The word problem for some uncountable groups given by countable words

Oleg Bogopolski ${ }^{\text {a,b,* }}$, Andreas Zastrow ${ }^{\text {c }}$
${ }^{\text {a }}$ Institute of Mathematics of Siberian, Branch of Russian Academy of Sciences, Novosibirsk, Russia
${ }^{\mathrm{b}}$ Heinrich-Heine-Universität Düsseldorf, Germany
${ }^{\text {c }}$ Institute of Mathematics, University of Gdansk, Poland

A R T I CLE I N F O

Article history:

Received 5 April 2011
Received in revised form 4 October 2011
Accepted 7 October 2011

Keywords:

Word problem for groups
Fundamental and homology groups
Hawaiian Earring
Griffiths' space

Abstract

We investigate the fundamental group of Griffiths' space, and the first singular homology group of this space and of the Hawaiian Earring by using (countable) reduced tame words. We prove that two such words represent the same element in the corresponding group if and only if they can be carried to the same tame word by a finite number of word transformations from a given list. This enables us to construct elements with special properties in these groups. By applying this method we prove that the two homology groups contain uncountably many different elements that can be represented by infinite concatenations of countably many commutators of loops. As another application we give a short proof that these homology groups contain the direct sum of $2^{\mathbb{N}_{0}}$ copies of \mathbb{Q}. Finally, we show that the fundamental group of Griffiths' space contains \mathbb{Q}.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

According to the classical group theory, a group G is generated by a subset Λ if every element of G is a finite product of elements of $\Lambda \cup \Lambda^{-1}$. However, for some groups arising in topology, it is more natural to describe their elements by using (appropriately defined) infinite products of their "basic" elements.

Consider a one-point union of countably many circles $p_{n}, n \in \mathbb{N}$. If we introduce the path metric on this set by saying that the length of every p_{n} is 1 , we get a topological space whose fundamental group is the free group with the basis $P=\left\{p_{n} \mid n \in \mathbb{N}\right\}$. If we set the length of every p_{n} to be $\frac{1}{n}$, we get another topological space, the Hawaiian Earring Z. Its fundamental group is not free (see a short proof in [26]), but it can be well described by using special countable words over the alphabet P (see [7], for instance).

Another interesting example gives Griffiths' space Y. This remarkable space was constructed by H.B. Griffiths in the fifties (see [18, p. 185] and [19]) as a one-point union of two cones over Hawaiian Earrings (see Fig. 3 and Definition 3.3) for showing that a one-point union of two spaces with trivial fundamental groups can have a nontrivial fundamental group. The fundamental group of Griffiths' space is uncountable and can be described by using special (infinite) countable words over a countable alphabet (see Theorem 3.4).

One of the decision problems in the classical group theory is the word problem for finite presentations of groups: given a finite presentation $\langle S \mid R\rangle$ of a group G and given two different finite words over the alphabet S, decide whether these words represent the same element of G. This problem was first stated by M. Dehn in 1911; he solved it for fundamental groups of surfaces [10]. The word problem is solvable in many interesting classes of groups including hyperbolic groups,

[^0]Coxeter groups and braid groups. The first concrete examples of finitely presented groups with unsolvable word problem were given by P.S. Novikov [24] and W.W. Boone [6].

This problem becomes more complicated if we allow to represent elements of a group by infinite words. In this paper we investigate the word problem in the first singular homology group and in the fundamental group of the Hawaiian Earring and of Griffiths' space. Since all these groups are uncountable, an algorithmic solution is impossible. We suggest another kind of solution by finding a finite number of types of transformations of countable words such that if two countable words w_{1}, w_{2} represent the same element of a group, then one can get w_{2} from w_{1} by using a finite number of such transformations.

