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Abstract

A procedure for spatial aggregation of synthetic water demand time series is presented. Starting from synthetic water demand
time series generated at user level and reproducing mean and variance of the corresponding observed series, the procedure
allows the aggregated series to preserve the statistics of interest observed at the aggregation level considered. The procedure
uses a method proposed by Iman and Conover (1982): the synthetic user water demand time series are reordered to preserve the
observed spatial correlations of appropriate lag-time; then, the spatial aggregation of these series leads to a series representative
of the user group reproducing the corresponding means and variances for the different hours of the generic day. Four different
ways of performing this aggregation have been investigated and compared. Application to a case study consisting of the water
demands of 21 users highlights that the approaches considered show different levels of effectiveness in reproducing the
statistics, but overall the procedure proposed is a valid tool for the bottom-up generation of synthetic water demand time series.
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1. Introduction

Users’ water demands are the main driver of water distribution systems (WDSs). Their proper characterization
thus represents a fundamental prerequisite in order to set up robust and accurate hydraulic model of a WDS. To this
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end several models for the generations of synthetic user water demand time series have been proposed in the last
decades; these models allow for the characterization of the user water demand even with fine time steps and are
typically based on stochastic processes, like Poisson rectangular pulses (e.g. Buchberger and Wu, 1995; Guercio et
al.,, 2001), Neyman-Scott rectangular pulse (e.g. Alvisi et al., 2003; Alcocer et al., 2006) or based on the
characterization of the uses of individual devices such as washing machines, toilets, etc., typically used in houses
(e.g. Blokker et al., 2010). These models showed to be very effective in statistically reproducing the observed data
at level of single users and at low temporal aggregation levels, but it is worth remembering that in WDS simulation
models the water demands are typically allocated at the nodes of the model aggregating the consumptions of many
users adjacent to the node considered, and hourly or semi-hourly time steps are generally used. Thus, it is necessary
to transfer the information from one level of spatial-temporal aggregation to another in order to set-up synthetic
water demand time series to be effectively used within hydraulic models of real/complex WDSs.

Indeed, several studies (e.g. Alvisi et al., 2003; Moughton et al., 2006) showed that both the simple temporal
aggregation of the synthetic series, from, for example, 1-minute to 1-hour time step, and the spatial aggregation
from single users to a group of users, performed through a simple sum, can lead to time series which do not
reproduce the corresponding observed statistics (mainly variance and covariances at different time lags). More in
details, Alvisi et al. (2003) highlighted that reproducing the covariances (and thus the cross-correlation) among the
series to be aggregated (both temporally and spatially) is a prerequisite in order to proper reproduce the variances
of the aggregated series.

Summing up, it is important to be able to “transfer” the time series generated at low temporal and spatial
aggregation levels (e.g. at 1-minute time step for single users) to higher aggregation level (e.g. at 1-hour time step
for groups of users), since these latter are the series typically used within the simulation models for the design and
management of the WDSs. At the same time, the main statistics (mean and variance) should be reproduced at these
higher aggregation levels since they can have a significant impact on the hydraulic performances of the WDSs, as
demonstrated by some recent studies (e.g. Babayan et al., 2005, Filion et al., 2007).

The temporal aggregation problem of time series from minute to hourly time step has been recently addressed
by Alvisi et al. (2013). Thus, in this paper attention is focused only on the spatial aggregation of hourly water
demand time series of single users in order to obtain hourly time series representative of a group of users to be used
within a hydraulic simulation model, which can reproduce the main statistics observed at the same spatial
aggregation level. To this end, a spatial aggregation procedure based on the method proposed by Iman and Conover
(1982) is presented; four different ways of applying this method are presented and compared. In the following, the
proposed procedure is described and the results obtained by its application to the cases study consisting of the
water demands of 21 users of the water distribution system of Milford (Ohio) (Buchberger et al. 2003) are
discussed; finally, conclusions are presented.

