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Abstract

Tachyonic inflationary universe model in the context of a Chaplygin gas equation of state is studied. General conditions for this model to be
realizable are discussed. By using an effective exponential potential we describe in great details the characteristic of the inflationary universe
model. The parameters of the model are restricted by using recent astronomical observations.
© 2008 Elsevier B.V.
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1. Introduction

It is well known that inflation is to date the most compelling
solution to many long-standing problems of the big bang model
(horizon, flatness, monopoles, etc.) [1,2]. One of the success
of the inflationary universe model is that it provides a causal
interpretation of the origin of the observed anisotropy of the
cosmic microwave background (CMB) radiation, and also the
distribution of large scale structures [3].

In concern to higher-dimensional theories, implications of
string/M-theory to Friedmann–Robertson–Walker (FRW) cos-
mological models have recently attracted great deal of attention,
in particular, those related to brane–antibrane configurations
such as space-like branes [4]. In recent times a great amount
of work has been invested in studying the inflationary model
with a tachyon field. The tachyon field associated with unsta-
ble D-branes might be responsible for cosmological inflation
in the early evolution of the universe, due to tachyon conden-
sation near the top of the effective scalar potential [5], which
could also add some new form of cosmological dark matter
at late times [6]. In fact, historically, as was empathized by
Gibbons [7], if the tachyon condensate starts to roll down the
potential with small initial velocity, then a universe dominated
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by this new form of matter will smoothly evolve from a phase
of accelerated expansion (inflation) to an era dominated by a
non-relativistic fluid, which could contribute to the dark matter
detected in these days.

On the other hand, the generalized Chaplygin gas has been
proposed as an alternative model for describing the accelerating
of the universe. The generalized Chaplygin gas is described by
an exotic equation of state of the form [8]

(1)pch = − A

ρ
β

ch

,

where ρch and pch are the energy density and pressure of the
generalized Chaplygin gas, respectively. β is a constant that lies
in the range 0 < β � 1, and A is a positive constant. The origi-
nal Chaplygin gas corresponds to the case β = 1 [9]. Inserting
this equation of state into the relativistic energy conservation
equation leads to an energy density given by [8]

(2)ρch =
[
A + B

a3(1+β)

] 1
1+β

,

where a is the scale factor and B is a positive integration con-
stant.

The Chaplygin gas emerges as an effective fluid of a gen-
eralized d-brane in a (d + 1,1) space–time, where the action
can be written as a generalized Born–Infeld action [8]. These
models have been extensively studied in the literature [10]. The
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model parameters were constrained using currents cosmologi-
cal observations, such as, CMB [11] and supernova of type Ia
(SNIa) [12].

In the model of Chaplygin inspired inflation usually the
scalar field, which drives inflation, is the standard inflaton field,
where the energy density given by Eq. (2), can be extrapolate
for obtaining a successful inflation period with a Chaplygin gas
model [13]. Recently, the dynamics of the early universe and
the initial conditions for inflation in a model with radiation and
a Chaplygin gas was studied in Ref. [14]. As far as we know,
a Chaplygin inspired inflationary model in which a tachyonic
field is considered has not been studied. The main goal of the
present work is to investigate the possible realization of a Chap-
lygin inflationary universe model, where the energy density is
driven by a tachyonic field. We use astronomical data for con-
straining the parameters appearing in this model.

The outline of the Letter is as follows. Section 2 presents
a short review of the modified Friedmann equation by using
a Chaplygin gas, and we present the tachyon-Chaplygin infla-
tionary model. Section 3 deals with the calculations of cosmo-
logical perturbations in general term. In Section 4 we use an
exponential potential for obtaining explicit expression for the
model. Finally, Section 5 summarizes our findings.

2. The modified Friedmann equation and the
tachyon-Chaplygin inflationary phase

We start by writing down the modified Friedmann equation,
by using the FRW metric. In particular, we assume that the grav-
itational dynamics give rise to a modified Friedmann equation
of form

(3)H 2 = κ
[
A + ρ

(1+β)
φ

] 1
1+β ,

where κ = 8πG/3 = 8π/3m2
p (here mp represents the Planck

mass), ρφ = V (φ)√
1−φ̇2

, and V (φ) = V is the scalar tachyonic po-

tential. The modification is realized from an extrapolation of
Eq. (2), where the density matter ρm ∼ a−3 is introduced in
such a way that we may write

(4)ρch = [
A + ρ(1+β)

m

] 1
1+β ,

and thus, we identifying ρm with the contributions of the
tachyon field for give Eq. (3). The generalized Chaplygin gas
model may be viewed as a modification of gravity, as described
in Ref. [15], and for chaotic inflation, in Ref. [13]. Different
modifications of gravity have been proposed in the last few
years, and there has been a lot of interest in the construction
of early universe scenarios in higher-dimensional models mo-
tivated by string/M-theory [16]. It is well known that these
modifications can lead to important changes in the early uni-
verse. In the following we will take β = 1 for simplicity, which
means the usual Chaplygin gas.

