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The class of lattices we are interested in (subprojective lattices), can be 
gotten by taking the MacNeille completions of the class of complemented, 
modular, atomic lattices. McLaughlin showed that subprojective lattices can be 
represented as the lattices of W-closed subspaces of a vector space U in duality 
with a vector space W. In this paper, we give a characterization of subprojective 
lattices in terms of atoms and dual atoms, by means of an incidence space 
satisfying self-dual axioms. In the finite-dimensional case, a subprojective lattice 
is projective, and hence our self-dual axioms characterize finite-dimensional 
projective spaces in terms of points and hyperplanes. No numerical parameters 
appear explicitly in these axioms. For each subprojective lattice L with at least 
three elements, we define a projective enveZope B(L) for it. B(L) is a projective 
lattice and there is a natural inf-preserving injection ofL into B(L). This injection 
has other important properties which we take as the definition of ageometric map. 
In the course of studying geometric maps, we obtain a lattice theoretic proof of 
Mackey’s result that the join of a U-closed subspace of I’ and a finite-dimen- 
sional subspace is U-closed, where (U, I’) form a dual pair of vector spaces over 
a division ring. Furthermore, we show that if L is a subprojective lattice, P a 
projective lattice, and $: L + P a geometric map, then P is isomorphic to the 
projective envelope g(L) of L. The paper presents many other properties of 
subprojective lattices. It concludes with a characterization of subprojective 
lattices which are also projective. 

1. INTRODUCTION AND SUMMARY 

The class of lattices we are interested in, here called subprojective, was 
introduced by McLaughlin [I I], under the name of C-lattices, as lattices 
which are MacNeille completions of complemented, modular, atomic lattices. 
By definition, they are complete, atomistic, dual atomistic, and satisfy the 
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double covering condition. McLaughlin [ll] also proved that they can be 
represented as direct products of irreducible subprojective lattices, and that 
the latter, except for low dimensions, can in turn be isomorphically represented 
as the lattices of all W-closed subspaces of a vector space U in duality with 
a vector space W. Since the lattice of all subspaces of a vector space is a projective 
lattice (by definition, the lattice of all subspaces of a projective space) 
McLaughlin’s result represents a connection between subprojective and 
projective lattices, and thus between subprojective lattices and projective 
geometry. McLaughlin noted in [lo] that the entire subprojective lattice can 
be obtained as a MacNeille completion of the partially ordered set which 
consists of atoms and dual atoms of the lattice. An analogous statement for a 
larger class of lattices was established by Markowsky [9]. 

Since the definition of a subprojective lattice is meet-join symmetric, a 
characterization of subprojective lattices in terms of atoms and dual atoms 
must be possible by means of an incidence space satisfying self-dual axioms. 
In the finite-dimensional case, a subprojective lattice is projective, and hence 
such self-dual axioms would characterize a finite-dimensional projective space 
in terms of points and hyperplanes. For an n-dimensional projective space 
(or geometry) such a set of axioms has been devised by Esser [3], and for finite 
projective spaces by Dembowsky and Wagner [2], Kantor [4], and Liineburg 
[6]. All of these sets of axioms contain at least one axiom with numerical 
parameters, so that an infinite-dimensional analog cannot be deduced from them. 

Several charactzrizations and properties of subprojective lattices were 
established by Petrich [12, 131. D irect decompositions of certain classes of 
lattices, which include subprojective lattices, were studied by Markowsky [9]. 

This paper divides naturally into several parts as follows. Section 2 contains 
most of the general definitions needed throughout the paper. In Section 3, 
we prove one of the principal results of this paper, viz., a theorem which 
establishes a strong relationship between subprojective lattices and a class of 
incidence spaces, here called subprojective. Various r:sults concerning direct 
decompositions of subprojective lattices and spaces form the content of Section 4. 
A special meet-embedding, here called a geometric map, of a subprojective 
lattice into a projective lattice is discussed in Section 5. Section 6 contains 
further properties of geometric maps and a construction of the image lattice 
under a geometric map. Finally, in Section 7, we prove the uniqueness of the 
projective envelope of a subprojective lattice and find necessary and sufficient 
conditions on a subprojective lattice to be projective. 

2. DEFINITIONS 

We summarize here basic notions needed throughout the paper. The basic 
reference for lattices is Birkhoff [I] and for projective geometry is Lenz [5]. 
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2.1. Let L be a lattice. The least (resp. greatest) element of L is denoted 
by 0 (resp. I), if it exists. Let x, y EL. 