To be more precise, we explain the second of the main Theorems 8.1-8.3. Let $P=\left\{p_{1}, p_{2}, \ldots\right\}$ and $Q=\left\{q_{1}, q_{2}, \ldots\right\}$ be two disjoint infinite countable alphabets. In Section 2 we define the group $\mathcal{W}(P)$ consisting of all reduced countable words over the alphabet P, where every letter of $P \cup P^{-1}$ occurs only finitely many times. This group can be identified with the group \mathcal{P} introduced by Higman in [20, p. 80], and by the result of Morgan and Morrison in [23, Theorem 4.1] it is canonically isomorphic to $\pi_{1}(Z)$. Thus, for the Hawaiian Earring Z we have the canonical homomorphisms

$$
\mathcal{W}(P) \cong \pi_{1}(Z) \rightarrow H_{1}(Z)
$$

For Griffiths' space Y we have the canonical homomorphisms

$$
\mathcal{W}(P \cup Q) \rightarrow \frac{\mathcal{W}(P \cup Q)}{\langle\langle\mathcal{W}(P), \mathcal{W}(Q)\rangle\rangle} \stackrel{\cong}{\rightrightarrows} \pi_{1}(Y) \rightarrow H_{1}(Y),
$$

where $\langle\rangle$ means the normal closure, see Theorem 3.4 for details.
Theorem 8.2 states that two countable words from $\mathcal{W}(P \cup Q)$ represent the same element of $H_{1}(Y)$ if and only if each of them can be transformed to the same countable word by applying a finite number of transformations of type (i), then of type (ii) and finally of type (iii):
(i) Deletion of a countable subword containing only p - or q-letters;
(ii) Deletion of two distinct mutually inverse countable subwords: $A X B X^{-1} C \rightarrow A B C$;
(iii) Permuting two consecutive countable subwords.

These transformations come from transformations of some associated 2-complexes which we call arch-line-band systems; we define them in Section 4. These systems are closely related, but do not coincide with the band systems introduced in the paper of M. Bestvina and M. Feighn [1] for studying the stable actions of groups on real trees; see also the arc-surface technique in the proof of J.W. Cannon and G.R. Conner [7, Theorem 4.3].

Theorems 8.1-8.3 enable us to construct and compare elements of the above groups with prescribed properties. We deduce two corollaries.

Corollary 8.7 states that $H_{1}(Z)$ and $H_{1}(Y)$ contain uncountably many elements which can be represented as infinite products of commutators. This contrasts with the fact that any finite product of commutators in the abelianization of a group is trivial. In the forthcoming paper [5] we investigate Karimov's space K (see [21]) and make this contrast as strong as possible. We show that $H_{1}(K)$ is uncountable and that each element of $H_{1}(K)$ can be represented as an infinite commutator product.

Note that in [20, p. 76] Higman proved, in fact, that $H_{1}(Z)$ contains a nonzero element which can be represented as an infinite commutator product. His short and nice proof uses a representation of a free group as a group of formal power series in non-commuting variables, that was invented by W. Magnus in [22].

Corollary 9.2 contains a rather unexpected claim that the fundamental group of Griffiths' space contains a subgroup isomorphic to \mathbb{Q}. The same fact for the groups $H_{1}(Z)$ and $H_{1}(Y)$ was known earlier, see [14,15]. In the proof we use extensively a combinatoric of special countable words.

Writing this paper, we have realized a universal role of groups $\mathcal{W}(\Lambda)$ for (uncountable) combinatorial group theory. Using these groups instead of free groups, O. Bogopolski and W. Singhof developed in [4] a theory of generalized presentations of groups and gave generalized presentations of arbitrary permutation group $\Sigma(X)$ and of the automorphism group of the free group of infinite countable rang, Aut $\left(F_{\omega}\right)$. A different approach to generalized presentations of groups was suggested by A.J. Sieradski in [25]; see also a paper and a preprint of W.A. Bogley and A.J. Sieradski [2,3].

2. Countable words

A theory of infinite words was independently developed by J.W. Cannon and G.R. Conner [7], K. Eda [12,13], and A. Zastrow [28-30]. We give here an account of this theory in the form which is appropriate for our aims.

