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Abstract

We exploit the reparametrization symimeof a relativistic free particle to impesa gauge @ndition which upon quantization
implies space—time noncommutativity. We show that there is an algebraic map from this gauge back to the standard ‘commuting’
gauge. Therefore the Poisson algebra, and the resulting quantum theory, are identical in the two gauges. The only difference isin
the interpretation of space—time coordinates. The procedure is repeated for the case of a coupling with a constant electromagnetic
field, where the reparametrization symmetry is preserved. For more arbitrary interactions, we show that standard dynamical
system can be rendered noncommutative in space and time by a simple change of variables.
00 2004 Elsevier B.V. Open access under CC_BY license.

1. Introduction natively, there have been attempts to make the time,
like the spatial coordinate, be associated with a quan-
Issues concerning the loss of unitarity have been tum operatof2]. This allows for the exotic possibility
raised in the context of field theories with space— of having the space and time coordinates be noncom-
time noncommutativity, despite the work of Doplicher, muting. A trivial way to achieve this is to declare the
Fredenhagen and Robeft to the contrary. In this  ‘time operator’ to be
regard, it might be useful to examine space—time
noncommutativity in a simpler setting. In the context x
of quantum mechanics, ape—time noncommutativity
can be introduced in a trivial manner. Say tkatind
p; are the position and momentum operators for a
particle satisfying

0:1’ —Qini, (12)

whered% are constants. Whemoi‘—> 0 one recovers
the commutative time, while fa% = 0,

_ X% x']=i0%. (1.3)
1 S\
X' ps]=ib. (1) Similar redefinitions have been done to introduce
and evolution in some variable is generated by  noncommutativity among only spatial coordinaf@s
theory based on commutation relatiqis3).
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tativity is simply a gauge choice. We consider famil- sions

iar examples in particle mechanics. Section 2we

re-examine the relativistic free particle. The action is Sg = —m/dt Vv —x2, (2.2)
reparametrization invariant with respect to the para-

meter labeling the position along the world line. By with x#, © =0, 1,...,d being the space-time coor-
choosing a honstandard gauge condition we can obtaindinate, the dot denoting differentiation with respect to
Dirac brackets corresponding to the classical analoguethe affine timer, and metrich = diag(—1,1, ..., 1).

of (1.3). The situation resembles the derivation of spa- From the equations of motion, the momenta

tial noncommutativity for a charged particle in a strong .

magnetic field6]. As the classical physics cannot de- =M (2.2)

pend on the gauge choice, this theory should be equiv- T =x2
alent to the theory expressed in the standard gauge,are conserved. In the gauge invariant formulation

where the parameter is identified with the time coor- ¢ e theory, they are canonically conjugate to the
dinate. This equivalence can be made explicit by dis- space—-time coordinates

playing a simple algebraic map between the two the-
ories. _The_ time component of itis give_n 103.2). In- [x", py} =8, {x*.x"} =1{pu. P} =0, (2.3)
troducing interactions will irgeneral spoil the repara- _ -
metization symmetry present for the free particle. An and are subject to the mass shell condition
exceptional case is the coupling to an electromagnetic

i p1=p?+m?~0 (2.4)
background. We consider the case of a constant elec-#1 = P ’ :
tromagnetic background iBection 3 As before we

show that there is a gauge condition which leads 10 4e5 gauge motion on the phase space associated with
(1.3)upon quantization. Also as before, the NoNCoM- o narametrizations of the parameterThe Poincaré
muting space—time coordinates can be obtained by aP-symmetry is generated by, and ., = X, py — Xy Py
plying a coordinate transformation from the standard ~ 1o gauge symmetry can be fixed by imposing a
gauge. gauge condition. The standard choice identifies the

