kÞ, where k is the usual Lebesgue measure
and B is the standard numbering of the set of non-empty open intervals with rational endpoints
defined by Bhi;ji :¼ ðmQðiÞ � mQþðjÞ; mQðiÞ þ mQþðjÞÞ, where in addition to mQ (see Section 2) we
use the numbering mQþ of the positive rational numbers defined by mQþðhi; kiÞ :¼
ðiþ 1Þ=ðk þ 1Þ. When we speak about random real numbers we mean random elements of this
ETMS. A real number x is computable if, and only if, there is a computable function f such
that x 2 Bf ðnÞ and lðBf ðnÞÞ6 2�n for all n 2 N; see Weihrauch [22]. Clearly, every computable
real number is non-random (choose Un :¼ Bf ðnÞ).

4. Let the ETMS ð½0; 1�; ~BB; ~kkÞ be the canonical restriction of ðR;B; kÞ from 3 above to the unit in-
terval, that is, ~BBi :¼ Bi \ ½0; 1�, and ~kkðSÞ :¼ kðSÞ, for S � ½0; 1�.

We state some elementary properties of random elements in ETMSs. Let us call two num-
berings B and C of bases of a topological space equivalent if B is C-computable and C is B-
computable.

Proposition 3.7. Let ðX ;B;lÞ and ðX ;C; lÞ be ETMSs such that B and C are equivalent. Then

randomness on the two spaces is the same.

The proof is straightforward, and we omit it. The next proposition says that one may assume
without loss of generality that the sequence ðVnÞn of a randomness test is decreasing if the ETMS
satisfies the intersection property.
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Proposition 3.8. Let ðX ;B;lÞ be an ETMS satisfying the intersection property, and let ðVnÞn be a
randomness test on X . Then ðUnÞn with Un :¼

T
i6 n Vi is a randomness test on X with Unþ1 � Un for

all n and
T1

n¼0Un ¼
T1

n¼0 Vn.

Again, the proof is straightforward and omitted.
It is remarkable that the ETMS ðRx;B; lÞ from Example 3.6(2) has a universal randomness test

[14].

Definition 3.9. A randomness test ðUnÞn on an ETMS ðX ;B;lÞ is called universal if, and only if, for
any randomness test ðVnÞn on ðX ;B; lÞ there is a number c such that Vnþc � Un for all n 2 N.

Often one needs only the following property of a universal randomness test: if ðUnÞn is a uni-
versal randomness test, then the set

T1
n¼0Un consists exactly of all non-random elements of the

space.
Let us call a measure l on an ETMS upper semi-computable, if, and only if,

the set hj; ni l
[
i2Dj

Bi

 !�����
(

< mQðnÞ
)
is r:e: ð1Þ

Theorem 3.10. Every ETMS ðX ;B; lÞ with an upper semi-computable measure has a universal
randomness test.

Proof. First we produce an effective list of randomness tests on ðX ;B; lÞ which contains all
randomness tests ðSnÞn satisfying lðSnÞ < 2�n for all n. Then the universal test will be obtained by a
diagonal construction.
The upper semi-computability of the measure implies that also the set

Z :¼ hj; ni l
[
i2Dj

Bi

 !�����
(

< 2�n

)
is r.e.. Let ðWkÞk2N be a standard numbering of all r.e. subsets of N (compare Rogers [16] or
Weihrauch [19]). For each k 2 N let ðUk;nÞn be the kth computable sequence of open sets, defined
by Uk;n :¼

S
hn;ii2Wk

Bi ¼
S

i2Vk;n Bi, where Vk;n :¼ fi j hn; ii 2 Wkg. Since fhk; n; ii j hn; ii 2 Wkg is r.e.
and infinite there is an injective total computable function h : N ! N such that
rangeðhÞ ¼ fhk; n; ii j hn; ii 2 Wkg. Then Vk;n½m� :¼ fi j ð9m0

6mÞhðm0Þ ¼ hk; n; iig is the set of all
those elements in Vk;n which have been enumerated by h into Vk;n until stage m. We cut the sets Vk;n
off in order to obtain randomness tests. Therefore we define eVVk;n by

i 2 eVVk;n : () i 2 Vk;n and hD�1ðVk;n½minfm j i 2 Vk;n½m�g�Þ; ni 2 Z:

It is clear that eVVk;n � Vk;n and that the set fhk; n; ii j i 2 eVVk;ng is r.e. We define eUUk;n :¼
S

i2~V k;nBi
.

Clearly, lð eUUk;nÞ6 2�n by construction. Thus, for each k, the sequence ð eUUk;nÞn is a randomness test.
On the other hand, let ðSnÞn be a randomness test such that lðSnÞ < 2�n for all n. Then
ðSnÞn ¼ ðUk;nÞn for some k. Then eVVk;n ¼ Vk;n, hence eUUk;n ¼ Uk;n, for all n. That means, any such
randomness test ðSnÞn occurs in the list ðð eUUk;nÞnÞk of randomness tests.
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Define Un :¼
S1

k¼0
eUUk;nþkþ1 for all n. We claim that ðUnÞn is a universal randomness test. It is

straightforward to check that lðUnÞ6 2�n and that ðUnÞn is B-computable, hence, that ðUnÞn is a
randomness test. Let ðSnÞn be an arbitrary randomness test. Then also ðSnþ1Þn is a randomness test.
Hence, there is some k such that Uk;n ¼ Snþ1 for all n. Due to lðSnþ1Þ < 2�n for all n, we obtain alsoeUUk;n ¼ Snþ1, hence Snþkþ2 � Un, for all n. We conclude that ðUnÞn is a universal randomness test. �

Zvonkin and Levin [23, Proposition 4.1] state without proof that in their framework there exists
a universal randomness test if the function j 7!lð

S
i2Dj

ÞBi mapping natural numbers to real
numbers is a computable function in the usual sense, which means that

the set hj;m; ni mQðmÞ
�����

(
< l

[
i2Dj

Bi

 !
< mQðnÞ

)
is r:e::

It is interesting that for the existence of a universal randomness test only the upper semi-com-
putability of the measure (Condition (1)) is needed, while in other contexts the complementary
condition:

the set hj;mi mQðmÞ
�����

(
< l

[
i2Dj

Bi

 !)
is r:e:

seems to be more important, see [13,21,23].
A subset Y of a topological space X is called dense in X if, and only if, every open subset of X

contains an element of Y . It is called nowhere dense if, and only if, its closure does not contain an
open set. It is called meager if, and only if, it is the union of countably many nowhere dense sets.

Proposition 3.11. Let ðX ;B; lÞ be an ETMS.
1. The set of non-random elements in X has l-measure 0.
2. The set of random elements is meager, if the space X has a universal randomness test and the set of

non-random elements is dense in X .

We leave the simple proof to the reader. This proposition says that, on the one hand, in a
measure theoretical sense the set of non-random elements is small. On the other hand, topolog-
ically the set of random elements is small, if the space has a universal randomness test, and if the
set of non-random elements is a dense subset of X . Of course, the second statement of the
proposition is interesting only if the space itself is not meager. For example, all of the ETMSs in
Examples 3.6(2)–(4) have these properties.
Is there a canonical definition of the structure of an ETMS on the direct product of finitely or

countably many ETMSs? In order to answer this question, remember that an ETMS is given by
(1) a topology, (2) a measure on the r-algebra generated by the topology, and (3) a total num-
bering of a base of the topology. The construction of the product topology on the direct product
of finitely or infinitely many topological spaces is standard. The r-algebra generated by this to-
pology coincides with the standard product of the r-algebras. Also, on the direct product of fi-
nitely many measure spaces with r-finite measures one can define in a standard way a measure,
which turns out to be r-finite. Similarly, on a countably infinite product of spaces with probability
measures one can define in a standard way a measure, which turns out to be a probability
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measure. What is left to do, is to define a canonical numbering of a base of the product topology
of the direct product of a finite or countably infinite sequence of topological spaces if each of them
is endowed with a numbering of a base. This can also be done in a straightforward way as follows.
Let ðX ðiÞ;BðiÞ; lðiÞÞ for i ¼ 0; 1; 2; . . . be ETMSs. We define a numbering Bð0Þ � 
 
 
 � BðnÞ of a base
of the product topology on X ð0Þ � 
 
 
 � X ðnÞ and a numbering ð

Q1
k¼0 B

ðkÞÞ of a base of the product
topology on

Q1
k¼0 X

ðkÞ by

ðBð0Þ � 
 
 
 � BðnÞÞhi0; . . . ; ini :¼ Bð0Þ
i0 � 
 
 
 � BðnÞ

in ;Y1
k¼0

BðkÞ

 !
hn; hi0; . . . ; inii :¼

Yn
k¼0

BðkÞ
ik �

Y1
k¼nþ1

X ðkÞ:

If ðX ðiÞ;BðiÞ; lðiÞÞ ¼ ðX ;B; mÞ for all i6 n (respectively, for all i 2 N), then the resulting ETMS is
written ðXnþ1;Bnþ1;lnþ1Þ (respectively, ðXx;Bx;lxÞ).