(a) x covers y (in notation x > y) if x > y and x > z > y for no x EL. 
An element which covers 0 (if it exists) is an atom, and element which covers 
an atom is a hyperatom. Dually, an element covered by 1 (if it exists) is a dual 
atom, an element covered by a dual atom is a dual hyperatom. The set of all 
atoms (resp. dual atoms) of L is denoted by A, (resp. DJ. 

(b) If 0 (resp. 1) exists, then the height (resp. de$ciency) of x is the 
supremum of the lengths of all chains between x and 0 (resp. 1) if this supremum 
exists and is finite. In particular, the height of 0 is zero, of atoms is one, etc., 
and dually for I, dual atoms, etc. If the height of 1 exists, it is the dimension 
of L, otherwise the dimension of L is in.nite. 

(c) A nonempty subset D of L is join dense if every element of L is the 
supremum of some subset of D; L is atomistic if AL is join dense in L. Meet 
dense and dual atomistic are defined dually. 

(d) L satisfies the double covering condition if for any x, y, L, 

X>XAY if and only if x v y > y. 

2.2. A complete, atomistic, dual atomistic lattice with a least two 
elements, satisfying the double covering condition, is a subprojective lattice. 

Remark. Note that in a finite lattice the double covering condition implies 
modularity (see [I, Theorem 16, p. 411). Th us any finite-length subinterval 
of a subprojective lattice is modular. It also follows that the elements of finite 
height (finite deficiency) form a modular lattice since any three of them are 
contained in a finite-length subinterval. 

In the terminology of McLaughlin [ll], these are precisely the C-lattices, 
and in that of Maeda and Maeda [8], the complete DAC-lattices. 

2.3. An incidence space, I, is an ordered triple (A, D; I), where A and D 
are nonempty sets and 1 is a binary relation between them. 

(a) For any X_C A, we write 

and for any Y _C D, we write 

Y+ = {a E A 1 for all d E Y, a 1 d}. 

For any a E A (resp. d E D), we write a* (resp. d+) instead of {a}* (resp. id}+). 
Note that (+, +) form a Galois connection between the power sets of A 

and D (see [I, p. 1241 for the pertinent definitions and properties). 
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(b) By the lattice of closed sets of I we mean the set 

e(I) = {B’- 1 B _C D} 

ordered by set inclusion. It follows from the properties of Galois connections 
that %?(I) is a complete lattice with meet being intersection. 

(c) Let 1 = (A, D; 1) and I’ = (A’, D’; I’) be incidence spaces. An 

ordered pair (f, g) of bijections f: A -+ A’ and g: D + D’ is an isomorphism 

ofIintoI’ifforallaEA,dED, 

ald if and only if f(a) / f(d). 

In such a case, we say that I and I’ are isomorphic and write I E I’. 

2.4. Let L be a subprojective lattice. The incidence space 9(L) of L 

is the triple (AL, D, ; 1) where for any a E AL, d E D, , 

alb if and only if a < b. 

2.5. An incidence space (A, D; 1) is a subprojective space if it satisfies 

the following axioms: 

SO: for allpEA,p* # o*; 

let P, q E A, P f q; 

s,: p* g q*; 

S,: for all d E D there exists a E A such that a* 2 {p, q}* u {d}; 

S,: if r, s E A, Y # s, and {Y, s}* > (p, q)*, then {r, s>* = {p, q)*; 

and their duals: 

S’,:forallhED,h+# a+; 

let h, k ED, h # k; 

S’2: for all a E A there exists d E D such that d+ 2 {h, k}+ u {a>; 

s’,: if c, d E D, c # d and {c, d}+ 1 {h, k}+, then {c, d}+ = {h, k}+. 

Remark. If A(D) has more than one element S,(S’,) is implied by S,(S’,). 
Also note that when A(D) contains two or more elements, S,(S’,) implies 
that D(A) does also. Thus whenever A or D contains more than one element 
we do not bother to verify axioms SO or S’, . 

2+6. If A and B are sets, we write A\B = {a E A 1 a $ B). 
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3. SUBPROJECTIVE LATTICES AND SUBPROJECTIVE SPACES 

We are now ready for the first main result of the paper. To start with, we 
have the following simple statement. 

3.1 LEMMA. Let L be a subprojective lattice. Then for all X _C A, , we have 

dually, for all Y C DL , we have 

Y+= aGAL a<AY 
I I 

A y = v y+ = v y+*+ = A y+*. 

Proof. By definition 

It is clear that d > a for all a E X if and only if d > V X. Dual atomisticity 
of L implies that V X = A X*. The equality X* = X*+* follows from the 
basic properties of Galois connections (see [I, p. 1241). The statements con- 
cerning Y follow by duality. m 

3.2. Correspondence Theorem. If L is a subprojective lattice, then 
9(L) is a subprojective space and %(9(L)) g L. Conversely, if I is a sub- 
projective space, then %?(I) is a subprojective lattice and 9(‘%(l)) z I. 