2. The procedure

The spatial aggregation procedure consists of summing up the water demands of an assigned number n,, of
single users in order to obtain the water demand of the group of users considered. Let us assume that synthetic
water demand time series of the single user at A7 = 1 hour time step are available; in particular, let us assume that
these series have been generated independently each other and in such a way that they reproduce at hourly level
mean, variance and temporal covariances (at the proper time-lag, as better explained in the subsequent sections) of
the corresponding observed time series (see, for example, Alvisi et al., 2013 for a possible procedure for the
generation of series with these characteristics). The total water demand of the n,, users in the generic hour /4 of the
k-th day (with h=1:24, k=1:n4, where ng, is the number of days considered/generated) is given by:

nuS
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where q,{ « 1s the water demand of the j-th user (with j=1:n,,) in the corresponding hour % of k-th day. From a
statistical point of view, the discharge Q corresponding to a given spatial aggregation is thus equivalent to the sum
of a certain number of random variables, where each variable represents the water demand at the lower spatial
aggregation level (i.e. at single user level). As is well known from the scientific literature (e.g. Kottegoda and
Rosso, 1999), the mean of a random variable which is the sum of several random variables is equal to the sum of
the means of the individual random variables, whereas the variance of a random variable which is the sum of
several random variables is equal to the sum of the variances of the individual random variables plus twice the sum
of their covariances. Thus, the mean of the spatially aggregated water demand Q,, at the generic hour /4 of the day is
given by:

Fo)= E{;qh} Sel) o

The variance of the spatially aggregated water demand (), at the generic hour / of the day is given by:

var{Q,}=var nz‘q,{ Zvar{qh }"'22200"{% ,qh} 3)
=

j=11>j

It is worth noting that, according to eq. 2, if the synthetic time series of the single users reproduce the observed
mean, this statistic, being purely additive, will be reproduced also at the spatially aggregated level; instead, from
eq. 3 it follows that to reproduce the variance at the spatially aggregated level, it is necessary to ensure that the
time series of the single users reproduce not only the variances, but also the covariances (and thus the cross-
correlations) of the corresponding observed series.

In order to impose the spatial cross-correlations at the single user water demands the method proposed by Iman and
Conover (1982) (hereinafter indicated as /C) has been used. This method is based on the reordering the samples of
water demands of the single users generated independently each other so as to impose the cross-correlations
observed at the same level of spatial aggregation. The method can be schematized as follows.

Let X be the matrix of the generated samples, made up of N, columns, where each column represents one of the
random variables considered (e.g. the water demands of the n,, users in the hour % of the day) and N, rows, where
each row represents one realization (e.g. the ng, generated days). Furthermore, let R* be the target (N.x N,) cross-
correlation matrix calculated by using the observed data and R the (N.x N,) cross-correlation matrix calculated by
using the generated samples: the generic element p; of R thus represent the Pearson correlation coefficient
between the i-th column and the j-th column of X (with i,j = 1,2,..., N.). The main steps are:

e the target cross-correlation matrix R* is written as R* = PP" by using Cholesky factorization (Press et al.,
1990), being P a lower triangular matrix and P" its transpose matrix;

e the cross-correlation matrix R is similarly written as R = SS” by using Cholesky factorization (Press et al.,
1990);

e the matrix X; = X(PS™)" is computed; it is worth noting that the matrix X; has the same dimensions as X;

e the desired matrix X* is created by reordering the columns of the matrix X so that the ranking of each column
of X is equal to the ranking of each column of Xj. In this way, the matrices X* and X; have the same rank
correlation matrix, and, as consequence, similar Pearson correlation matrices