Definition 2.1. Let X be an alphabet, $X^{-1}=\left\{x^{-1} \mid x \in X\right\}$ and $X^{ \pm}=X \cup X^{-1}$. A countable word over X is a sequence $\left(x_{i}\right)_{i \in I}$, where I is an arbitrary linearly ordered countable set and $x_{i} \in X^{ \pm}$. The order on I will be denoted by \preccurlyeq. E.g., the natural numbers \mathbb{N} with the classical order and $\mathbb{N} \times \mathbb{N}$ with lexicographical order are different types of countable linearly ordered sets. There are uncountably many types of countable linear orders, e.g. all ordinal numbers that are smaller than the smallest

Fig. 1. An arch-system based on a W-segment. One of the arches is labelled by a and its endpoints $\alpha(a)$, $\omega(a)$ are labelled by the associated letters $x, x^{-1} \in X^{ \pm}$.
uncountable ordinal. Two countable words $U=\left(x_{i}\right)_{i \in I}$ and $V=\left(x_{j}\right)_{j \in J}$ are called equal if there exists an order preserving bijection $\varphi: I \rightarrow J$ such that $x_{\varphi(i)}=x_{i}$ for all $i \in I$. In this case we write $U \equiv V$.

A subset J of I is called interval if, for any two elements $j_{1}, j_{2} \in J$ and any element $i \in I$, we have

$$
\left(j_{1} \preccurlyeq i \preccurlyeq j_{2}\right) \quad \Rightarrow \quad(i \in J)
$$

Let $W=\left(x_{i}\right)_{i \in I}$ be a countable word over X. A subword of W is a sequence $\left(x_{j}\right)_{j \in J}$, where J is an interval of I with the induced order. Two subwords $U=\left(x_{p}\right)_{p \in P}$ and $V=\left(x_{q}\right)_{q \in Q}$ of w are called consecutive if $P \cup Q$ is an interval of I and $P \cap Q=\varnothing$.

If we have two countable words $W_{1}=\left(x_{i}\right)_{i \in I_{1}}$ and $W_{2}=\left(x_{i}\right)_{i \in I_{2}}$, we can concatenate them, i.e. build the new countable word $W=\left(x_{i}\right)_{i \in I_{1} \cup I_{2}}$, where we assume that the elements of I_{1} are smaller than the elements of I_{2}. In this case we write $W=W_{1} W_{2}$ not using the dot between W_{1} and W_{2}.

In order to define (ir)reducible countable words we first need:
Definition 2.2 (A visualization of countable words). To each countable word $W=\left(x_{i}\right)_{i \in I}$ over the alphabet X we associate
(i) a closed segment $[a, b]$ on the real axis of the Euclidean plane together with
(ii) a set of points in the open interval (a, b), each marked by a letter from $X^{ \pm}$so that moving from a to b along this segment we read the word W.

The segment together with the set of its marked points will be called W-segment. It is convenient to call the marked points letters. Note that the visualization is not unique. The following notion will serve to visualize a cancellation process in a countable word.

Definition 2.3. An arch-system based on the W-segment is a subset of the plane consisting of the W-segment and of arches (i.e. half-circles) which are attached to this segment according to the following rules:
(1) all arches lie in the upper half-plane with respect to the real axis;
(2) each arch connects a letter with one of its inverses;
(3) different arches do not intersect;
(4) if two letters are connected by an arch, then each letter between them is connected by an arch with another letter between them.

An arch-system based on the W-segment is called complete if each letter of W belongs to an arch of this system. The endpoints of an arch a are denoted by $\alpha(a)$ and $\omega(a)$; we assume that $\alpha(a)<\omega(a)$ and call them the initial and the terminal points of a, respectively (see Fig. 1).

Two arches a, b of a given arch-system are called parallel if after possible replacement of a by b and b by a the following holds:

1) $\alpha(a)<\alpha(b)<\omega(b)<\omega(a)$;
2) for any arch c of the arch-system, if $\alpha(a)<\alpha(c)<\alpha(b)$ then $\omega(b)<\omega(c)<\omega(a)$.

Definition 2.4. A countable word W is called irreducible (or reduced) if there does not exist an arch-system based on the W-segment with a nonempty set of arches. A countable word W is called reducible if it is not irreducible.

It is immediate from the definition that subwords of reduced words are reduced.

Let $U=\left(x_{i}\right)_{i \in I}$ be a countable word. A word $V=\left(x_{j}\right)_{j \in J}$ is called inverse to U and is denoted by U^{-1} if there exists an order-reversing bijection $\varphi: I \rightarrow J$ such that $x_{\varphi(i)}=x_{i}^{-1}$ for any $i \in I$. With $I=\varnothing$ the "empty word" is also defined.