Proof. There is one subprojective lattice L, for which j ALO / = 1 or 
1 DLO / = 1. It is the two element lattice in which / ALO / = 1 or ) DLO 1 = 1. 
The only subprojective space, I,, , for which 1 A ) = 1 or 1 D 1 = 1 is the one 
in which j A ) = / D / = I and 1 = ia. The reader can easily verify that 
y(L,,) = I,, and %(I,) = L, . Thus we need to verify the theorem only for 
subprojective lattices with 1 AL ) > 2 < / D, / and subprojective spaces with 
/ A 1 3 2 < I D I. By the remark in Section 2.5 we can ignore axioms SO 
and s’s in the rest of the proof. 

Let p, q E AL, p # q. Since L is dual atomistic, there exists d E DL such 
that p < d and q 4 d. Hence dcp*\q* so that p* g q*. This establishes S, . 

Let d E D, be such that d $ p* u q* where p, q are as above. Then d > p v q 
and thus d v (p v q) = 1 since d is a dual atom. Hence d v (p v q) > d 
which by the double covering condition implies that p v q > d A (p v q). 
Sincep # q, we have that p v q is a hyperatom by the double covering condition. 
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Consequently, a = d A (p v 4) is an atom. It is clear that a* 2 {p, Q}* u {df. 
This proves S, . 

Next let p, q, r, s E AL be such that r # s and {r, s>* 2 {p, q}*. First S, 
implies that p # q. By the above lemma, we obtain 

YVSL /\{Y,s:* < A{p,q}* =pvq. 

By the double covering condition, we have r, s < Y v s and p, q < p v q. 
Since r # s, we may assume that p # r. Again by the double covering condition, 
we obtain Y,p<pvr<(rvs)v(pvq)=pvq. Further, pvr==pvq 
since p v q > p. It follows that Y < Y v s = p v r and thus p v q = p v r = 
r v s. Consequently, {Y, s}* = {p, q}*, establishing Ss . 

Axioms S’, , S’, and S’s follow by duality. Therefore .9(L) is a subprojective 
space. 

We define a function f by 

f(Y+) = v Y+ w+ E I)). 

It is clear that fi V(y(L)) -+ L and is isotone. Let x EL. Then x = A Y, , 
where Y, = {y E D, 1 x < y}, since L is dual atomistic. By the above lemma, 
we have A Y, = V Y,+ = f(Ys+) so that f is surjective. Let Yr+, Y2+ E %(9(L)) 
be such that f (Yrf) < f (Y,+). Again by the lemma, we obtain 

A Yl = v Yl’ = f(Y,’ ) < f(Y,+) = v Yz’ = A Y, , 

so that 

Yl+ = a E AL a < A Yl C 
I I 

1 +A+ < /j&i = Y2+. 

It follows that f is injective, since f(a) = f (b) implies that a < b and 6 < a. 
Hence f is an isotone bijection with an isotone inverse and is thus a lattice 
isomorphism. 

Conversely, let I = (B, C; I) be a subprojective space. Let D = (c+ 1 c E C}. 
We claim that D is the set of all dual atoms of V(I). Clearly O+ = B is the 
greatest element of V?(I). Let c E C and Y _C C and assume that cf _C Y+ C B. 
Since Y+ # B, we have Y # 0. If k E Y, then k+ 2 Y+ 1 c+, which contradicts 
axiom s’, . Consequently, every element of D is a dual atom of V(I). Since 
for any Y _C C, we have Y+ = nkPY kf, it follows that every dual atom of %(I) 
is of the form c+ for some c E C and that %‘(I) is dual atomistic. 

We assert next that p*+ = {p} for all p E B. It is clear that p E p*+. If q E p*+, 
then q* >p*+* = p* by the above lemma, which by axiom S, implies that 
q = p. Consequently, letting A = ({p} j p E B} satisfies A C g(I). It now 
follows easily that A is the set of all atoms of V(I) and that %(I) is atomistic. 