Example 3.12. To give an example, consider the ETMS ðR;B;lÞ from Example 3.6(1) and the
ETMS ðRx; ~BB; ~llÞ from Example 3.6(2). The topology on Rx is the product topology of the discrete
topology on R, the measure ~ll on Rx is equal to the product measure lx of l, and the numbering ~BB
is equivalent (in the sense explained before Proposition 3.7) to the numbering Bx obtained by
applying the product construction to B.

By the following result, certain projections of random vectors or sequences are random again.
In particular, each component of a finite or infinite random vector is random.

Proposition 3.13.
1. Let

Qn
k¼0ðX ðkÞ;BðkÞ;lðkÞÞ be a product of ETMSs with finite measures. Let ði0; . . . ; ilÞ be a vector

of pairwise different indices ij with 06 ij 6 n. If ðx0; . . . ; xnÞ is random in the above space, then

ðxi0 ; . . . ; xilÞ is random in
Ql

k¼0ðX ðikÞ;BðikÞ; lðikÞÞ.
2. Let

Q1
k¼0ðX ðkÞ;BðkÞ; lðkÞÞ be a product of ETMSs with probability measures. Let ði0; . . . ; ilÞ be a

vector of pairwise different indices. If ðx0; x1; . . .Þ is random in the above space, then

ðxi0 ; . . . ; xilÞ is random in the product space
Ql

k¼0ðX ðikÞ;BðikÞ; lðikÞÞ.
3. Let

Q1
k¼0ðX ðkÞ;BðkÞ; lðkÞÞ be a product of ETMSs with probability measures. Let r : N ! N be an

injective computable function. If ðx0; x1; . . .Þ is random in the above space, then ðxrð0Þ; xrð1Þ; . . .Þ is
random in the product space

Q1
k¼0ðX ðrðkÞÞ;BðrðkÞÞ; lðrðkÞÞÞ.

The proof will be given in Section 4.
We conclude this section with ‘‘concrete’’ examples of random elements of an ETMS. A se-

quence ðqnÞn of rational numbers is called computable if, and only if, there is a computable
function f : N ! N with qn ¼ mQðf ðnÞÞ for all n. A real number x is called left-computable (right-
computable) if, and only if, there is a computable non-decreasing (non-increasing) sequence ðqnÞn
of rational numbers with limn!1 qn ¼ x; see [22].

Example 3.14.
1. Chaitin�s [4] X numbers are left-computable real numbers. Chaitin showed that they have a ran-
dom binary expansion.
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2. Let ðUnÞn be a universal randomness test on the space of real numbers ðR;B; kÞ of Example
3.6(3). Then, for any k, the open set Uk contains all non-random real numbers. This set is also
the disjoint union of a countable set of open intervals. The boundaries of these intervals lie out-
side of Uk, hence they are random real numbers. It is easy to see that the right-hand boundary
of any of these intervals is a left-computable real number.

3. The construction of the last example can also be carried out on the space ðRx;B;lÞ of sequences
(Example 3.6(2)). We consider R ¼ f0; 1g. For p; q 2 Rx define p < q : () p 6¼ q and pi < qi
where i :¼ minfj jpj 6¼ qjg, and p6 q : () p ¼ q or p < q. In the same way as in Example
3.14(2) one can construct a computable sequence ðwnÞn of finite strings such that
wn1

x
6wnþ11

x for all n and such that wn1
x converges towards a random binary sequence.

4. Randomness preserving transformations

The main result of this section is a theorem giving conditions under which a computable
function between ETMSs preserves randomness. This corrects and extends a result by Schnorr
[17].
For a finite alphabet R, call a function g : R� ! R� monotone if, and only if, gðvwÞ 2 gðvÞR� for

all v;w 2 R�, and call it unbounded on p 2 Rx if, and only if, for all n 2 N there is some prefix v of p
with jgðvÞjP n. The function gx :� Rx ! Rx induced by a monotone function g : R� ! R� is
defined by
1. p 2 domðgxÞ if, and only if, g is unbounded on p.
2. gxðpÞ 2 gðvÞRx for any p 2 domðgxÞ and for any prefix v of p.
It is clear that gx is well-defined by these conditions. A function f :� Rx ! Rx is called com-
putable if, and only if, f ¼ gx for some computable, monotone function g : R� ! R�; see [22].
Schnorr [17, Satz 6.5] claimed: if f :� f0; 1gx ! f0; 1gx

is a computable function satisfying
(9 constant K) (8 measurable A � f0; 1gx

) lðf �1ðAÞÞ6K 
 lðAÞ, and if x 2 domðf Þ is random, then
also f ðxÞ is random. This, as well as Lemma 6.6 and Satz 6.7 by Schnorr [17], are not correct, as
was also observed by Wang; see [6]. We give a counter-example.

Example 4.1. Let ðwnÞn be a computable sequence of strings wn 2 R� as in Example 3.14(3), i.e.,
such that the sequence ðwn1

xÞn is non-decreasing and converges towards a random sequence
r ¼ supfwn1

x jn 2 Ng in Rx. Define a monotone, computable function g : R� ! R� by gðeÞ :¼ e
and

gðvaÞ :¼ gðvÞ0 if the first jgðvÞj þ 1 symbols of va and of wjvaj1
x are equal;

gðvÞ otherwise


for all v 2 R� and a 2 R. Then domðgxÞ ¼ r and gxðrÞ ¼ 0x. Therefore, gx maps a random se-
quence to a non-random one. Since lðg�1x ðAÞÞ ¼ 06 lðAÞ for all measurable A � f0; 1gx

, this is a
counter-example to the claim above.

In fact, one needs an additional condition on the domain of definition of f . A sufficient con-
dition will be formulated in Theorem 4.5. First, we introduce computability of functions between
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ETMSs. A direct and natural definition can be obtained by demanding that the transformation is
continuous in an effective way.

Definition 4.2. Let ðX ;BÞ and ðY ;CÞ be two topological spaces with total numberings B and C of
bases. Let B satisfy the intersection property. We call a function f :� X ! Y computable, if, and
only if, there is a B-computable sequence ðUnÞn of open subsets of X with f �1ðCnÞ ¼ Un \ domðf Þ,
for all n.

Note that we assume that the numbering B satisfies the intersection property. If one does not
wish to assume this, then it seems to be more natural to demand that the sequence ðUnÞn is B\-
computable where B\ is associated with B as in Remark 3.3. If the spaces ðX ;BÞ and ðY ;CÞ are T0-
spaces and computable in the sense that the sets fhi; ji jBi ¼ Bjg and fhi; ji jCi ¼ Cjg are r.e., then
Definition 4.2 is equivalent to the definition of computable functions via standard representations
as in Weihrauch [22]. For a proof, see [8]. One checks that this definition generalizes the notion of
a computable function on Rx if one does not care about the precise domain of definition. For real
number functions this computability notion derived from the numbering B from Example 3.6(2) is
also the usual computability notion considered for example by Grzegorczyk [5], Lacombe [11],
Pour-El and Richards [15], Kreitz and Weihrauch [10], Weihrauch [19], Ko [9], and others; for
more references see [19,22].
Besides computability we need two additional conditions for a function in order to ensure

that it preserves randomness: one saying that we can in some effective, measure-theoretical
sense control its domain, and one saying that it may not map large sets to too small
sets. With the measure l on an ETMS ðX ;B; lÞ we associate as usual the outer measure l�

defined by

l�ðAÞ ¼ inf
X1
i¼0

lðUiÞ A �
[1
i¼0

Ui; and Ui is an element of the r-algebra generated by the

�����
(

topology; for all i

)

for arbitrary subsets A � X .