In particular, for the spatial aggregation of the time series of the single user water demands four different ways
of applying the /C procedure have been developed; these methods differ for the spatial and temporal cross-
correlation coefficients imposed to the series to be spatially aggregated, as explained in the subsequent sections.
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In the first method, called method A, the /C procedure is applied to the synthetic hourly time series which are
expected to reproduce mean and variance for each hour 4 of the day and the temporal co-variances from lag-1 to
lag-23,; the target is the preservation of the lag-0 spatial cross-correlations among the water demands of individual
users. The time series of each user are thus summed up hour by hour producing the time series of the group of
users. Operatively, the /C procedure is applied 24 times, one for each hour / of the day, in order to impose the lag-
0 spatial cross-correlations among the water demands of individual users for each hour of the day: the matrix X of
the generated samples is thus made up of n,; columns, where each column represents the random variable water
demand of the j-#h user (with j = 1:n,) in the A-th hour of the day, and the corresponding correlation matrix R has
dimensions equal to n,,X n,s. It is worth noting that imposing the lag-0 spatial cross-correlations ensures that the
hourly variances of the spatially aggregated series are reproduced, but, from a theoretical point of view, it cannot
be ensured that also the temporal co-variances at different time lags are reproduced at the aggregated level since
the method is applied hour by hour, each independently of the other.

In the second method, called method B, the spatial cross-correlations at lag-0 and the temporal cross-
correlations among water demands at the level of individual users from lag-1 to lag-23 are simultaneously
imposed. Given its very nature, this method can thus be applied starting from synthetic hourly water demand time
series at level of single users which reproduce the mean and variance of the historical hourly demand time series,
whereas these series are not required to reproduce also the temporal covariances (for the different lags), since these
latter are imposed within the method simultaneously with the spatial cross-correlations at lag-0. From a practical
viewpoint, the /C procedure is applied in order to impose a fit to a cross-correlation matrix R of dimensions 24+,
X 24-n,, thus structured:

1,1 L1 L1 1,2 1,2 1,2 1, Ly, 1,
pl,l pl,Z L pl,24 p],] pl,Z L p],24 pl,l pl,Z L pl,24
1,1 1,1 1,1 1,2 1,2 1,2 1,1, Ln, 1,n,
pZ,l p2,2 L p2,24 p2,1 p2‘2 L p2,24 L p2,lH pZ,Z” L p2,214£
M M O M M M O M M M 0 M
1,1 1,1 1,1 1,2 1,2 1,2 1,n,, Ly 1,n,,
p24,1 p24,2 L p24,24 p24,1 p24,2 L p24,24 1024:1’Y p24,“2‘ L p24‘u£4
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where p,{; represents the coefficient of correlation between the water demands of the j-th user and the /-th user
between the 4-th hour and the u-th hour. It is worth noting that this method, since it imposes the preservation of the
temporal correlation within each single user and the spatial correlation for the different lags among the single users,
theoretically allows to preserve mean, variance and temporal correlation for different lags of the spatially
aggregated series. On the other hand, depending on the number of users n,, involved, defining the correlation
matrix may imply the need to estimate and work with a very high number of correlation coefficients (very large
correlation matrix). The numerical application will show that imposing such a high number of correlation
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coefficients can be difficult to achieve. For this reason, two other methods were considered as alternatives to
method B.

In the first of these, defined method C, we consider only the temporal correlations among the hourly water
demands from lag-1 to lag-23 for each user, and the lag-0 spatial cross-correlations among the 7,, users for every
hour, and disregard the spatial cross-correlations among the users from lag-1 to lag-23. In practical terms, within
the framework of the IC reordering procedure, as in case B, we consider a single correlation matrix R having
dimensions of 24-n,, x 24-n,4, structured in this way:

piop: Loopn) (A 0 L0 piv 0 L0
Py Py Looph, 0 pi L0 | 0 py L 0
M M O M M M O M M M O M
pé;tl,l péi,z L péi,zza 0 0 L p;tz,zzt 0 0 L p;f,&
pi 0 L0 pi P LA piit 0 L0
0 p L0 PPy Loopn| 0 pig L0
M M O M M M O M M M O M
0 0 L ph) (e P L i 0 0 L gl
M M 0 M
pit 0 L0 ) fpt 0 L0 pli pls™ Lo pl
0 pist L0 0 pt L0 |t oplst Lol
M M O M M M O M M M O M
0 0 L ps 0 0 L p P Pz Lo paay

)

where it is evident that only the correlation coefficients pj i in which either j=/ (independently of / and u, all
the temporal correlations from lag-1 to lag-23 for every user) or h=u (spatial correlations among users at lag-0) are
considered, while all the other coefficients are assumed to be equal to 0.