In order to prove that %(I) satisfies the double covering condition, we need 
some preparation. We first claim that if p, q E B and h, k E C are such that 
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p $ h+ v kf and q E h+\k+, then there exists c E C such that q $ c+ and c+ 2 
{h, k}+ u {p}. Indeed, axiom S’s guarantees the existence of c E C such that 
c+ 2 {h, k}+ u {p}. Ob serve that {c, h}+ = c+ n h+ 2 {h, k}+. By axiom s’s , we 
then have (c, h}+ = {h, k}+. S ince q E h+\k+, it follows that q $ {c, h}+, and thus 

P e c+* 
Given a E V(I) and (p} E A such that {p} $ a, we show next that a < a v {p> 

in V(I). By contradiction, assume that a < a v {p}. Since ‘Z’(1) is atomistic, 
there exists {q} E A such that a < a v {q} < a v {p}. Dual atomisticity of %?(I) 
provides h+, kf E D such that a _C h+, k+, a v (41 C h+, a v {q} g kf, and 
a v {p} g h+. Hence p 6 h+ u kf and q E h+\k+, and by the above, there exists 
c E C such that cf 1 (h, k}+ U {p> and q $ c+. But then cf 2 h+ n k+ 2 a and 
p E c+ which implies that cf 2 a v {p} 2 a v {q], contradicting the fact that 
4ec+* 

Now let x A y < x. There exists (p} E A such that (x A y) v {p} = x. 
Notethat{p}~y.Thusy<yv{p}=yv(x~y)v{p}=yvx. 

In order to prove the second half of the double covering condition, we need 
a preliminary result. Given a E V(I) and h+ E D such that a 4 h+, we show 
that a > a A hf. Suppose the conclusion is false. Since V(I) is dual atomistic, 
there exists kf E D such that a > a A kf > a A hf. Atomisticity of V(I) 
provides (p}, (q) E A such that {q} < a, (q> z& a A k+, (p> < a A k+, and 
(p] $ a A h+. It follows that, p 6 k+ u h+ and p E k+\h+. Thus h $p* u q* 

and k ~p*\q*. By duality, a statement proved above yields b E B, such that 
b” 2 (P, ql* u {hl and k 4 b*. Note that h E b* implies that b E h+. Since 
g(1) is dual atomistic, we have a = A (c+ E D 1 a < c+}. If cf 3 a, then 
{P, q> c c+, and thus c E {p, q}* C b*, so that cf > {b}. This proves that 
a 3 {b). But b E h+ implies that kf > a A kf > a A hf > (b}, contradicting 
the fact that k 6 b+. Consequently, a > a A hf. 

Now suppose that y < x v y. There exists h+ E D such that (X v y) A hf = y. 
Note that x z& hf. It follows that x > x A h+ = x A (x v y) A hf = x A y. 

This completes the proof of the double covering condition in %(I). We 
have observed before this theorem that V(1) is complete. Therefore V(1) is a 
subprojective lattice. It is straightforward to verify that $(%‘(1)) z I. 1 

A concept somewhat more general than that of a subprojective space was 
used by Markowsky [9] to describe a large class of lattices. If we consider 
an incidence space I as being a partially ordered set with the order given by 
the incidence relation in an obvious way, then V(I) corresponds to taking 
the MacNeille completion of I. It is easy to see that isomorphisms of incidence 
spaces I and I’ induce isomorphisms of V(I) and %(I’), and conversely. In 
fact, we may consider the categories of subprojective spaces (resp. lattices) 
and their isomorphisms. The above theorem and these statements about 
isomorphisms can be used to prove that these two categories are equivalent. 
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4. DIRECT DECOMPOSITION 

It is easy to show that a nonempty direct product of subprojective lattices 
is a subprojective lattice. Conversely, it is also easy to show directly that if a 
product of lattices is a subprojective lattice, then each of the factors is itself 
a subprojective lattice. We outline here the basic facts about direct decom- 
positions of subprojective lattices and spaces. 

A subprojective lattice is directly irreducible if and only if it satisfies Fano’s 
condition (i.e., every hyperatom covers at least three atoms); this is equivalent 
to subdirect irreducibility. For details, see [13, Proposition 8.41, where it is 
also proved that every subprojective lattice is uniquely a direct product of 
directly irreducible subprojective lattices. A more general result can be found 
in [9, Theorem 151. We show below that direct decomposition of subprojective 
lattices corresponds to the following concepts. 

4.1 DEFINITION. Let 4 = (A,,4 ; I,) b e a nonempty family of incidence 
spaces, with a E A. By a direct sum of the family I, (to be denoted by Coed I,) 
we mean the incidence space (U A,, LJ D, ; I), where LJ A, and w D, are 
disjoint unions over A, and a j d if 

either a E A, , d E D, for some 01 E A and a la d, 
oraEA,,dED,withol#/3. 

The following result is a special case of [9, Theorem 141; we may thus omit 
the proof. 

4.2 PROPOSITION. q {La}arEd is a nonempty family of subprojective lattices, 
Gaen q-LA La) = IiLl W,). If VULA is a nonempty family of subprojective 
spaces, thf7. %LIJ = IL WJ. I 

It is natural to introduce the following concept for incidence spaces, 

4.3 DEFINITION. An incidence space I is irreducible if I cannot be non- 
trivially written as a direct sum of incidence spaces. 