In both of the above mentioned examples the only (ime coordinater® with the parameter. We instead
difference between the different gauges is what one impose the following constraint:

chooses to call the ‘time’. 1f1.2)x% andt represent
a ‘noncommutative’ and ‘commutative time’, respec- 4, =94 9%, —r~0, i=1,2 ...,d, (2.5)
tively. Furthermore, time as measured$yor r runs ,

at the same rate (at least ssically). This is evident 0% being constants. The constrair{&4) and (2.5)
for the free particle, usinfl.2), since the momentum  form a second class set with

is conserved, and hene&®/dr = 1. It is also true

in the case of interactions with a constant electromag- {¢1, d2} =2po (2.6)
netic field provided one interprefs in (1.2) as the
conserved momenta. On the other haix/dt # 1
for arbitrary interactions, which we briefly consider (4 pips = (A, B)

where~ indicates equality in weak sensg. gener-

and resulting Dirac bracke[g]

in Section 4 Furthermore, one has the possibility of 1
dx%/dt < 0 implying a time reversal upon mapping +
‘time’ 7 to ‘time’ x° using(1.2). {p1, d2}
x ({A, ¢1}{¢2, B} — (A, ¢2}{¢1, B}).
(2.7
2. Freeparticle The Dirac bracket of the spatial coordinateswith

the ‘time’ x" is
We start with the standard reparametrization invari- ; o
ant action for a relativistic free particle i+ 1 dimen- Xxt g =07, (2.8)
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leading to commutation relatior§.3) upon quantiza-
tion. The remaining nonvanishing Dirac brackets are

. . 1 . .
(x5 }og = (6% pj = 6% i), (2.9)

i Pi

: ==, 2.10
{x pO}DB 0 ( )
{x". pj}pg = dij- (2.11)

(2.10) and (2.11) are the same as in the standard
gauge, whilg2.9)implies nontrivial commutation re-
lations among spatial coordinates upon quantization.
Although x° gets promoted to a noncommuting op-
erator upon quantization, we can still regardas a
c-number in the quantum theory. Upon imposiig=

0 strongly,x? + 0% p; gets identified with the parame-
ter 7. By definition¢, has zero Dirac bracket with all
phase space variables, and then so d@es 6% p;. It

then is in the center of the Poisson algebra, and con-

sequently a c-number in the corresponding quantum
algebra.

The reparametrization symmetry means that the
Hamiltonian for the system is weakly zero, i.e., alinear
combination of constraints,¢,, a = 1, 2, and so the
evolution of any functiom on phase space is given by

. 0A

where the dot is a total derivative. Imposing that the
constraints are preserved in time, i¢, ~ 0O, fixes the
Lagrange multipliers to be

1 9¢2

= 3 )\, :O
2po 0T 2

1 (2.13)
Then if x% and p; are presumed to have no explicit

dependence, substitution inf®.12)gives
(2.14)

Although (2.14) correctly reproduces the dynamics,
since it is formulated in terms of Poisson brackets
rather than Dirac brackets, it is not evident how to
write it on the reduced phase space in the form of
Hamilton’s equations, and consequently the quantum
dynamics in terms of Heisenberg’s equations.
Alternatively, one can write Hamilton’s equations
using Dirac brackets. In ithapproach the Hamiltonian
is not a priori determined. Furthermore, in order to
have ¢, ~ 0 it becomes necessary for some of the
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original phase space variables to have an expticit
dependence. In familiar examples no suatependent
variables span the reduced phase space, as in the case
of the free particle in ther® = ¢ gauge, where the
reduced phase space is coordinatizedxbyand p;.
On the other hand, the time coordinat® gets an
explicit t dependence from the gauge condition either
x% = or (2.5). In addition, in the case of the gauge
(2.5), it is desirable that® is not eliminated from
the reduced phase space since we wish to recover
(1.3)upon quantization. This is accomplished by using
(2.5)to instead eliminate one of the momenta, and so
the resulting reduced phase space gets an explicit
dependence. More generally an explicitiependence
may be induced in all of the original phase space
variables using this approach, as we illustrate in
Section 3

Concerning the free particle in thd = ¢ gauge it
is usual to choose

H =/ pipi +m?, (2.15)

for the Hamiltonian, generating evolution in the para-
metert. The dynamics follows from
A

A=—r+{A,H}DB~

The same choice can be made for the gai2g®). To
recover the correct equations of motion one assumes
thatx’ andp; have no explicit dependence, in either
gauge. As stated above, the same is not true for ‘time’
coordinater®. This follows from the demand thab =
d¢2/0t = 0, and consequently

(2.16)

9x0
ot

As {x0, H}pg = 0, it also follows thatt® = 1, and as
a result the commutative and noncommutative clock,
as measured by andx?, respectively, run at the same
rate.