From Eq. (3), the dynamics of the cosmological model in
the tachyon-Chaplygin inflationary scenario is described by the
equations

(5)H 2 = κ

√
A + ρ2

φ = κ

√
A + V 2

1 − φ̇2
,

and

(6)
φ̈

1 − φ̇2
+ 3Hφ̇ + V ′

V
= 0,

where dots mean derivatives with respect to the cosmological
time and V ′ = ∂V (φ)/∂φ. For convenience we will use units in
which c = h̄ = 1.

During the inflationary epoch the energy density associated
to the tachyon field is of the order of the potential, i.e., ρφ ∼ V .
Assuming the set of slow-roll conditions, i.e., φ̇2 � 1 and φ̈ �
3Hφ̇ [7,17], the Friedmann equation (5) reduces to

(7)H 2 = κ

√
A + ρ2

φ ≈ κ
√

A + V 2,

and Eq. (6) becomes

(8)3Hφ̇ ≈ −V ′

V
.

Introducing the dimensionless slow-roll parameters [18], we
write

(9)ε = − Ḣ

H 2
� 1

6κ

V ′2

(A + V 2)3/2
,

η = − φ̈

H φ̇

(10)� 1

3κ
√

A + V 2

[
V ′′

V
− V ′2

V 2
− 1

2

V ′2

(A + V 2)

]
,

and

(11)γ = − V ′φ̇
2HV

� 1

6κ

V ′2

V 2(A + V 2)1/2
.

The condition under which inflation takes place can be sum-
marized with the parameter ε satisfying the inequality ε < 1,
which is analogue to the requirement that ä > 0. This condi-
tion could be written in terms of the tachyon potential and its
derivative V ′, which becomes

(12)
(
A + V 2)3/2

>
V ′2

6κ
.

Inflation ends when the universe heats up at a time when
ε � 1, which implies

(13)
(
A + V 2

f

)3/2 � V ′2
f

6κ
.

The number of e-folds at the end of inflation is given by

(14)N = −3κ

φf∫
φ∗

√
A + V 2

V ′ V dφ′,

or equivalently

(15)N = −3κ

Vf∫ √
A + V 2

V ′2
V dV.
V∗
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In the following, the subscripts ∗ and f are used to denote
the epoch when the cosmological scales exit the horizon and the
end of inflation, respectively.

3. Perturbations

In this section we will study the scalar and tensor perturba-
tions for our model. The general perturbed metric about the flat
FRW background [19] is:

ds2 = −(1 + 2A)dt2 + 2a(t)B,i dxi dt

(16)+ a(t)2[(1 − 2ψ)δij + 2E,i,j + 2hij

]
dxi dxj ,

where A, B , ψ and E correspond to the scalar-type metric per-
turbations, and hij characterizes the transverse-traceless tensor-
type perturbation. We introduce comoving curvature perturba-
tions, R = ψ + Hδφ/φ̇, where δφ is the perturbation of the
scalar field φ. For a tachyon field the power spectrum of the
curvature perturbations is given in the slow-roll approximation
by following expression [18]

(17)PR �
(

H 2

2πφ̇

)2 1

V
� 9κ3

4π2

[
V (A + V 2)3/2

V ′2

]
.

The scalar spectral index ns is given by ns − 1 = d lnPR

d ln k
,

where the interval in wave number is related to the number of
e-folds by the relation d ln k(φ) = −dN(φ). From Eq. (17), we
get, by using the slow-roll parameters,

(18)ns ≈ 1 − 2(2ε − η − γ ),

or equivalently

(19)ns ≈ 1 − 1

κ(A + V 2)1/2

[
V ′2

(A + V 2)
+ V ′2

3V 2
− 2

3

V ′′

V

]
.

Note that in the limit A → 0, the scalar spectral index ns

coincides with that corresponding to a single tachyon field [6].
One of the interesting features of the three-year data set

from Wilkinson Microwave Anisotropy Probe (WMAP) is that
it hints at a significant running in the scalar spectral index
dns/d lnk = αs [3]. From Eq. (18) we get that the running of
the scalar spectral index becomes

(20)αs =
(

4(A + V 2)

V V ′

)
[2ε,φ − η,φ − γ,φ]ε.

In models with only scalar fluctuations the marginalized value
for the derivative of the spectral index is approximately −0.05
from WMAP-three year data only [3].