Definition 4.3. Let ðX ;B;lÞ be an ETMS. A set D � X is called fast enclosable if, and only if, there
is a B-computable sequence ðUnÞn of open sets with D � Un and l�ðUn n DÞ6 2�n for all n.

Definition 4.4. Let ðX ;B;lÞ and ðY ;C; ~llÞ be two ETMSs. A function f :� X ! Y is called re-
cursively measure-bounded if, and only if, there is a total computable function r : N ! N such that
for all open sets V � Y :

~llðV Þ6 2�rðnÞ ) l�ðf �1ðV ÞÞ6 2�n:

Many functions f :� X ! Y we shall use are even measure invariant, that is,
l�ðf �1ðV ÞÞ ¼ ~llðV Þ for all open V � Y . After these preparations we can formulate our theorem on
randomness preserving transformations.
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Theorem 4.5. Let ðX ;B; lÞ and ðY ;C; ~llÞ be ETMSs. Let B satisfy the intersection property. Let

f :� X ! Y be a computable, recursively measure-bounded function with a fast enclosable domain.
If x 2 domðf Þ is a random element of X , then f ðxÞ is a random element of Y .

Informally, a computable, recursively measure-bounded function with a fast enclosable domain
preserves randomness.

Proof. It is sufficient to prove the following: if ðVnÞn is a randomness test on ðY ;C; ~llÞ, then there is
a randomness test ðUnÞn on ðX ;B;lÞ with

f �1
\
n2N

Vn

 !
�
\
n2N

Un: ð2Þ

Let ðVnÞn be a randomness test on ðY ;C; ~llÞ, let AV � N be an r.e. set which shows that ðVnÞn is C-
computable, i.e., Vn ¼

S
hn;ji2AV

Cj, for all n. Let ðTnÞn be a B-computable sequence of open subsets
of X with f �1ðCnÞ ¼ Tn \ domðf Þ. Then the sequence ðRnÞn of subsets of X defined by
Rn :¼

S
hn;ji2AV

Tj is B-computable and satisfies f �1ðVnÞ ¼ Rn \ domðf Þ. Now let r : N ! N be a
total recursive function with l�ðf �1ð ~UUÞÞ6 2�n for all open subsets ~UU � Y with ~llð ~UUÞ6 2�rðnÞ, and
let ðSnÞn be a B-computable sequence of open subsets of X which encloses domðf Þ in the sense
domðf Þ � Sn and l�ðSn n domðf ÞÞ6 2�n for all n. We claim that the sequence ðUnÞn with

Un :¼ Snþ1 \ Rrðnþ1Þ

has the desired properties. It is a sequence of open sets. It is B-computable since both the sequence
ðSnþ1Þn and the sequence ðRrðnþ1ÞÞn are B-computable and the intersection of two B-computable
sequences is B-computable again. Note that here one uses the assumption that B satisfies the
intersection property. The sequence ðUnÞn satisfies

f �1ðVrðnþ1ÞÞ ¼ Un \ domðf Þ for all n ð3Þ

because of f �1ðVmÞ ¼ Rm \ domðf Þ, for all m, and domðf Þ � Sl, for all l. From (3) we obtain for
all n:

lðUnÞ6 l�ðUn \ domðf ÞÞ þ l�ðUn \ ðX n domðf ÞÞÞ

6 l�ðf �1ðVrðnþ1ÞÞÞ þ l�ðSnþ1 n domðf ÞÞ

6 2�ðnþ1Þ þ 2�ðnþ1Þ ¼ 2�n:

Finally, (3) implies (2). This ends the proof. �

In our counter-example, Example 4.1, the set domðf Þ ¼ frg, r random, cannot be fast enclo-
sable. We remark that for infinite sequences Levin [12] has obtained a randomness preservation
result of a different kind. It can roughly be described by saying that certain operators A transform
a l-random sequence into an AðlÞ-random sequence where l belongs to a certain class of mea-
sures and AðlÞ is the measure induced by l and A.
As a first application of Theorem 4.5, we prove Proposition 3.13.
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Proof of Proposition 3.13. For the proof of Proposition 3.13(1) consider the canonical projection
function f from the product space

Qn
i¼0ðX ðiÞ;BðiÞ; lðiÞÞ onto

Ql
k¼0ðX ðikÞ;BðikÞ;lðikÞÞ. It is computable,

total, and satisfiesYk
i¼0

lðiÞ

 !
ðf �1ðUÞÞ ¼

Yl
k¼0

lðikÞ

 !
ðUÞ 


Y
i2f0;...;ngnfi0;...;ilg

lðiÞðX ðiÞÞ

for all open U �
Ql

k¼0 X
ðikÞ (remember that the measures lðiÞ are assumed to be finite). Hence, it is

recursively measure-bounded. The assertion follows from Theorem 4.5. The assertions 2 and 3 of
Proposition 3.13 are proved in the same way. The canonical projection functions which one has to
consider here are even measure-preserving. �

In the rest of this section we assume that R is an arbitrary finite alphabet with at least two
elements. We consider again the randomness space from Example 3.6(2).
Two sequences p and q are sometimes called independently random if the sequence

hp; qi :¼ p0q0p1q1p2q2 
 
 

is random. Using the notion of the product ETMS ððRxÞ2;B2;l2Þ as sketched in the end of Section
3, one might also consider sequences p and q such that the pair ðp; qÞ is a random element of this
product ETMS. Using the invariance result, Theorem 4.5, it is easy to show that these conditions
are equivalent. The reason is that the mapping ðp; qÞ 7!hp; qi is a computable, measure invariant
homeomorphism. Similar statements are true for arbitrary finite vectors of sequences and even for
an infinite countable sequence of sequences where for pð0Þ; pð1Þ; pð2Þ; . . . 2 Rx we define

hpð1Þ; pð2Þ; . . . ; pðkÞi :¼ pð1Þð0Þpð2Þð0Þ 
 
 
 pðkÞð0Þpð1Þð1Þpð2Þð1Þ 
 
 
 pðkÞð1Þ 
 
 
 ;

hpð0Þ; pð1Þ; . . .iðhi; jiÞ :¼ pðiÞðjÞ for all i; j:

5. Random real numbers

Randomness of real numbers is usually introduced via the b-ary representations. Calude and
J€uurgensen [2] (see also [1] and [13, p. 219]) proved that this leads to a notion independent from
the base b. In this section we show that this notion coincides with the direct definition of
randomness on real numbers given in Example 3.6(3). This is done also for vectors and infinite
sequences of real numbers. Then we show that many computable continuously differentiable
real functions preserve randomness. Especially, all non-constant computable analytic functions
preserve randomness. Hence, all the common arithmetic functions preserve randomness. We
conclude the section with several simple observations on the arithmetic of random real num-
bers.
Fix a natural number bP 2. The b-ary representation of the real numbers in the unit interval is

based on the alphabet Rb :¼ f0; 1; . . . ; b� 1g and defined to be the mapping

qb : Rx
b ! ½0; 1� with qbðp0p1p2 
 
 
Þ :¼

X1
n¼0

pib�ðiþ1Þ
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for p 2 Rx
b . A sequence p 2 Rx

b with qbðpÞ ¼ x is also called expansion of x to base b. It is unique for
all real numbers in ½0; 1� except for those rational numbers corresponding to sequences ending on
0�s or on an infinite repetition of the digit b� 1. This definition can directly be extended to a
representation qk

b of vectors in ½0; 1�k by

qk
b : Rx

b ! ½0; 1�k; qbhpð1Þ; . . . ; pðkÞi :¼ ðqbðpð1ÞÞ; . . . ; qbðpðkÞÞÞ;

which we call the b-ary representation of vectors in ½0; 1�k. In the following theorem, due to
Weihrauch [20], we consider the ETMSs ðR;B; kÞ and ð½0; 1�; ~BB; ~kkÞ introduced in Example 3.6 and
their products according to the end of Section 3. For a vector ðx1; . . . ; xnÞ of real numbers the
fractional part of ðx1; . . . ; xnÞ is the unique real vector ðy1; . . . ; ynÞ 2 ½0; 1Þn such that the difference
ðx1 � y1; . . . ; xn � ynÞ is a vector of integers.