In view of this definition, Theorem 3.2, Proposition 4.2, and the remarks 
preceding Definition 4.1 imply the following statement. 

4.4 PROPOSITION. (a) A direct sum of a nonempty family of subprojective 
spaces is a subprojective space. 

(b) Every subprojective space is uniquely a direct sum of a nonempty family 
of irreducible subprojective spaces. 

(c) A subprojective lattice L is directly irreducible if and only if .9(L) is 
irreducilrle. Conversely, a subprojective space I is irreducible af and only if V(I) 
is directly irreducible. 1 
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We now devise an equivalent of Fano’s condition for subprojective spaces. 

4.5 PROPOSITION. A subprojective space I = (A, D; I) is irreducible if and 
only if for any p, q E A, there exists d E D such that p, q 7 d. 

Proof. From Proposition 4.4, we know that I is irreducible if and only if 
%?(I) is directly irreducible, equivalently V?(I) satisfies Fano’s condition. 

For the direct part, let h E V(I) b e a hyperatom. From the proof of Theorem 
3.2, we know that h = {p} v {q) f or somep,qEA withp #q. Let dFD be 
such that p, q { d. We have seen in the proof of Theorem 3.2 that df is a dual 
atom of %?(I). Since V(1) is a subprojective lattice, we have h > h A d+ = {a> 
for some a E A. Now p, q $ d+ and a $ {p, q] so that h covers at least three 
atoms. 

Conversely, suppose that V(1) satisfies Fano’s condition. Let p, q E A and 
h = (p} v {q} be a hyperatom of V(1). Let a E A be such that a $ {p, q} and 
h > {a}. By dual atomisticity of V(I), there exists d E D such that df $ h 
but d-t 3 {a}. By the double covering condition, we have h A d+- = {a), whence 
p, q$d+ and thusp, q{d. l 

5. EMBEDDING A SUBPROJECTIVE LATTICE INTO A PROJECTIVE LATTICE 

We assume that the reader is familiar with the definitions of a projective 
space, point, line, subspace of a projective space, hyperplane, etc. A basic 
reference is Lenz [5]. The principal result here is the embedding mentioned 
in the title of the section. For this we need some preparation. 

5.1 Notation. Let L be a subprojective lattice with at,least three elements. 
Let 9’(L) = (AL, H, ; 1) be the incidence space defined as follows: 

(a) AL is the set of all atoms of L, 

(b) HL is the set of all hyperatoms of L, 

(c) a 1 h if and only if a < h. 

5.2 PROPOSITION. If L is a subprojective lattice with at least three elements, 
then B(L) is a projective space. 

Proof. Since L is atomistic and has at least three elements, it must have 
at least two atoms. In view of the double covering condition, L must have 
‘at least one hyperatom. Consequently AL # o # HL and 9’(L) is an incidence 
space. 

In the usual terminology, the elements of AL are points and the elements 
of HL are lines of the space B(L). Since L is atomistic, every line is incident 
with at least two points (i.e., every hyperatom covers at least two atoms). By 
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the double covering condition, any two distinct points are incident with a 
unique line. 

It remains to verify Pasch’s axiom. Let Z1 , Z2 , 1s , I be distinct lines inter- 
secting in the points p, = Zr A Z2, pa = Zi A Zs , p, = I, A 1s , p = Zr A I, 
q = I, A I, such that neither p nor q is equal to any of the points p, , pa , p, . 
We must show that Za A 1 is a point. In L, we have Zi = p, v p, , Z2 = p, v p, , 

h = PI ” Pz * 
Let m = p, v p, v p, . Then m covers Z 1, Es , and Zs by the double covering 

condition. Note that Zi = p v p, and 1, = q v p, . Hence m = p v q v p, = 
Z v p, and thus m > 1. Since Za v Z = m and m > I, it follows that Zs > Es A I, 
that is, Zzj A 1 is a point. m 

We are now able to introduce the following concept. 

5.3 DEFINITION. With the notation of 5.1, 9(L) is the projective space 
associated with L. The (projective) lattice of all (projective) subspaces of .9(L) 
is the projective envelope of L, which we denote by g(L). 

The last part of the above definition finds its justification in the next theorem. 
For it, as well as for later reference, it is convenient to have the following 
terminology. 

5.4 DEFINITION. Let L and K be subprojective lattices. A map +: L -+ K 
is geometric if it satisfies the following conditions: 

(a) tJ is injective and inf-preserving; 

(b) if a,bEAK, a # b, then there exists d E DL such that 4(d) 3 a 
but $(d) > b; 

(c) if c, d E D, and e E D, , are such that e > $(c) A $(d), then e E #(DL). 