In the second alternative method (to method B), defined method D, the water demands are spatially aggregated
by applying the same operating procedures as in method B but in successive steps, each time considering
subgroups of the total n,, users to be aggregated; as a result, the dimensions of the cross-correlation matrix will be
smaller. Practically speaking, the n,, users are evenly divided into n, subgroups and for each subgroup method B is
applied in order to obtain the spatially aggregated time series of the subgroup; finally, method B is applied once
again, in this case to the series of n, spatially aggregated subgroups. For example, assuming a number of users 7,
= 20, these users could be divided into ny= 4 subgroups containing 5 users each: by applying procedure B to each
subgroup it is possible to obtain n,= 4 series of “partially” spatially aggregated water demands, which are in turn
spatially aggregated, again by applying method B, so as to obtain the time series of the overall aggregate of n,, =

20 users; this approach enables us to work with correlation matrices which are smaller than the one that would
result if all users were considered together.

3. Application

3.1. Case study

The proposed procedure was applied to the water demands of 21 users of the water distribution system of
Milford (Ohio) (Buchberger et al. 2003); the observation period had a length of 31 days, from 11 May to 10 June
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1997. The hourly time series for each of the n,~21 users to be spatially aggregated were generated by using the
procedure described by Alvisi et al. (2013); the length of each generated hourly time series representing the water
demand of a user is equal to n,,=90 days and the generation process, and consequently the spatial aggregation
process, was repeated n,,,= 500 times. The generated synthetic series reproduce, for each user, the hourly mean
and variance of the corresponding observed series and, for the application of the method A, also the lag-1 to lag-23
temporal covariances. More details about the generations of the time series with these characteristics are provided
in Alvisi et al. (2013).

3.2. Application of the procedure and discussion of the results

The hourly water demands of each user were spatially aggregated by applying the 4 different methods
previously illustrated; moreover, in order to obtain a basis for comparing the four spatial aggregation methods
developed (A, B, C and D), we also evaluated the results obtained by simply adding up the hourly water demands
of the n,, users which preserve the hourly mean, variance and covariance at different time lags for each user
considered, but not the spatial cross-correlations at different lags (i.e. the starting series used for the application of
method A).

In Fig.1 the variance and the lag-1 temporal covariance of the observed spatially aggregated hourly time series
and of the synthetic series obtained following the application of the different spatial aggregation methods proposed
are compared; in particular, as regards the synthetic series, the statistics obtained for each of the n,,,= 500 series
are shown, along with the values averaged over the n,,, synthetic series.

Firstly, as illustrated in Fig.1a, the sum of the temporally correlated individual user water demands results in an
underestimation of the variance of the aggregated historical time series, returning a coefficient of determination
CD of 0.27. This is due to the fact that no spatial cross-correlations have been imposed and preserved, and in
particular no spatial cross-correlations at lag-0 for each of the 24 hours; therefore, the sum of the covariances of
eq.(3) is close to zero, resulting in an underestimation of the variance of the aggregated data. There is also marked
underestimation of the lag-1 temporal covariance of the aggregated historical time series.

Method A involves reordering the temporally correlated user water demands from lag-1 to lag-23 so as to
impose lag-0 spatial cross-correlations among the water demands of the individual users. As shown in Fig.1b,
method A enables excellent reproduction of the variance of the aggregated historical time series, with a CD of
0.93; there is also an improvement in reproducing the lag-1 temporal covariance as compared to the simple sum of
the water demands of the individual users, given that a CD of 0.46 is achieved.