Theorem 5.1. Let nP 1, bP 2. For a vector ðx1; . . . ; xnÞ 2 Rn the following conditions are equiva-
lent.

1. It is a random element of the space ðRn;Bn; knÞ.
2. Its fractional part is a random element of the space ðRn;Bn; knÞ.
3. Its fractional part is a random element of the space ð½0; 1�n; ~BBn; ~kknÞ.
4. Its fractional part has a random qn

b-name.

Proof. We prove ‘‘ð1Þ () ð2Þ’’, ‘‘ð2Þ () ð3Þ’’, and ‘‘ð3Þ () ð4Þ’’.
Let ðz1; . . . ; znÞ 2 Zn be an integer vector. The translation T : ðRn;BnÞ ! ðRn;BnÞ with

T ðy1; . . . ; ynÞ :¼ ðy1 þ z1; . . . ; yn þ znÞ is a total, computable, measure invariant mapping. Hence, by
Theorem 4.5, if ðy1; . . . ; ynÞ 2 Rn is random (in ðRn;Bn; knÞ), also ðy1 þ z1; . . . ; yn þ znÞ is random.
The equivalence ‘‘ð1Þ () ð2Þ’’ follows.
The mapping f :� ðRn;BnÞ ! ð½0; 1�n; ~BBnÞ with domðf Þ ¼ ½0; 1�n and f ðxÞ ¼ x for all

x 2 domðf Þ is computable, measure invariant, and its domain is a fast enclosable subset of
ðRn;Bn; knÞ. This, together with Theorem 4.5 proves ‘‘ð2Þ ) ð3Þ’’. The inverse mapping f �1 :
ð½0; 1�n; ~BBnÞ ! ðRn;BnÞ is computable, total and measure bounded since ~kknððf �1Þ�1ðAÞÞ6 knðAÞ for
all measurable A � Rn. Using Theorem 4.5 we conclude ‘‘ð3Þ ) ð2Þ’’.
The mapping qn

b itself is computable, total, and measure invariant. Hence, Theorem 4.5 yields
‘‘ð4Þ ) ð3Þ’’. On the other hand, let now f :� ½0; 1�n ! Rx

b be the mapping which maps each n-
vector of irrationals in the unit interval to its (unique!) qn

b-name, i.e., qn
bðf ðxÞÞ ¼ x for all

x 2 domðf Þ :¼ ½0; 1�n \ ðR nQÞn. This mapping is also computable. Since its domain has measure
1 it is fast enclosable. And the function f preserves the measure: ~kknðf �1ðAÞÞ ¼ lnðAÞ for all
measurable A � Rx. By Theorem 4.5 f preserves randomness. If x 2 ½0; 1�n is random, then it is a
vector of random numbers by Proposition 3.13, hence a vector of irrational numbers, hence in the
domain of f , and f ðxÞ is random in Rx

b . This proves ‘‘ð3Þ ) ð4Þ’’. �

From the equivalence of 3 and 4 in Theorem 5.1 we obtain:

Corollary 5.2 [2]. Let b; cP 2 be integers. A real number x 2 ½0; 1� has a random qb-name if, and

only if, it has a random qc-name.
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We generalize the equivalence of 3 and 4 in Theorem 5.1 to infinite sequences of real numbers in
the unit interval. We define the b-ary representation qx

b : Rx ! ½0; 1�x of such sequences by
qx
b hpð0Þ; pð1Þ; pð2Þ; . . .i :¼ ðqbðpð0ÞÞ;qbðpð1ÞÞ;qbðpð2ÞÞ; . . .Þ for pð0Þ; pð1Þ; pð2Þ; . . . 2 Rx.

Theorem 5.3. Let bP 2. A sequence ðxnÞn of real numbers in ½0; 1�x is a random element of
ð½0; 1�x; ~BBx; kxÞ if, and only if, it has a random qx

b -name.

The proof is identical with the proof of the last equivalence in Theorem 5.1.
We turn our attention to arithmetic properties of random numbers and vectors. We remarked

already that a computable real number cannot be random. It is well known that a computable real
function preserves computability, that is, it maps computable real numbers to computable real
numbers. Which real number functions preserve randomness? We give a sufficient condition which
seems to cover the most common functions.

Theorem 5.4. Let nP 1 and f :� Rn ! R be a computable, continuously differentiable function

with an open domain such that all zeros of its derivative f 0 are non-random elements of Rn. If
z 2 domðf Þ is random, then also f ðzÞ is random.

Proof.Let z 2 domðf Þ be random. Then f 0ðzÞ 6¼ 0 by assumption. There is a k 2 f1; . . . ; ng such that
the partial derivative ðof =oxkÞðzÞ is non-zero. By symmetry we can assumewithout loss of generality
k ¼ n. Since the derivative f 0 is continuous and the domain of f is open there is a closed rectangle
D ¼ ½l1; r1� � 
 
 
 � ½ln; rn�with the following properties: (1) z 2 D, (2)D � domðf Þ, (3)Dhas rational
endpoints, (4) the side length of D in any coordinate is at most 1, (5) for all y 2 D we have

of
oxn

ðyÞ
���� ����PL :¼ 1

2

of
oxn

ðzÞ
���� ����:

We claim that the restricted function g :¼ f jD satisfies all assumptions of Theorem 4.5. This, of
course, implies that f ðzÞ is random.
It is clear that g is computable and that its domain D is fast enclosable. The only point which

has to be proved is that g is recursively measure-bounded. This is a consequence of the fact that
the absolute value of the derivative of =oxn is bounded from below by a positive constant L on D.
We claim that g satisfies

knðg�1ðUÞÞ6 kðUÞ
L

ð4Þ

for any open subset U � R. Since any open set U � R can be written as a disjoint countable union
of open intervals (the connected components of U ) it is sufficient to prove (4) for non-empty open
intervals U ¼ ðc; dÞ. Fix a vector

ðx1; . . . ; xn�1Þ 2 D0 :¼ ½l1; r1� � 
 
 
 � ½ln�1; rn�1�
and consider the function h :� R ! R with domðhÞ :¼ ½ln; rn� and hðxÞ :¼ gðx1; . . . ; xn�1; xÞ for
x 2 ½ln; rn�. Fix real numbers c < d. We claim that

kðh�1ððc; dÞÞÞ6 d � c
L

: ð5Þ
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Since the partial derivative ðof =oxnÞðxÞ is a continuous function and its absolute value is bounded
from below by the positive constant L on D, the function h is either strictly increasing or strictly
decreasing. Thus, the preimage h�1ð½c; d�Þ of the closed interval ½c; d� is either empty or a single
point or a non-degenerate interval. If it is empty or a single point, then claim (5) is clearly true.
Assume that it is a non-degenerate interval ½a; b�. Then ln 6 a < b6 rn and jhðbÞ � hðaÞj6 d � c.
By the Intermediate Value Theorem there is a real number n lying in ða; bÞ with

hðbÞ � hðaÞ ¼ h0ðnÞ 
 ðb� aÞ:
Since ðx1; . . . ; xn�1; nÞ 2 D, our fifth assumption on D says jh0ðnÞjP L. We obtain

kðh�1ððc; dÞÞÞ6 kðh�1ð½c; d�ÞÞ ¼ b� a ¼ hðbÞ � hðaÞ
h0ðnÞ 6

jhðbÞ � hðaÞj
L

6
d � c
L

:

This proves our claim (5). The inequality (5) is used in the following application of Fubini�s
Theorem:

knðg�1ððc; dÞÞÞ ¼
Z
D

vg�1ððc;dÞÞðx1; . . . ; xnÞdknðx1; . . . ; xnÞ

¼
Z
D0

Z
R

vg�1ððc;dÞÞðx1; . . . ; xnÞdkðxnÞ
� �

dkn�1ðx1; . . . ; xn�1Þ

6

Z
D0

d � c
L
dkn�1ðx1; . . . ; xn�1Þ

6
d � c
L

:

In the last step we used the assumption that the side length of D and hence also of D0 in each
coordinate is at most one. This proves our claim (4) and ends the proof of Theorem 5.4. �

Let nP 1 and U � Rn be an open set. A function f : U ! R is analytic if for any point z 2 U
there is a neighbourhood V � U of z such that in this neighbourhood f ðxÞ can be written as an
absolutely convergent power series

P
k2Nn akðx� zÞk where yk ¼ yk11 
 
 
 yknn for y ¼ ðy1; . . . ; ynÞ 2 Rn

and k ¼ ðk1; . . . ; knÞ 2 Nn.