We are finally ready for the main result of this section. Observe that every 
projective lattice is subprojective. 

5.5 REPRESENTATION THEOREM. Let L be a subprojective lattice. The mapping 
z/~ de$ned by 

Z)(X) = (a E A, / u < X} (x EL) 

is a geometric mapping of L into @J(L). 

Proof. We note first that #(x) is a subspace of S(L) for any x EL. For if 
p, q E t&z), then p, p < x and thus p v q < x, where p v q is the line incident 
with p and q if p # q. Hence 4 maps L into @i(L). 
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(a) Since L is atomistic, for any x EL, we have x = V #(x), and thus 
# is injective. For any S _C L, we have 

+(A s) = n 0) = A+(S) XES 
which shows that $J preserves arbitrary infs. 

(b) Let {a>, {b} E Age,) , {a} # {b}. Then a, b E A, and a # b, which by 
dual atomisticity of L implies the existence of d E D, , such that, d 3 a but 
d 2 b. In view of part (a), we must have #(d) > {u} but #(d) 2 {b), since 
0 = t,b(O) = #(d A b) = z,b(d) A I@). 

(c) First let d E D, ; we show that #(d) is a hyperplane, that is, a maximal 
proper subspace of B(L). 

Since Z/ is injective, we have 4(d) # $(l) = I?(,, = AL, that is, 4(d) is 
a proper subspace of B(L). In order to show maximality of 4(d), we let 
p E A,\#(d), and we must show that the subspace of B(L) generated by t/(d) 
and p equals AL. Indeed, let q E (A,\yG(d))\{p}. Then d v (p v q) = 1, and 
by the double covering condition, we have that p v q > (p v q) A d, and thus 
(Pvq)AdE&. Consequently, q is contained in the subspace of S’(L) 
generated by #(d) and p. 

Now let c, d E DL and e E DglL, such that e > #(c) A #(d). We have just 
proved that #(c), a/(d) E Dg+(,) . Hence e covers #(c) n #(d) if c # d. If c = d, 
we have e = 1+4(c) and there is nothing to prove. Hence assume that c # d. 

Let P E 4W> n vWN so that e = (4(c) n 4(d)) v (p}. Let e’ = (c A d) v p; 
then e’ E DL . By the above, #(e’) is a hyperplane of S(L), and contains 
$(c) n #(d) and p. But then #(e’) = e which shows that e E #(DL). 1 

Part (a) in the proof of the theorem follows from [8, (27.16)]. We can sum- 
marize the above theorem by saying that: every subprojective lattice L admits 
a geometric mapping into its projective envelope g(L). The essential uniqueness 
of g(L), proved in Section 7, further justifies the terminology “projective 
envelope.” The associated projective space 9(L) provides a link between 
subprojective lattices and projective geometry. Since the projective lattice 
g(L) is a more familiar object than the subprojective lattice L, it is of particular 
interest to establish the precise relationship between L and g(L). 

6. PROPERTIES OF A GEOMETRIC MAP 

Our aim here is to establish a number of properties of geometric maps. 
We start with a new concept and an auxiliary result of independent interest. 

6.1 DEFINITION. Let L be a subprojective lattice. A nonempty subset S 
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of DL is a bundle if for any a, 6 E S and c E D, , c >, a A b implies that c E S. 
For a bundle S, let Ls = {A T / T _C S>. Ls is naturally ordered by inclusion. 

It is easy to see that L, is a complete lattice, but is in general not a sublattice 
of L. We have seen in the proof of Theorem 5.5 that #(DL) is a bundle. 

6.2 LEMMA. Let S be a bundle in a subprojective lattice L. If m EL,~ and 
PEAR, then m v,pELs. 

Proof. If p < m, the result is trivial. Hence assume that p $ m. By the 
double covering condition, we have m < m v p. Let iV = {d E S / m v p < d} 
and n = A IV. It is clear that m < m v p < n. 

In order to prove the lemma, it suffices to show that m < n, for in such 
a case, m v p = n EL8 . By contradiction, assume that m + n. Let M _C S 
be such that m = A M. Since p $ m, there exists d E M such that m < d but 
p < d. Now 1 = d v p = d v n > d, hence by the double covering condition, 
we have m < n A d < n. By hypothesis m x n, so that m < n A d. By 
atomisticity, there is q E A, such that q < n A d but q $ m. Since q $ m = A M, 
there exists h E M such that q 4 h. We consider two cases. 

Case 1. p<h.Thenh~iV,whichimpliesthatq<nnd<n=AN<h, 
contradicting the fact that q < h. 