After the gauge fixing, a one parameter family of
Lorentz generators can be constructed

-1 (2.17)

Jij =Xipj — X, pi —l-apo(@Oin —QOjPi),
joi = —x°p;i — xipo— ab® pd —ab% p;p;,  (2.18)

a being the parameter. They satisfy as usual

{Juv, PA}DB = Nua Py — NvaPu, (2.19)
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{Juvs JaptDB = Nuadvp — Muaduo — Nup Jva + Mup Jua-

(2.20)
From (2.19) the momenta transform covariantly. For

infinitesimal Lorentz transformations,

1 -
SwPu = Ewkp{p/L, JrpJDB = _w/LpPp- (2.21)

Lorentz transformations involve a change of gauge,
and for that reason trar@imations of the space—time
coordinates are more subtfé]. ¢, is not invariant
under Lorentz transformations. On the other hawq,
being in the center of the algebra, has zero Dirac
bracket with the Lorentz generatof§u. Therefore
Lorentz transformations aaot in general be obtained
by simply taking Dirac brackets witﬁw asin(2.21)

As a result of the gauge conditi¢®.5)we obtained
the nontrivial Dirac bracket$2.8) and (2.9) imply-
ing space—time noncommuitaty, as opposed to the
trivial result for the standard gauge. However, as was
shown in[3,4] a simple change of variables can re-
move the noncommutativity. In this case the change
is
xi

xO

(2.22)
(2.23)

up to canonical transformation(®.22) removes the
space—space noncommutativity implied(By9), while
(2.23)removes the space—time noncommutativity im-
plied by (2.8). Eq. (2.23)also means that the coordi-
natesg” satisfy the standard gaug€ = ¢ condition,
and it agrees witf{1.2). The only remaining nonzero
brackets are

g =x' +6%po,
C=x040%p =1,

—

—

{qi’pO}DB: ﬁ’ {qi’pj}DB:(Si./" (2.24)

pPo
which agrees with the Dirac brackets of the standard
gauge. The free particle Hamiltonian is of course
unaffected by the coordinate change. So the only

difference between the two gauges is the interpretation P,, = p,, + Fj,,x"
of the space—time coordinates appearing in the free

particle action. Both gauges give rise to an identical
Poisson structure and dynamics (if we chodsé be

the same in both gauges), and thus lead to identical
guantum systems. Concerning the Lorentz generators,

if one setsy in (2.18)equal to one they have the usual

form
(2.25)

]Tuvzqupu—lhpu, a=1
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As shown in7], Lorentz transformations of the space—
time coordinateg* can be written in a simple form:

Suqh = %a))‘p{q“, jAP}DB — g8t = —w"q,.

(2.26)
The subtraction is necessary because the change of
gauge generated by Lorentz transformations corre-
sponds to a shifér in . The analogous time deriva-
tive term is absent in the transformation of momentum
(2.21)by the equations of motion. By putting= 0 in
(2.26) ¢%7 = 0%q,,, while for .« = i we then get

1 Ao f 0T qi O m
o"{q". jrolpg = 0@ T @ )

2 q
which is identically satisfied after using the equations
of motion.