Theorem 5.5. Let U � Rn be open and f : U ! R be an analytic function which is not constant on

any connected component of U and which is computable on any compact subset of U . If z 2 domðf Þ
is random, then also f ðzÞ is random.

Proof. If f is an analytic function which is computable on any compact subset of its domain U ,
then its partial derivatives of =oxk (for k 2 f1; . . . ; ng) are also analytic functions and computable
on any compact subset of U ; see, e.g. [22, Corollary 6.4.8]. Fix a rational compact rectangle K in
the domain of f and a slightly larger rational open rectangle V with K � V and V � U . Since we
assume that the function f is not constant on any connected component of U , it is also not
constant on V . Hence, at least one of the partial derivatives of f , say of =oxk, is not identical with
the constant zero function on V . Therefore, the set of zeros of of =oxk in V has measure zero.
Hence, the measure of fx 2 V j jof =oxkj6 2�mg tends to zero for m tending to infinity. For each
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m 2 N (uniformly in m) we can compute a finite union of rational polycylinders Bn
i in Rn which

cover the set of zeros of of =oxk in K and are contained in fx 2 V j jof =oxkj6 2�mg. Thus, we can
construct a randomness test which contains all zeros of of =oxk in K. Thus, all zeros of of =oxk in
K, and therefore all zeros of f 0 in U are non-random. The assertion follows now from Theorem
5.4. �

We conclude that all the common arithmetic functions like addition, subtraction, multiplication,
division, taking square roots or higher roots, exp, log, sin, cos, and so on preserve randomness. If
for example ðx; yÞ is a random pair of real numbers, then the sum xþ y is random as well. But it is
important to note that it is insufficient to assume just that both components x and y are random.
For example, if x is random, then also �x is random (by Theorem 5.4), but the sum xþ ð�xÞ ¼ 0 is
not random. Hence, addition does not transform random numbers into random numbers. Is the set
of non-random numbers closed under addition? No, for we can take a random binary sequence
pð0Þpð1Þpð2Þ . . . 2 f0; 1gx

. The numbers x :¼ q2ðpð0Þ0pð2Þ0pð4Þ0 
 
 
Þ and y :¼ q2ð0pð1Þ0pð3Þ
0pð5Þ 
 
 
Þ are non-random, but their sum xþ y ¼ q2ðpð0Þpð1Þpð2Þ 
 
 
Þ is random.
We conclude this section with several simple observations on random vectors and random

sequences of real numbers.

Theorem 5.6. For nP 2, the set of non-random points in Rn is connected.

Proof. Fix a non-random point x in Rn. We choose a sequence of rational points ðqmÞm (that
means: all components of qm are rational) in Rn converging to x, starting with q0 ¼ 0. By con-
necting each point qm via a straight line with qmþ1 we obtain a path leading from 0 to x. This path
contains only non-random points since a straight line segment in Rn with rational endpoints
contains only non-random points. Thus, the set of non-random points in Rn is connected. �

A sequence ðxnÞn 2 ½0; 1�x of real numbers is called uniformly distributed if, and only if, for any
pair a; b of real numbers with 06 a < b6 1 the limit limn!1

1
n jfi < n jxi 2 ½a; bÞgj exists and is

equal to b� a.

Theorem 5.7. Every random sequence of real numbers in ½0; 1�x is uniformly distributed.

Proof. This follows immediately from Theorem 5.3 and from Calude et al. [3, Theorem 3.6], which
states that any sequence of real numbers in ½0; 1�x with a random qx

b -name, bP 2 arbitrary, is
uniformly distributed. �

In Proposition 3.13 we observed that a sequence of real numbers in ½0; 1� is already non-ran-
dom, if one of its components is non-random or a vector formed out of distinct components is
non-random. Is there a non-random sequence of real numbers such that all of its components are
random? This is true.

Theorem 5.8. There is a non-random sequence ðxnÞn of real numbers in ½0; 1�x such that for any
n 2 N and any tuple ði0; . . . ; inÞ of pairwise different indices (i.e., ik 6¼ il for 06 k < l6 n) the vector
ðxi0 ; . . . ; xinÞ is random.
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Proof. Let ðynÞn be an arbitrary random sequence of real numbers in ½0; 1�
x
. Then by Proposition

3.13 each vector ðyj0 ; . . . ; yjnÞ for some tuple ðj0; . . . ; jnÞ of pairwise different indices is random.
Define a sequence ðxnÞn of real numbers in ½0; 1�x by x0 :¼ y0 and xnþ1 :¼ the first number in the
sequence ðynÞn which is smaller than xn=2. This sequence is well-defined since the sequence ðynÞn is
uniformly distributed. It is non-random since it converges fast to zero (take for example the
randomness test ðUnÞn on ½0; 1�x defined by Un :¼ fðzmÞm 2 ½0; 1�x j zn < 2�ng). Each vector of the
form ðxi0 ; . . . ; xinÞ for any n 2 N and any tuple ði0; . . . ; inÞ of pairwise different indices is random
since it is identical with a vector of the form ðyj0 ; . . . ; yjnÞ for some tuple ðj0; . . . ; jnÞ of pairwise
different indices. �

6. Random sets

Usually a set A � N of natural numbers is called random if, and only if, its characteristic
function is a random sequence. In this section we consider a different notion of a random set
which is induced by viewing the power set 2N of N as an ETMS, based on the topology which is
usually considered when viewing 2N as a complete partial order; compare Weihrauch [19, Defi-
nition 3.1.1, Examples 3.5.2(4)]. The first main result gives a characterization of the resulting
randomness notion in terms of randomness for sequences. The second main result is the con-
struction of an infinite co-r.e. random set. Also several simple properties of random sets are
observed. In this section we always use R for the binary alphabet: R ¼ f0; 1g. Sets of natural
numbers are denoted by literals A;B;C; . . . while subsets of the power set 2N ¼ fA jA � Ng of N
and subsets of Rx are denoted by U ; V ;W ;X ; Y ; Z.
Which sets of natural numbers should be called random? Before we discuss this question, let us

have a look at the possible answers to the same question for computability instead of randomness.
The perhaps two most important notions of computability for sets are decidability and recursive
enumerability. Both notions can be obtained in a natural way as the computability notions for
elements of natural spaces.
If X is a topological space and B a total numbering of a base of X , then we call an element x 2 X

computable if, and only if, the set fi 2 N jx 2 Big is r.e., that is, if one can effectively enumerate all
properties of x that are described by B; compare Weihrauch [22]. The computable elements of the
space ðRx;BÞ, obtained fromExample 3.6(2) by forgetting themeasurel, are exactly the computable
binary sequences. Of course, they correspond to the decidable sets, via the bijection v : 2N ! Rx

whichmaps a set A � N to its characteristic function vA (with vAðnÞ ¼ 1 if n 2 A, vAðnÞ ¼ 0 if n 62 A).
In the following, we denote the topology on 2N generated by the base v�1ðBiÞ, for i 2 N, by sv.
For recursive enumerability the same is possible. We only have to consider a different topology

on 2N, and a numbering of a suitable base. In fact, the suitable topology 2N for this purpose is the
topology which one usually considers when viewing 2N as a complete partial order. It is the to-
pology generated by the base fOE jE � N finiteg where OE :¼ fA � N jE � Ag for finite subsets E
of N. We call this topology s. The following lemma shows how the topologies sv and s are related.