Case 2. p $ h. Let c = d A h. Note that m < c butp, q 4 c. Let k = c v p; 
then k E D, . Since d, h E S and S is a bundle, also k E S. It is clear that 
mvp<k,andthusk~N.Assumethatq<k.Thend=cvq<kwhich 
implies that d = k since d, k E D, . This contradicts the fact that p 6 d and 
p < k. Consequently, q 4 k; but q < n = A N < k, a contradiction. 1 

A simple inductive argument shows that p in the above lemma may be taken 
to be of finite height. As a consequence of this lemma, we obtain a result due 
to Mackey [7] that the join of a U-closed subspace of V and a finite-dimensional 
subspace is U-closed, where (U, I’) form a dual pair of vector spaces over a 
division ring. Indeed, it suffices to verify that the hypotheses of the lemma 
are satisfied under these circumstances. 

6.3 Notation. In any subprojective lattice L, we denote by HnsL (resp. Dn,J 
the set of all elements of height (resp. deficiency) n. 

We are now ready for the general properties of geometric maps. 

6.4 THEOREM. Let L and L’ be subprojective lattices and z,b: L -+ L’ be a 
geometric map. Then the following statements hold, with x and y arbitrary elements 
of L. 

(4 #(xl < tcr(y> implies x < Y. 

(4 x < y implies 4(x) i #(Y). 
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(f) WLL) = ~L,L, 9 $(Dn,L) C Dn,L, for all integers n 33 0. 

(g) #(x v a) = t)(x) v #(a) for all a E AL . 

Proof. (d) Suppose that 4(x) < #( y). Then #(x) = 4(x) A #( y) = I/(X A y) 
which implies that x = x A y since # is injective. Consequently, x < y. 

We prove next that #(DL) _C DL, . Since # is inf-preserving, we have #(l) = 1. 
Let dEDL. Then 4(d) < 1 by injectivity of +k By dual atomisticity of L’, 
there exists e E DL, such that e > zJ(d). Hence e 3 #(d) n 4(d) which implies 
that e E #(DL) since # is geometric, say e = #(c). Thus #(d) < 4(c) which 
by part (d) implies that d < c. Since c, d E DL , we must have c = d and hence 
$(d) E D,, . As a consequence, we have that #(DL) is a bundle in L’. 

(e) Let x < y in L. Then $(x) < #(y) since # is injective and isotone. 
Assume that #(x) < I/(Y). Atomisticity of L’ provides 4 E AL, , such that 

C(x) < N4 v 4 < 1Cl(r>.sinceW~) is a bundle in L’, we may apply Lemma 6.2 
to obtain #(x) v p EL$(~~) = z/(L). C onsequently, there exists t EL such that 
4(x) < z)(t) < #(y). But then x < t < y, by (d), which contradicts the 
hypothesis that x < y. Therefore #(x) < #(y). 

(f) If L or L’ has only one atom, then both L and L’ are isomorphic. 
Otherwise, we show that #(O) = #(A DL) = A $(DL). By part (b) of the defini- 
tion of a geometric map, a < A $(DL) for no a E AL, , which by atomisticity 
of L’ yields that A #(DL) = 0. Consequently, $(O) = 0. A simple inductive 
argument now shows that z/(H~,~) _C H,,,, in view of (e), and y5(Hn,L) 2 H,,,, 
in view of Lemma 6.2. It follows that #(H,,,) = HnsL, for all n > 0. 

We have seen above that #(l) = #(l). I n view of part (e), a simple inductive 
argument shows that #(D,,L) _C D,,,, for all n 3 0. 

(g) Let x EL and a E AL . If a < x, there is nothing to prove. Suppose 
a $ X. Since L is subprojective, x < x v a, and thus #(x) < $(x v a) by 
part (e). In view of part (f), we have that #(a) E AL, . Part (d) implies that 
#(a) 4 #(x). As in the proof of Theorem 3.2, it follows that 4(x) < #(x) v 
964 < #(x v 4. Finally Rx> < (cr( x v a) now implies that #(x v a) = I+(X) v 

Qw- I 

The next result provides a construction of certain subprojective lattices 
as subsystems of a given subprojective lattice L. On the one hand, this charac- 
terizes images of subprojective lattices under geometric maps into L, and on 
the other hand, if L is a projective lattice, gives a construction of subprojective 
lattices in terms of projective lattices, in view of Theorem 5.5. Recall the defini- 
tion and notation in Definition 6.1. 