Note that reducible countable words do not necessarily contain two consecutive inverse subwords, see an example in [7, p. 227].

In the following we discuss how to define the "reduced form" of a countable word W, or in other words: how "to reduce" a countable word. One of the natural definitions could be the following: we delete from W the letters corresponding to the endpoints of arches of a maximal arch-system based on the W-segment and we will call the remaining countable word the reduced form of W. However different maximal arch-systems can give different reduced forms. The easiest example of this phenomenon is the following:

$$
\begin{aligned}
& x x^{\overparen{-1}} x x^{\overparen{-1}} x x^{-1} \ldots \rightarrow x ; \\
& x x^{-1} x x^{-1}\left\langle x^{-1} \ldots \rightarrow \varnothing .\right.
\end{aligned}
$$

Moreover, the concatenation of two reduced countable words may have different reduced forms. Indeed, if $U=x x x \ldots$ is infinite, then U and U^{-1} are two reduced countable words, but $U U^{-1}$ can be reduced to x^{n} for any integer n. To avoid such undesirable effects, we will work in a smaller class of countable words (that will be sufficient for our goals).

Definition 2.5. A countable word $W=\left(x_{i}\right)_{i \in I}$ is called restricted if every letter $x \in X^{ \pm}$occurs only finitely many times in W.
Definition 2.6. Let W be a restricted countable word. A word U is called the reduced form of W if U can be obtained from W by deleting the letters corresponding to the endpoints of a maximal arch-system for W.

Clearly, for finite words we get the usual reduced form which is, of course, unique. In Proposition 2.9, we will show that the reduced form of a restricted countable word is unique. This theorem is not new (see [7, Theorem 3.9] of Cannon and Conner), however for completeness we give a proof. In [7] this theorem was proved by using topological properties of the plane, namely with the help of Jordan's theorem. Our proof is purely algebraic and it was inspired by the paper [12] of Eda.

For any subset $F \subseteq X$, let W_{F} denote the word obtained from W by deleting all letters of $(X \backslash F)^{ \pm}$. Similarly, if \mathcal{A} is an arch-system for W, we denote by \mathcal{A}_{F} the system that is obtained from \mathcal{A} by deleting all arches with endpoints in $(X \backslash F)^{ \pm}$. Clearly, \mathcal{A}_{F} is an arch-system for W_{F}. For any finite word W we denote by [W] its reduced form.

Lemma 2.7. Let U, V be two reduced forms of a restricted countable word W over X. Then for any finite $F \subseteq X$ holds $\left[U_{F}\right] \equiv\left[V_{F}\right]$.
Proof. Let U be obtained from W by deleting the letter-endpoints of a maximal arch-system \mathcal{A}. Then $\left[U_{F}\right]$ is obtained from W by the following consecutive operations:

1) Remove letter-endpoints of all arches of \mathcal{A}.
2) Remove all letters of $(X \backslash F)^{ \pm}$.
3) Reduce the resulting word in the free group with base F.

This is equivalent to:

1) Remove all letters of $(X \backslash F)^{ \pm}$.
2) Remove letter-endpoints of all arches of \mathcal{A}_{F}.
3) Reduce the resulting word in the free group with base F.

This is equivalent to:

1) Remove all letters of $(X \backslash F)^{ \pm}$.
2) Reduce the resulting word in the free group with base F.

Similarly $\left[V_{F}\right]$ can be obtained from W by the last two operations. This completes the proof.
Note that a finite word is reducible to the empty word if and only if there is a complete arch-system for it.
Lemma 2.8. Let W be a restricted countable word over X. If for any finite subset $F \subseteq X$ there is a complete arch-system for W_{F}, then there is a complete arch-system for W.