Lemma 6.1.
1. The topology s is a proper subset of the topology sv.

2. The r-algebra generated by s is identical with the r-algebra generated by sv.
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Proof. 1. For any finite set E � N we define a finite set WE of strings by

WE :¼ fw ¼ wð1Þ 
 
 
wð1þmaxEÞ 2 R1þmaxE j ð8i 2 EÞ wð1þ iÞ ¼ 1g:
One observes OE ¼

S
fv�1ðwRxÞ jw 2 WEg. This shows s � sv. The set v�1ð0RxÞ is an element of

sv n s.
2. For any set F � N the set CF :¼ fA � N jA \ F ¼ ;g is a s-closed set (that means: 2N n CF is

an element of s) since Cfng ¼ 2N n Ofng for all n and CF ¼
T

n2F Cfng ¼ 2N n
S

n2F Ofng. If, for a
string w ¼ wð1Þ 
 
 
wðjwjÞ 2 R�, we set E :¼ fi < jwj jwðiþ 1Þ ¼ 1g and F :¼ fi < jwj j
wðiþ 1Þ ¼ 0g, then v�1ðwRxÞ ¼ OE \ CF . Hence, every basic sv-open set is the intersection of a s-
open and a s-closed set. The assertion follows. �

In the following, whenever we speak about an open or closed subset of 2N, we mean this with
respect to the topology s.
We still need a numbering of a base of s. Therefore, we use the standard numbering O of basic

s-open sets defined by Oi :¼ ODi . One checks easily that the computable elements of the space
ð2N;OÞ are exactly the r.e. sets.
Thus, both computability notions for sets of natural numbers have arisen naturally as com-

putability notions for elements of natural effective topological spaces. How about randomness?
We have defined randomness in general on ETMS. In order to make ETMSs out of the two spaces
we only need to introduce a measure. Indeed, on the first space we had already introduced a
measure in Example 3.6(2). The resulting randomness notion was the usual Martin-L€oof ran-
domness notion for infinite binary sequences. On the second space, we can also introduce a
natural measure by transferring the first measure via the bijection v�1, due to the fact that the r-
algebras of the two topologies s and sv are the same. We define a measure l by

lðX Þ :¼ lðvðX ÞÞ
for every set X � 2N in the r-algebra generated by s (where the l on the right-hand side of the
equation denotes the usual product measure on Rx, considered in Example 3.6(2)). Notice that
lðOEÞ ¼ 2�jEj for any finite set E � N.
Thus, we have two ETMSs: ðRx;B;lÞ and ð2N;O; lÞ. While the computable elements of the first

ETMS ðRx;B;lÞ are the computable binary sequences, which correspond to decidable sets, and its
random elements are the usual Martin-L€oof random sequences, the computable elements of the
second ETMS ð2N;O;lÞ are the r.e. sets. Its random elements are the objects of interest in this
section.

Definition 6.2. A set A � N is called random if, and only if, it is a random element of the ETMS
ð2N;O;lÞ.

Which properties does this ETMS have? What are its random elements?
It is clear that the numbering O satisfies the intersection property. Hence, whenever one has a

randomness test ðUnÞn, one can assume that the sequence ðUnÞn is a non-increasing sequence of
sets, compare Proposition 3.8. The measure l is upper semi-computable. Therefore, by Theorem
3.10, the space has a universal randomness test.
Before we characterize randomness of sets in terms of randomness of sequences we make two

simple observations.
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Proposition 6.3.
1. Every finite set E � N is random.
2. Every subset of a random set A � N is random as well.

Proof. 1. Every open set U � 2N which contains a finite set E � N as an element contains the open
set OE as a subset. Hence lðUÞP lðOEÞ ¼ 2�jEj. Thus, there can be no randomness test ðUnÞn on
2N with E 2

T
n2N Un.

2. We prove the contraposition:

if A � N is non-random and A � B; then also B is non-random:

Any open set U that contains A as an element also contains B as an element. Hence, if A 2
T

n Un

for some randomness test ðUnÞn, then also B 2
T

n Un, for any B � A. �

Especially the first assertion might seem counter-intuitive at first. But since the finite sets,
considered as finite elements in the complete partial order 2N, are in some sense very ‘‘rough’’
objects not having any property which is valid only for objects in an open set of very small
measure, it makes sense to call them random. In contrast to the ETMS Rx where one considers
positive and negative information about a set, here we consider only positive information about
sets, i.e., information telling us which numbers are in the set. This also gives an intuitive expla-
nation for the second assertion.
The following characterization is the first main result of the section.

Theorem 6.4. A set A � N is random if, and only if, there is a set B � A such that vB is random.

Another way to express this is:

A � N is non-random () ð8B � AÞ vB is non-random:

For the proof of Theorem 6.4 we need a topological lemma.

Lemma 6.5. If a set A � N and all sets B � A are elements of a sv-open subset V � 2N, then they are
already elements of the s-interior of V .

Proof. Let V � 2N be a sv-open set and A � N be a set such that all sets B � A are elements of V . It
is sufficient to show that there is a finite set E � A with OE � V . Set En :¼ A \ f0; . . . ; ng for each
n. Then

T
n OEn ¼ fB jB � Ag � V , hence,

T
n vðOEnÞ � vðV Þ. Since for any finite E � N the set

vðOEÞ is closed, the sets Rx n vðOEnÞ form a non-decreasing sequence of open sets whose union
contains Rx n vðV Þ. Since Rx n vðV Þ is compact there exists some n with Rx n vðOEnÞ � Rx n vðV Þ,
hence with OEn � V . �

Proof of Theorem 6.4. First we prove that ‘‘A non-random’’ implies ‘‘vB non-random for all
B � A’’. By Proposition 6.3(2) it is sufficient to prove

A non-random) vA non-random

for any A � N. Fix a non-random set A � N and a randomness test ðUnÞn on 2N with A 2
T

n Un.
We claim that the sequence ðVnÞn of subsets of Rx defined by
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Vn :¼ vðUnÞ
is a randomness test on Rx with vA 2

T
n Vn. The last part of the claim is clear. The sets Vn are open

since s � sv. We have lðVnÞ ¼ lðUnÞ6 2�n by the definition of the measure l on 2N. It is left to
prove that there is an r.e. set C � N with Vn ¼

S
fmðiÞRx j hn; ii 2 Cg where m : N ! R� denotes the

standard numbering of R�. This follows since there is an r.e. set ~CC with Un ¼
S
fODi j hn; ii 2 ~CCg,

hence, Vn ¼
S
fWDiR

x j hn; ii 2 ~CCg where the sets WDi are the sets considered in the proof of Lemma
6.1. Furthermore, given an index i, one can compute m-indices for the finitely many strings in WDi .
This ends the proof of the first implication.
Now we prove that ‘‘vB non-random for all B � A’’ implies ‘‘A non-random’’. Fix a universal

randomness test ðVnÞn on Rx. For each n we define Un to be the s-interior of v�1ðVnÞ:
Un :¼

[
fOE jE finite and vðOEÞ � Vng:

We claim that the sequence ðUnÞn is a randomness test on 2N. The sets Un satisfy
lðUnÞ ¼ lðvðUnÞÞ6 lðVnÞ6 2�n because v preserves the measure and vðUnÞ � Vn. Let G � N be an
r.e. set with Vn ¼

S
hn;ji2G mðjÞRx, for all n. We define an r.e. set H � N by

H :¼ hn; ii j ð9j1; . . . ; jl 2 NÞ hn; jki 2 G for k

(
¼ 1; . . . ; l; and WDiR

x �
[l
k¼1

mðjkÞRx

)
:

Since every set vðOiÞ ¼ WDiR
x is compact, we obtain hn; ii 2 H () vðOiÞ � Vn, for any n and i.