On the other hand, the generation of tensor perturbations
during inflation would produce gravitational waves and its am-
plitudes are given by [19]

(21)Pg = 24κ

(
H

2π

)2

� 6

π2
κ2(A + V 2)1/2

,

where the spectral index ng is given by ng = dPg

d ln k
= −2ε.

From expressions (17) and (21) we write the tensor-scalar
ratio as

R(k) =
( Pg

P

)∣∣∣∣ �
(

24κV φ̇2

H 2

)∣∣∣∣
R k=k∗ k=k∗
(22)=
(

8

3κ

V ′2

V (A + V 2)

)∣∣∣∣
k=k∗

.

Here, k∗ is referred to k = Ha, the value when the universe
scale crosses the Hubble horizon during inflation. Note that
the consistency relation for the tensor-scalar ratio, R = −8ng ,
becomes similar to that corresponding to the standard scalar
field [20].

Combining WMAP three-year data [3] with the Sloan Dig-
ital Sky Survey (SDSS) large scale structure surveys [21], it is
found an upper bound for R given by R(k∗ � 0.002 Mpc−1) <

0.28 (95% CL), where k∗ � 0.002 Mpc−1 corresponds to l =
τ0k � 30, with the distance to the decoupling surface τ0 =
14 400 Mpc. The SDSS measures galaxy distributions at red-
shifts a ∼ 0.1 and probes k in the range 0.016h Mpc−1 < k <

0.011h Mpc−1. The recent WMAP three-year results give the
values for the scalar curvature spectrum PR(k∗) � 2.3 × 10−9

and the scalar-tensor ratio R(k∗) = 0.095. We will make use of
these values to set constrains on the parameters appearing in
our model.

4. Exponential potential in a tachyon-Chaplygin gas

Let us consider a tachyonic effective potential V (φ), with
the properties satisfying V (φ) → 0 as φ → ∞. The exact form
of the potential is V (φ) = (1 + αφ) exp(−αφ), which in the
case when α → 0, we may use the asymptotic exponential ex-
pression. This form for the potential is derived from string the-
ory calculations [5,22]. Therefore, we simple use

(23)V (φ) = V0e
−αφ,

where α and V0 are free parameters. In the following we will
restrict ourselves to the case in which α > 0. Note that α rep-
resents the tachyon mass [17,23]. In Ref. [6] an estimation of
these parameters is given in the limit A → 0. Here, it was found
V0 ∼ 10−10m4

p and α ∼ 10−6mp . We should mention here that
the caustic problem with multi-valued regions for scalar Born–
Infeld theories with an exponential potential results in high
order spatial derivatives of the tachyon field, φ, become diver-
gent [24].

From Eq. (15) the number of e-folds results in

(24)N = 3κ

α2

[
h(Vf ) − h(V∗)

]
,

where

(25)h(V ) =
(√

A ln

[
2(

√
A + W)

AV

]
− W

)
,

and W = W(V ) = (A + V 2)1/2.
On the other hand, we may establish that the end of inflation

is governed by the condition ε = 1, from which we get that the
square of the scalar tachyon potential becomes

V 2(φ = φf )

= V 2
f

(26)= 1
2

[
α4 − 108Aκ2 + α8 − 216Aκ2α4

+ �
]
.

108κ �
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Here, � is given by

� = α4/3[α8 − 324Aκ2α4 + 17 496A2κ4

+ 648
√

3A3/2κ3
√

243Aκ2 − α4
]1/3

.

Note that in the limit A → 0 we obtain Vf = α2

6κ
, which coin-

cides with that reported in Ref. [6].
From Eq. (17) we obtain that the scalar power spectrum is

given by

(27)PR(k) ≈ 9κ3

4π2α2

[
(A + V 2)3/2

V

]∣∣∣∣
k=k∗

,

and from Eq. (22) the tensor-scalar ratio becomes

(28)R(k) ≈ 8

3κ

[
α2V

(A + V 2)

]∣∣∣∣
k=k∗

.

By using the WMAP three year data where PR(k∗) � 2.3 ×
10−9 and R(k∗) = 0.095, we obtained from Eqs. (27) and (28)
that

(29)A � 10−19

κ4

[
1 − 2 × 10−22

κ2α4

]
,

and

(30)V∗ � 5 × 10−21

α2κ3
.

From Eq. (29) and since A > 0, α satisfies the inequality α >

10−6mp . This inequality allows us to obtain an upper limit for
the tachyon potential V (φ) evaluates when the cosmological
scales exit the horizon, i.e., κ2V∗ < 5 × 10−10. Note that in the
limit A → 0, the constrains α ∼ 10−6mp and V∗ ∼ 10−11m4

p

are recovered [6].
By using an exponential potential we obtain from Eq. (19)

(31)
(2V 2 − A)2

(V 2 + A)3
= 9κ2

α4
(ns − 1)2.