Method B simultaneously imposes al/ the temporal and spatial cross-correlations from lag-0 to lag-23 (see eq.
4) within and among the different users. As shown in Fig.1c, method B enables good reproduction of the variance
of the aggregated historical time series, with a CD of 0.73, though this value is lower than the one obtained with
method A; the effectiveness in reproducing the lag-1 temporal covariance of the aggregated historical time series
(CD = 0.47) is comparable to that of method A. Method B is less effective than method A in reproducing the
variance due to the fact that, as observed previously, (a) the variance in each hour depends on the lag-0 spatial
cross-correlations and (b) a larger number of correlation coefficients is imposed in method B than in method A: in
method A only lag-0 spatial cross-correlations are imposed whereas in method B all spatial-temporal cross-
correlations from lag 0 to lag 23 are imposed. In practical terms, when we seek to impose so many correlation
coefficients simultaneously, we obtain less accuracy in reproducing the lag-0 spatial cross-correlations compared
to method A, and thus the variances of the aggregated historical time series are not so well preserved.

Method C simultaneously imposes temporal correlations for every user and lag-0 spatial cross-correlations
through the construction of a single banded correlation matrix (see eq. 5). As shown in Fig.1d, method C enables
excellent reproduction of the variance of the aggregated historical time series, with a CD of 0.93; the improvement
over method B in terms of reproducing the variance is understandable considering the smaller number of cross-
correlations imposed. However, it performs worse than method B in reproducing the lag-1 temporal covariance of
the aggregated historical time series, resulting in a CD of 0.04.
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Method D, based on aggregating water demands in successive steps, was applied by dividing the 7,,= 21 users
into n,= 3 groups of 7 users each. Compared to method B it involves estimating a smaller number of correlation
coefficients for every matrix (42084 in the first aggregation and 2556 in the second, for a total of 44640, equivalent
to about a third of the coefficients to be estimated in method B). As shown in Fig.le, method D enables good
reproduction of the variance of the aggregated historical time series, with a CD of 0.88; it is moreover highly
effective in reproducing the temporal covariance at lag 1 (CD = 0.83).

In short, methods A, C and D showed better results in reproducing the hourly variance of the aggregated
historical time series as compared both to the simple sum of hourly demands and to method B, and method D in
turn demonstrated to be the most effective in reproducing the lag-1 temporal covariance of the aggregated
historical time series.
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Fig. 1. Spatial aggregation: comparison of the lag-1 temporal variances and covariances associated with the observed time series and each of the
500 synthetic series, as well as their average values, following a) calculation of the simple sum of water demands and b) application of method
A, ¢) method B, d) method C and e¢) method D.

4. Conclusions

This paper proposes a procedure for the spatial aggregation of synthetic water demand time series based on the
IC method. In particular, 4 different methods of application of the /C method have been investigated and
compared. Application of these methods to a real case involving the water demands of 21 users showed that all
these methods allow to reproduce the statistics of interest of the aggregated historical time series, though the
degree of efficiency varied from one method to another. In particular, in terms of ability to preserve the hourly
variance of the aggregated data, all 4 of the proposed spatial aggregation procedures based on the /C method
provide better results than the simple sum of spatially uncorrelated synthetic series. This confirms the importance
of preserving the spatial correlations of individual user water demands in the spatial aggregation procedure. In the
specific case concerned, however, it was observed that the procedure of aggregation by user subgroups is the one
that shows to be most effective in reproducing not only the variance but also the lag-1 temporal covariance of the
aggregated historical time series. In conclusion, the results obtained showed that the procedure developed
represents a valid tool for “transferring” the time series generated at low levels of spatial (individual user)
aggregation to series relating to groups of users, thereby enabling the main statistics (mean, variance and temporal
correlations) of the corresponding historical time series to be preserved at these higher levels of spatial
aggregation.
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