This shows Un ¼
S

hn;ii2H Oi, for all n. We have proved that ðUnÞn is a randomness test on 2N. Now
let A � N be a set such that vB is non-random for all B � A. This implies vB 2 Vn for all B � A and
all n since ðVnÞn is assumed to be a universal randomness test. By Lemma 6.5 we conclude that
A 2 Un for all n, hence A 2

T
n Un. This means that A is non-random and proves our assertion. �

Remark 6.6. In the second part of the proof of Theorem 6.4 we started with a randomness test
ðVnÞn on Rx and proved that the sequence ðUnÞn consisting of the s-interiors Un of the sets v�1ðVnÞ is
a randomness test. Actually, if ðVnÞn is a universal randomness test on Rx, then ðUnÞn is a universal
randomness test on 2N. To see this, use the following observation made in the first part of the
proof: if ð ~UUnÞn is a randomness test on 2N then ðvð ~UUnÞÞn is a randomness test on Rx.

Note especially that randomness of p 2 Rx implies randomness of v�1ðpÞ. The converse is not
true: take a random sequence p ¼ pð0Þpð1Þpð2Þpð3Þ 
 
 
 2 Rx. Then the sequence q ¼ pð0Þ0pð2Þ0 
 
 

is not random, but the set v�1ðqÞ � v�1ðpÞ is random by Proposition 6.3(2) or Theorem 6.4.
Every finite set is random. How simple can infinite random sets be in terms of the arithmetical

hierarchy [16,18,19]? We know that there are random sequences p 2 Rx such that v�1ðpÞ is in D2
(for example the sequences constructed in Example 3.14(3)). Thus, there are infinite random sets
in D2. But the set v�1ðpÞ associated with a random sequence p can of course not be in R1 orP1. Are
there infinite random sets even in R1 or P1? A set is called immune if, and only if, it is infinite and
contains no infinite r.e. subset.

Theorem 6.7.
1. Every random set is either finite or immune.
2. There is an infinite random co-r.e. set.
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Hence, there are no infinite random sets in R1, but there are infinite random sets in P1. The
proof of the first part of the theorem is straightforward. The second part is based on the following
theorem, which will be proved at the end of the section.

Theorem 6.8. Let A � N be r.e. and U :¼
S
fODi j i 2 Ag have measure lðUÞ < 1. Then there exists

an infinite co-r.e. set B 62 U .

Proof of Theorem 6.7. 1. Assume that a set A � N contains an infinite r.e. set B. Fix an injective
total recursive function f with rangeðf Þ ¼ B. Set En :¼ ff ð0Þ; . . . ; f ðn� 1Þg for all n. The se-
quence ðOEnÞn is a randomness test on 2N with A 2

T
n OEn .

2. Let ðUnÞn be a universal randomness test on 2N. By Theorem 6.8 there exists an infinite co-r.e.
subset of N which is not an element of U1. This set must be random. �

We deduce a corollary about random sequences. A set A � N is called simple if, and only if, it is
r.e. and its complement is immune.

Corollary 6.9. There exist a random sequence p 2 Rx and a simple set A � N with v�1ðpÞ � A.

Proof. By Theorem 6.7(2) there exists an infinite random co-r.e. set B � N. Its complement
A :¼ N n B is simple by Theorem 6.7(1). By Theorem 6.4 there exists a random sequence q 2 Rx

with B � v�1ðqÞ. The sequence p 2 Rx with pðiÞ :¼ 1� qðiÞ for all i is random as well and satisfies
v�1ðpÞ � A. �

Remark 6.10. Corollary 6.9 gives rise to the question how many sequences p have the property
stated in this corollary. The answer is: almost none. Indeed, for any fixed co-infinite set A the set
fp 2 Rx jv�1ðpÞ � Ag has measure zero. Since there are only countably many r.e. sets, also the set

fp 2 Rx j ð9 r:e:; co-infinite A � NÞ v�1ðpÞ � Ag
has measure zero.

Especially in view of Theorem 6.7(2) and the interesting proof of Theorem 6.8 the notion of a
random set seems to deserve attention in its own right. Another topic for which the ETMS
ð2N;O; lÞ might be very useful and serve as a standard example besides the space of (finite or)
infinite sequences is the problem to introduce and study randomness more generally on complete
partial orders.
We conclude this section with the proof of Theorem 6.8.

Proof of Theorem 6.8. The assertion is obvious if A is finite. Therefore, from now on we assume
that A is infinite. We shall construct an r.e. co-infinite set C � N with

C \ Di 6¼ ;

for all i 2 A. Its complement proves the assertion. We use a ‘‘movable marker’’ style construction;
compare Soare [18]. Let a : N ! N be a total recursive injective function with rangeðaÞ ¼ A. We
shall define a non-decreasing sequence ðC½n�Þn of finite subsets of N and define in the end
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C :¼
S

n C½n�. Furthermore, we shall define a non-decreasing sequence ðL½n�Þn of finite subsets of A.
They contain the indices in A which ‘‘require action’’. We proceed in stages n, for n 2 N. The sets
C½n� and L½n� will be defined at stage n. Furthermore, at the end of stage n we will have a finite list
f0½n�; . . . ; fn½n� of nþ 1 pairwise different ‘‘forbidden’’ numbers (marked). If at stage n the ‘‘for-
bidding’’ condition of one number fk½n� 1� of the numbers f0½n� 1�; . . . ; fn�1½n� 1� from the
previous stage is overruled, then all fl½n� 1� with k6 l < n will be added to the set C½n� 1�. They
will be replaced by new forbidden elements fj½n� (these markers will be moved); the others are
kept. In any case, a new one, the number fn½n�, is defined. They will be defined in such a way that
at the end of each stage n we have C½n� \ ff0½n�; . . . ; fn½n�g ¼ ;. It is crucial that each fk½
� will be
changed only at finitely many stages, i.e., for each k there exists a number N such that fk½n� ¼ fk½N �
for all nPN . This guarantees that C is co-infinite. It will be clear from the construction that C is
r.e. An important point in the construction is the condition when a ‘‘forbidding’’ condition is
overruled. The idea is that this is the case when the measure of the union of the sets ODi is large
enough where the union is taken over those indices i which have required action so far, and which
have the property that the forbidden element is contained in Di. In the correctness proof we will
assume that there is some forbidden element which changes infinitely often. We will fix the for-
bidden element with the smallest index and this property, and then we will show that for this
specific forbidden element the measure just described cannot become large enough any more once
the forbidden element is large enough. Hence, its forbidding condition cannot be overruled
anymore, and the forbidden element cannot change anymore, which is a contradiction. Here is the
construction. We start with C½�1� ¼ ; and L½�1� ¼ ;.
Stage n:
We can assume that C½n� 1�, L½n� 1� and ff0½n� 1�; . . . ; fn�1½n� 1�g are defined. If DaðnÞ \ C

½n� 1� 6¼ ;, then we do the following:
1. We set L½n� :¼ L½n� 1�.
2. We set C½n� :¼ C½n� 1�.
3. We define fj½n� :¼ fj½n� 1� for j 2 f0; . . . ; n� 1g and fn½n� :¼ minðN n GÞ where

G :¼
[

fDaðjÞ j j6 ng [ ffi½j� j06 i6 j < ng:

If DaðnÞ \ C½n� 1� ¼ ;, then we do the following:
1. We set L½n� :¼ L½n� 1� [ faðnÞg.
2. For every i 2 N we define

Sði; nÞ :¼ l
[

fODl j i 2 Dl and l 2 L½n�g
� �

:

The set

F ½n� :¼ fm j06m < n and Sðfm½n� 1�; nÞ > 2�m�2g

can be considered as the set of indices of forbidden elements whose forbidding condition is
overruled. We set

mF ½n� :¼
min F ½n� if F ½n� is nonempty;
n otherwise:
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and

C½n� :¼ C½n� 1� [ ðDaðnÞ n ff0½n� 1�; . . . ; fn�1½n� 1�gÞ [ ffm½n� 1� jmF ½n� 6m < ng:
3. We do not change the forbidden elements fm½n� 1� with m < mF ½n�, i.e., for m < mF ½n� we define

fm½n� :¼ fm½n� 1�. But we define the numbers fmF ½n� ½n�; . . . ; fn½n� (in this order) to be the smallest
pairwise different numbers in N n G where G is defined in the same way as in the first case.
This ends the description of stage n of the algorithm. Remember that finally we define