This expression has roots that can be solved analytically for the
tachyonic potential V , as a function of ns , A and α. For a real
root solution for V , and from Eqs. (29) and (20) we obtain a
relation of the form αs = f (ns) for a fixed value of α. In Fig. 1
we have plotted the running spectral index αs versus the scalar
spectrum index ns . In doing this, we have taken two different
values for the parameter α. Note that for α > 10−5mp and for
a given ns the values of αs becomes far from that registered by
the WMAP three-year data. For example, for α = 10−4mp and
ns = 0.97 we obtained that αs � −7 × 104. Note also that from
Fig. 1 the WMAP-three data favors the parameter α lies in the
range 10−6 < α/mp � 10−5. The lower limit for α results by
considering A > 0 and its upper limit from the relation αs =
f (ns) (see Fig. 1). In example, for α = 4 × 10−6mp and ns =
0.97 we get the values A � 2 × 10−23m8

p , V∗ � 5 × 10−13m4
p

and αs � −0.02. Also, the number of e-folds, N , becomes of
the order of N ∼ 41. This lower value is not a problem since,
in the context of the tachyonic curvaton reheating, the e-folding
could be of the order of 40 or 50, due to the inflationary scale is
lower [25]. We should note also that the A parameter becomes
Fig. 1. Evolution of the running scalar spectral index αs versus the scalar spec-
trum index ns , for two different values of the parameter α.

smaller by fourth order of magnitude when it is compared with
the case of Chaplygin inflation with a standard scalar field [13].

Of particular interest the quantity is known as the reheat-
ing temperature. The reheating temperature is associated to the
temperature of the universe when the big bang scenario begins
(the radiation epoch). In general, this epoch is generated by
the decay of the inflaton field which leads to creation of par-
ticles of different kinds [26]. The stage of oscillations of the
scalar field is an essential part for the standard mechanism of
reheating [27]. However, this mechanic does not work when the
inflaton potential does not have a minimum [28]. These models
are known in the literature like non-oscillating models, or sim-
ply NO models [29,30]. An alternative mechanism of reheating
in NO models is the introduction of the curvaton field [31]. In
the following, let us brief comment on this and we give an es-
timation of the reheating temperature for our model. We follow
a similar procedure described in Refs. [25] and [32].

In the context of the curvaton scenario, reheating does oc-
cur at the time when the curvaton decays, but only in the period
when the curvaton dominates. In contrast, if the curvaton de-
cays before its density dominates the universe, reheating oc-
curs when the radiation due to the curvaton decay manages
to dominate the universe. During the epoch in which the cur-
vaton decays after it dominates it is found that the reheating
temperature, Trh, is of the order of Trh ∼ 10−10mp . Here, we
have used that the curvaton field σ∗ becomes the order of
σ∗ ∼ mp , A = 2 × 10−23m8

p , V∗ � 5 × 10−13m4
p and from

Eq. (7), H∗ ∼ 10−14 GeV. We should note that this value for
Trh could be modified, if the decay of the curvaton field hap-
pens after domination (see Ref. [32]).
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5. Conclusions

In this Letter we have studied the tachyon-Chaplygin infla-
tionary model. In the slow-roll approximation we have found a
general relation between the tachyonic potential and its deriva-
tive. This has led us to a general criterium for inflation to occur
(see Eq. (12)). We have also obtained explicit expressions for
the corresponding scalar spectrum index ns and its running αs .

By using an exponential potential with α fixed (see Eq. (23))
and from the WMAP three year data, we found the values of
the parameter A and an upper limit for the tachyon poten-
tial V∗. In order to bring some explicit results we have taken
α = 4 × 10−6mp and ns = 0.97, from which we get the values
A � 2 × 10−23m8

p , V∗ � 5 × 10−13m4
p and αs � −0.02. The

restrictions imposed by currents observational data allowed us
to establish a small range for the parameter α, which become
10−6 < α/mp � 10−5. From this range, and from Eqs. (29)
and (30), we obtained the ranges 0 < A/m8

p � 10−23 and

8.5 × 10−14 � V∗/m4
p < 8.5 × 10−12.

In the context of the curvaton scenario, we gave an esti-
mation of the reheating temperature, when the curvaton decay
occurs after it dominates. However, a more accurate calcula-
tion for the reheating temperature Trh in the curvaton scenario,
would be necessary for establishing some constrains on other
parameters appearing in our model. We hope to return to this
point in the near future.
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