6.5 CONSTRUCTION THEOREM. Let L be a subprojective lattice and S be a 
bundle in L sutis&kg 

(b’) zjcu,b~AL,u#b,thenthereexistsd~Ssuchthatu<dbutb~d. 
Then Ls is a subprojective lattice. 
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Proof. It is clear that Ls is complete. If L has only one atom, then S = {0} 

and Ls = L. Hence we may assume that L has at least two atoms, and thus 
at least one hyperatom, in view of (b’). Furthermore, (b’) implies that AL C Ls . 
Consequently, Ls is atomistic. It is obvious that Ls is dual atomistic with 

DLs = S. Note that in all cases, Ls has at least two elements. It remains to 

establish the double covering condition. 

If m E Ls and d G S are such that m 4 d, then m A d < m in L, since L 
is subprojective and thus m A d < m in Ls as well. The proof of Theorem 3.2 

now establishes one-half of the double covering condition. The proof of 

Theorem 3.2 also shows that in order to prove that x A y < x impliesy < x v y, 

it suffices to show that for m ELM and a E ALS = AL , we have m < m vLs a. 
By Lemma 6.2, we have m vLs a = m vL a > m, which completes the proof. 1 

7. GEOMETRIC MAPS INTO PROJECTIVE LATTICES 

We first establish essential uniqueness of the projective envelope of a sub- 
projective lattice. Then we turn to the conditions on a subprojective lattice 

to be projective. 

7.1 UNIQUENESS THEOREM. Let L be a subprojective lattice, P and P’ be 
projective lattices, and #: L + P, 4’: L + P’ be geometric maps. Then there 
exists a unique isomorphism 0 of P onto P’ such that 09 = 9’. 

Proof. By part (f) of Theorem 6.4, we have #(H& = Hnsp and #‘(Hn,L) = 
H n,P’ for all n > 0. 

We define t?: P + P’ by: 

e(x) = #YP(~)) for all x E Hn,p , else 

e(x) = sup{e(p) 1 p E A, and p < x}. 

Observe that, any isomorphism f: P -+ P’, for which f$ = #‘, must agree 

with e on Hn,p . Since f is sup-preserving, f = 8. Thus it remains to show 
that 0 is an isomorphism. 

Clearly 0 preserves all relations between atoms and hyperatoms. Since P 
and P’ are projective lattices (lattices of subspaces determined by the geometry 
of atoms and hyperatoms), it follows easily that 0 is an isomorphism. m 

Recall that a lattice L is compactly atomistic if for any S C AL and a E AL , 
if a < V S, then a < V F for some finite subset F of S. For convenience, 
we call the geometric map constructed in Theorem 5.5 natural. 

7.2 THEOREM. The following conditions on a subprojective lattice L are 
equivalent. 



SUBPROJECTIVE LATTICES AND PROJECTIVE GEOMETRY 319 

(a) L is projective. 

(b) L is compactly atomistic. 

(c) The natural geometric map for L is surjective. 

(d) The natural geometric map for L is sup-preserving. 

Proof. (a) => (b). Let S _C AL and a E AL be such that a < V S. For any 
T<AL, V T can be identified with the subspace of B(L) generated by T. 
Let F = {V T 1 T is a finite subset of S>. Then F is clearly directed, which 
can be used to verify that u F is a subspace of 9(L) containing S. It follows 
that a < V S = u F and hence a E V T for some finite subset T of S. 

(b) 3 (c). We show first that the natural geometric map $ preserves 
joins of atoms. An inductive argument, using part (g) of Theorem 6.4, shows 
that # preserves finite joins of atoms. Now let S Z A, and assume that V a/(S) < 
#(V S). There exists a E A%(,) = AL such that a < #(V S) but a 4 V #(V S). 
It follows that a < V S. Since L is compactly atomistic, a < V T for a finite 
subset T of S. Hence a E #(V 2’) = V #(T) < V $(S) since # preserves finite 
joins of atoms. But this contradicts the fact that a 4 V $(S). Consequently 
# preserves joins of atoms. Now let WE g(L). Then W == V S for some 
S _C AL, and #( VL S) = Vg(,) 5’ = W, proving that 4 is surjective. 

(c) * (d). This is trivial since the hypothesis implies that z/ is an 
isomorphism of L onto g(L). 

(d) z- (a). It follows at once that the natural geometric map is surjective, 
since it is surjective on atoms. Thus L and @(L) are isomorphic. m 

The implication (b) 3 (c) above follows from [S, Theorem 15.51. Some 
of the remaining statements also follow from statements in [S]. A further 
characterization of the class of projective lattices within the class of sub- 
projective lattices is given in [13, 25.31 in terms of a maximality condition. 

As a consequence of the above theorem, we have that every finite-dimensional 
subprojective lattice is projective. For this case, Theorem 3.2 provides a self- 
dual system of axioms for a finite-dimensional projective space.. 

Further characterizations of subprojective lattices, in terms of “pairs of 
dual projective spaces,” can be found in [13, Chapt. v]. 
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