C :¼
S

n C½n�. The algorithm is complete.
It is clear that the algorithm is well-defined. We only remark that the set G defined above is

always finite. We have to show that the set C satisfies all the required conditions:
1. C is r.e.,
2. C \ Di 6¼ ; for all i 2 A,
3. N n C is infinite.
The first claim is clear.
For the second claim we show by induction that at the end of stage n we have C½n� \ DaðiÞ 6¼ ;

for all i6 n. Remember that ðC½n�Þn is a non-decreasing sequence of sets. Therefore, it is sufficient
to show that at the end of stage n we have C½n� \ DaðnÞ 6¼ ;. In the first case of the two cases
considered in the description of stage n, in the case DaðnÞ \ C½n� 1� 6¼ ;, this and C½n� ¼ C½n� 1�
give the assertion. In the second case, in the case DaðnÞ \ C½n� 1� ¼ ;, we must show that the set
ðDaðnÞ n ff0½n� 1�; . . . ; fn�1½n� 1�gÞ [ ffm½n� 1� jmF ½n� 6m < ng contains an element from DaðnÞ.
This is clear if DaðnÞ 6� ff0½n� 1�; . . . ; fn�1½n� 1�g. Assume that DaðnÞ � ff0½n� 1�; . . . ; fn�1½n� 1�g.
The set DaðnÞ is non-empty because of lðUÞ < 1. Define k :¼ jDaðnÞj � 1. Then DaðnÞ must contain a
forbidden element fm½n� 1� with mP k. On the other hand, for all l 2 DaðnÞ, Sðl; nÞP
lðODaðnÞ Þ ¼ 2�ðkþ1Þ. Especially Sðfm½n� 1�; nÞP 2�ðkþ1Þ P 2�ðmþ1Þ > 2�m�2. Hence, fm½n� 1� is an
element of F ½n� and also of the set ffl½n� 1� jmF ½n� 6 l < ng. Thus, this set contains an element
from DaðnÞ. We have proved the second claim.
Finally, we have to prove that N n C is infinite. We observe that by construction the numbers

f0½n�; . . . ; fn½n� are pairwise different and C½n� \ ff0½n�; . . . ; fn½n�g ¼ ;. The assertion follows from
the following claim:

for each k; there is a number N such that fk½n� ¼ fk½N � for all nPN : ð6Þ
This means that the number fk½
� will be changed only at finitely many stages. The rest of the proof
of the theorem consists of the proof of claim (6). In the proof we shall use L :¼

S
n L½n�. Fur-

thermore, for a subset M � N we abbreviate lð
S
fODi j i 2 MgÞ by lðMÞ.

Assume that (6) is false. Let k be the smallest natural number such that fk½
� is changed at
infinitely many stages. Let f0½1�; . . . ; fk�1½1� be the final values of f0½:�; . . . ; fk�1½:�, that is,
fi½1� :¼ limn!1 fi½n� for 06 i < k. Note that by construction for each n and each m6 n we have
Sðfm½n�; nÞ6 2�m�2. We conclude that for 06 i < k

lim
n!1

Sðfi½1�; nÞ6 2�i�2: ð7Þ

For each subset E � ff0½1�; . . . ; fk�1½1�g and each n 2 N we define

LE :¼ fl 2 L jDl \ ff0½1�; . . . ; fk�1½1�g ¼ Eg;
LE½n� :¼ LE \ L½n�:
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We claim that

lðLEÞ < 2�jEj ð8Þ
for all E � ff0½1�; . . . ; fk�1½1�g. This is true for E ¼ ; because

lðL;Þ6 lðLÞ6 lðAÞ ¼ lðUÞ < 1
(because of L; � L � A), and it is true for E 6¼ ;, because for ; 6¼ E � ff0½1�; . . . ; fk�1½1�g there is
an i 2 fjEj � 1; . . . ; k � 1g with fi½1� 2 E, hence

lðLEÞ ¼ l
[

fODl j l 2 LEg
� �

6 l
[

fODl j l 2 L and fi½1� 2 Dlg
� �

¼ lim
n!1

Sðfi½1�; nÞ

6 2�i�2

6 2�jEj�1;

where we have used (7). We have proved (8). Hence, we can choose a number N0P k large enough
such that for all E � ff0½1�; . . . ; fk�1½1�g

lðLEÞ � lðLE½N0�Þ6 2�ð2kþ2Þ 
 ð1� 2jEj 
 lðLEÞÞ: ð9Þ
We can also assume that N0 is so large such that fi½N0� ¼ fi½1� for all i 2 f0; . . . ; k � 1g. Set

N1 :¼ max ff0½1�; . . . ; fk�1½1�g [
[

fDaðiÞ j i
�

6N0g
�
:

Let N2 > N0 be so large such that

C \ f0; 1; . . . ;N1g ¼ C½N2� \ f0; 1; . . . ;N1g:
This means that numbers 6N1 are added to the set C only at stages 6N2. We claim that for
l 2 L n L½N2� we have

Dl \ f0; 1; . . . ;N1g � ff0½1�; . . . ; fk�1½1�g: ð10Þ
To see this, fix an l 2 L n L½N2�. Note that by definition of N2 no number in Dl \ f0; 1; . . . ;N1g can
be added to C at any stage later than N2. This is especially true for the stage nl > N2 where nl is the
(unique) number with aðnlÞ ¼ l. Therefore we have

Dl \ f0; 1; . . . ;N1g � C½nl � 1� [ ff0½nl � 1�; . . . ; fnl�1½nl � 1�g:
Since Dl \ C½nl � 1� ¼ ;, due to l 2 L, we obtain

Dl \ f0; 1; . . . ;N1g � ff0½nl � 1�; . . . ; fnl�1½nl � 1�g:
We have fi½nl � 1� ¼ fi½1� for 06 i < k, but all numbers fi½nl � 1� with iP k will be added to C at
some stage P nl (because of our assumption that fk½:� – and hence also fi½
� for each iP k – will be
changed infinitely often). Therefore we conclude that (10) is true.
For a moment fix a set E � ff0½1�; . . . ; fk�1½1�g and consider the probability space which

consists out of (1) the set OE as the underlying space, (2) the restriction to OE of the r-algebra
generated by s, and (3) the probability measure lE defined by lEðUÞ :¼ 2jEj 
 lðUÞ for all elements
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U � OE of this r-algebra. For l 2 LE½N0� we have E � Dl � f0; 1; . . . ;N1g. On the other hand,
from (10) we conclude that for l 2 LE n LE½N2� we have Dl \ f0; 1; . . . ;N1g ¼ E. These two facts
imply that in the mentioned probability space the two events[

fODl j l 2 LE½N0�g and
[

fODl j l 2 LE n LE½N2�g

are independent. Then also their complements

OEn
[

fODl j l 2 LE½N0�g and OEn
[

fODl j l 2 LE n LE½N2�g

are independent. Hence, the probability of the joint occurrence is equal to the product of the two
probabilities, that is,

1� 2jEj 
 l LE½N0� [ ðLE n LE½N2�Þ
� �

¼ 1
�

� 2jEj 
 lðLE½N0�Þ
�

 1
�

� 2jEj 
 lðLE n LE½N2�Þ
�
:

A short computation yields the first equality in the following estimation, and (9) gives the last
estimate

lðLE n LE½N2�Þ ¼
lðLE½N0� [ ðLE n LE½N2�ÞÞ � lðLE½N0�Þ

1� 2jEj 
 lðLE½N0�Þ

6
lðLEÞ � lðLE½N0�Þ
1� 2jEj 
 lðLEÞ

6 2�2k�2:

Using this inequality for all E � ff0½1�; . . . ; fk�1½1�g we obtain

lðL n L½N2�Þ6
X

E�ff0½1�;...;fk�1½1�g
lðLE n LE½N2�Þ

6

X
E�ff0½1�;...;fk�1½1�g

2�2k�2

¼ 2�k�2:

Finally set N3 :¼ maxð
S
fDaðiÞ j i6N2gÞ. For all i > N3 and stages n 2 N we have

Sði; nÞ6 lðL n L½N2�Þ6 2�k�2:

Hence, as soon as the number fk½
� has been set to be larger than N3, it will never again be changed.
This contradicts the assumption that fk½
� will be changed infinitely often. We have proved (6).
This ends the proof of the theorem. �
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