(2.27)

3. Constant electromagneticfield

Interactions with an electromagnetic background
do not spoil the time reparametrization symmetry
which was present for the relativistic free particle. In
this case a gauge condition can be imposed which
again leads to space—taimnoncommutativity upon
guantization. Here we specialize to a constant electro-
magnetic field. The interaction term to be addedgo
is then

1
—E/df FMVXM).CU,

whereF,, is a constant field strength tensor. The usual
equations of motion

SF

(3.1)

1‘7# = ;wxv, (32)

wherep,, are given in(2.2), follow from varying x*
in the combined actio§ = Sp + Sr. They state that

(3.3)

are constants of the motion and therefore can be
used to label the trajectories. For the example of two
space—time dimensions, where there is only a constant
electric field Fp1 = E, solutions take the form

O 1

E
xl= %(Po -+ m coshy (1)),

(=P £ msinhy (1)),

(3.4)
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wherey () is arbitrary.

The reparametrizationymmetry again leads to
the mass shell constrairf.4), only the momenta
p,. appearing there are not the canonical momenta.
Instead the Poisson bracké®s3)are replaced by

{)C/L7 Pu} — 51/}’
—Fy.

{x“,x”} 0,

{pllv pl)}z (35)

p,. do not have zero Poisson bracket with the con-
straint(2.4), and thus are not gauge invariant. Nor are
they the conserved momenga, which are related to
pu by (3.3). Since{P,, p,} =0, it follows that the
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preserving the Poisson brackéss7)and(3.9).

K@O—g4+2o=2p2? - DK
+2EC 2E + (¢ — DK,
(3.12)

obtaining a one parameter family &B/O?fl) alge-
bras. Their generators are gauge invariant, and are dis-
tinguished by the Casimir, which has the value

K —

CW=pP? _2EK® ~ (o — Lym?, (3.13)

after using the mass shell constra{2t4). However
only fora = 0, doesk ) induce the standard Lorentz
boost on space—time coordinate’$s following from

conserved momenta are gauge invariant observables(3 10)1

On the other hand, canonical momemnta are con-
structed as follows
nu:pu'i‘EFuuxuy (36)
and together withj,,, = x,m, — x,7, generate the
Poincaré group. However for nonvanishing fields the

generators are not gauge invariant observables.
In two space—time dimerwis, a central extension

ISQ(1, 1) of the Poincaré algebra can be constructed
[8]. Moreover, its generators are gauge invariant. The
translation generators aw,, and they have a central
extension:

{Pu, Py} = Eey,y. 38.7)
A gauge invariant boost generator is

E
K= §x2 — X" PY, (3.8)

and it leads to the usual transformation properties for
P, andx*:

{P/L’ K} zfuvpvy

{x”, K} =ex,.

(3.9
(3.10)
From(3.9)and(3.10)it follows that{p,, K} = €., p",
and hence thak is gauge invarianiSQ(1, 1) has the
Casimir

C=P?—2EK = (P, — Ee;nx")’, (3.11)

which from the mass shell constrai(2.4) equals
—m2. We can therefore more generally add to the
boost generator a term proportional to the Casimir,

Next consider the gauge fixing. We are again
interested in a nonstandard gauge condition leading
to the Dirac bracket&.8)and(2.9), and so implying
nontrivial commutation relations for the space-time
coordinates upon quantization. This is accomplished
for

$p2=x"40%P — 1t ~0, (3.14)

6% again being constants ari{ being the gauge in-
variant momenta. It reduces to the previous gauge con-
dition (2.5) for vanishing fields. The Poisson bracket
between constrainig; andg¢, is again given by2.6).

So we recover the previous Dirac brackés8) and
(2.9) between space—time coordinates, and com-
mutation relationg(1.3) upon quantization. The re-
maining Dirac brackets contain the interaction with the
constant field tensor. The nonvanishing Dirac brackets
are

i Pj

i
po

{x'. po}pg =N (3.15)

1 For the special case = 1, the boost has the simple form
K® =L P2 and we can define a new pair of gauge invariant
space-time coordinate$* which are just the dual af,,,

1

Xt = =elVp,.
E
From
{x*, P} =5, [X* K} =X,

they undergo the usual two-dimeosal Poincaré transformations.
Like P,, they have nonvanishing Poisson brackets among them-
selves,{X*, XV} = —E~ 1V, and since they are reparametriza-
tion invariant merely serve to label the orbits.
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{x', pilog = Nj — 6% Fj 2, (3.16)
' © Do
pi
{po. pitos = Fi; =L, (3.17)
PO
{pi.pjlos = —Fij, (3.18)

whereN’ ; = §;; — 6% Fy;. It then follows that
{Po, Pi}pB = Foi. (3.19)

For the dynamics we again write the Hamilton
equations using Dirac brackets as ([@.16) Now
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measured byt andx?, respectively, run at the same
rate.

Assuming [N"j] to be a nonsingular matrix
(For0% +# 1), the noncommutativity of the space—time
coordinates following fron{2.8) and (2.9) can again
be removed by a trivial coordinate transformation. It
now takes the form

X - qiszlij[xj-i-GojPO]»

0 = O=x040%p =1, (3.26)

we get that all the space-time coordinates have anup to canonical transformations. The coordinajés

explicit ¢ dependence. A convenient choice for the
Hamiltonian is P2, since it is the conserved energy.
So settingp; strongly equal to zero,

H =/ pipi +m?— Foix'.

Since all P, should be constants of the motion, from
(3.19)we need that

9P -0 P

ot ot

Additional requirements on partial derivatives come
from demanding thap, = 9¢, /91 =0,a =1, 2, the
dot again denoting a total derivative. They lead to

(3.20)

— —Foi. (3.21)

ad
nEli _ o, (3.22)
at
P 0
O 14 Foe%. (3.23)
ot
A solution consistent witl§3.21)—(3.23)s
dx! _ —FOkQOk&,
dt Po
a vV
Pr — Foed% F 2 (3.24)
po

and so all the phase space variabtésand p,, have
explicit r dependence when the scalar product%f
with the electric fieldFp; is not zero. The resulting
Hamilton equations of motion are

axi  ph
B = H = ——
it ={x" Hlpg + PP 0
. ap p’
ple{pﬂvH}DB"i_—M:Flu)_, (325)
dT po

which agrees with(3.2). As in the free case{® =1,

once again satisfy the standard gauge condition, and
have its associated Dirac brackets

b (3.27)
pPo
{ql’ Pj}DB - (Sij’
along with {g".q"}pB = {qo, pvipe =0, (3.17)and
(3.18) Conversely, we can start with the standard
gauge, and obtain the gau@@14) by applying the
inverse of transformatio(8.26),

{a'. polpg =

(3.28)

0_ q°—0%(pi + Fijq’)
- 1 — 00k Fy,
X = N jq7 — 6% po.

=

’

(3.29)

So once again both gauges give rise to the same Pois-
son structure and resulting quantum commutation re-
lations. Concerning the dynamics, the natural Hamil-
tonian in the standard gauge would (#&20) with
noncommuting coordinates replaced by commuting
onesq':

Ho=/pipi + m? — Foiq'. (3.30)

It now represents the conserved energy, and yields the
same equations of motion &3.25) (Now ¢‘ and p,,
have no explicit dependence.)

4. Other interactions

For arbitrary interactions there is no longer, in
general, a conserved momenta. The latter was used
previously in writing the gauge conditi¢B.14) and it
led to the simple commutation relatio(s 3) between
the space and time coordinates. It also implied that the
commutative and noncommutative clock, as measured

and the commutative and noncommutative clock, as by r andx°, respectively, run at the same rate, i.e.,
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dx%/dt = 1. For most other systems, examples of which is consistent with the conditiodg = ¢, /97 =
which are considered below, these results get altered.0, a = 1, 2. Now definex? = ¢° — 6% p; to obtain the
Moreover, one can even hawx®/dt < 0 implying familiar Dirac brackets

time reversal in transforming from timeto timex°.

{xo*qi}DBZQOi' (4.7)

4.1. Coupling to an arbitrary electromagnetic field A feature shared with the previous approach is that
_ _ %01, Now
The first example is the case of a relativistic

particle coupled to an arbitrary electromagnetic field. i%=1—6%Fo, + 0% F;;¢/. (4.8)
As before the action is repametrization invariant. i i ) )

Since this approach differs from the previous one only
Here we replacé3.1) by . . r

by a gauge choice, the dynamics in the two cases
So—— [dra k. 41 must be |de_nt|_cal. The dlfference_ betvyeen _the two

r / T A (4.1) approaches is in how the time variahi® is defined.

with the resulting equations of motiof8.2), where ~ For both defini_tions»'co # 1, and even allows for the
Fy = 0,4, — 3,A, is not in general constant. The possibility of time reversal in going from time as

mass shell constrairf2.4) and Poisson bracke(8.5) measured by to time as measured by.

once again follow. If for the gauge constraint one takes )

(2.5), then(2.6) gets replaced by 4.2. Conservative system

{1, #2} =2(po+90iﬂﬂp“), (4.2) In all the previous examples, a noncommutative

time resulted either from a gauge choice or by a
redefinition of coordinates. In sections two and three
these approaches were equivalent, while in the above

0% example one ends up with different definitions of
:W’ (4.3) the noncommutative time®. In systems with no

po time reparametrizationysametry, one can adapt the
as opposed to the result obtained previou&yB). second approach. So once again by definjhd)
Moreover, demanding tha$» = 0 now gives the and assuming the commutation relatiofis1), the
complicated result result(1.3) follows. Applying this to a nonrelativistic
O o i conservative system described by Hamiltonian

.0 1+0"F;x/

T 146%Fy Ho — Piz
as opposed tog = 1. °" 2m
An alternative approach is to start with the standard one gets
gaugep, = ¢°—t ~ 0 (here we denote the space—time IV
coordinates by*), and simply define a noncommuta- %=1+ 6% —, (4.10)
tive time, using for examplél.2). The nonvanishing dq'
Dirac brackets in the standard gauge are again givenwhere Hyp generates evolution irr. If there are
by (3.17) (3.18) (3.27)and(3.28) The dynamics in trajectories for which ¥ 6% 2% < 0, we then get a

leading to a rather comglated Dirac bracket between
the space and time coordinates

{xo’xi}DB

(4.4)
+V(q"), (4.9)

a
the standard gauge is recovered for the Hamiltonian  time reversal upon applyir@.g).
In the above we looked at replacing the commuting

Ho =/ pipi +m?+ Ao(q), (4.5) time with its noncommuting counterpart, usitiy2).
along with One can instead make the analogous replacement

of the spatial coordinate. For the free particle this
pi apo P aq° corresponded to the inverse(@.22) or
2L 0A,, —= = 90A; -, —=1,
T T Po T

(4.6) g - xi=4 - 0% H. (4.12)
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One can try repeating this for an interacting system,
with H representing the resulting Hamiltonian for
the system generating evolution in some new time
variable, which we denote by. The generalizations
of (2.9)and(2.11)are then

[, x]) =0 2 _goidx
dt’ dt’
{x'.pj} =i +06° d’i{. (4.12)

So starting from the nonrelativistic conservative Ha-
miltonian(4.9), we would get

2
p:
H=-
2m

L+ v(x'), (4.13)

upon making the replaceme(4.11) The Hamilton
equations of motion resulting froif#.12) and (4.13)
can be written

1+90jﬂ ﬁ_ﬁ
axJ ) dt’ m’

(10020 ) 2

. L= (4.14)
ox/ ) dt ox!

Provided 1+ 601""—", > 0, the associated classical

trajectories are identical to those generated from the

standard Hamiltoniarf4.9) after again performing a
reparametrization
dt’ 0 dV
dr axi’
We thus arrive at the same Jacobian factor 44.ih0)
Unlike in the previous paragraph, here both ‘times’

1+6 (4.15)

are associated with c-numbers. As before, if there are

trajectories for which 4 00"% < 0, we then get a

time reversal upon going fromto ¢’.
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