Proof. We may assume that X is countable, say $X=\left\{x_{1}, x_{2}, \ldots\right\}$. Denote $X_{k}=\left\{x_{1}, \ldots, x_{k}\right\}, k=1,2, \ldots$. For each $k \in \mathbb{N}$ we choose a complete arch-system associated with $W_{X_{k}}$ and denote it by $\mathcal{A}\left(W_{X_{k}}\right)$. The restrictions of $\mathcal{A}\left(W_{X_{k}}\right)$ to the
subword $W_{\left\{x_{1}\right\}}$, where $k=1,2, \ldots$, are complete arch-systems for $W_{\left\{x_{1}\right\}}$. Since there is only a finite number of arch-systems for the finite word $W_{\left\{x_{1}\right\}}$, we can choose an infinite subsequence $\mathcal{A}\left(W_{X_{k_{1}}}\right), \mathcal{A}\left(W_{X_{k_{2}}}\right), \ldots$ with the same restrictions to $W_{\left\{x_{1}\right\}}$; denote the common restriction by \mathcal{A}_{1}. From this sequence we can choose an infinite subsequence with the same restrictions to $W_{\left\{x_{2}\right\}}$; denote the common restriction by \mathcal{A}_{2}, and so on. The systems $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots$ do not conflict (i.e. their arcs do not intersect each other) since any two of them are contained in a common finite arch-system. Therefore their union forms a complete arch-system for W.

The idea of the proof of the following proposition is taken from [13, Theorem 1.4].
Proposition 2.9. Each restricted countable word W over X has a unique reduced form.
Proof. The existence follows straightforward by applying Zorn's lemma to the set of all arch-systems based on W, which is partially ordered by inclusion.

Let us prove the uniqueness. Let $U=\left(x_{i}\right)_{i \in I}, V=\left(x_{j}\right)_{j \in J}$ be two reduced forms of W. By Lemma 2.7, for any finite $F \subseteq X$ holds $\left[U_{F}\right] \equiv\left[V_{F}\right]$. Let $\alpha \in X$. Consider U written in the form $U \equiv U_{0} A_{1} U_{1} A_{2} U_{2} \ldots A_{k} U_{k}$, where each A_{i} is a positive or negative power of α and U_{i} does not contain α and α^{-1}, and U_{i} is nonempty for $i \neq 0$, k. Since U is reduced, all U_{i} 's are also reduced and so, by Lemma 2.8, there exist finite subsets $F_{i} \subseteq X(i=1, \ldots, k-1)$ such that $\left[\left(U_{i}\right)_{F_{i}}\right] \neq \varnothing$. Hence, for any finite subset $F \subseteq X$ containing $\bigcup F_{i} \cup\{\alpha\}$, we have $\left[\left(U_{i}\right)_{F}\right] \neq \varnothing$ for all $i \neq 0, k$, and so $\left[U_{F}\right] \equiv\left[\left(U_{0}\right)_{F}\right] A_{1}\left[\left(U_{1}\right)_{F}\right] A_{2} \ldots A_{k}\left[\left(U_{k}\right)_{F}\right]$. In particular, $U_{\{\alpha\}} \equiv\left[U_{F}\right]_{\{\alpha\}}$. Similarly, $V_{\{\alpha\}} \equiv\left[V_{G}\right]_{\{\alpha\}}$ for some finite subset $G \subseteq X$.

By Lemma 2.7, $\left[U_{E}\right] \equiv\left[V_{E}\right]$ for all finite subsets $E \subseteq X$. Hence, for a sufficiently large finite subset $E \subseteq X$ we have

$$
U_{\{\alpha\}} \equiv\left[U_{E}\right]_{\{\alpha\}} \equiv\left[V_{E}\right]_{\{\alpha\}} \equiv V_{\{\alpha\}}
$$

In the same way (defining the subwords A_{i} now as all maximal subwords that contain only the letters $\alpha^{ \pm 1}$ and $\beta^{ \pm 1}$) one can prove that for any two letters $\alpha, \beta \in X$, there exists a finite subset $L \subseteq X$ such that

$$
U_{\{\alpha, \beta\}} \equiv\left[U_{L}\right]_{\{\alpha, \beta\}} \equiv\left[V_{L}\right]_{\{\alpha, \beta\}} \equiv V_{\{\alpha, \beta\}} .
$$

Formula (\dagger) enables to construct a bijection $\varphi: I \rightarrow J$ such that $x_{\varphi(i)}=x_{i}$ for all $i \in I$. Formula (\ddagger) shows that φ respects the orders on I and J. So, we have $U \equiv V$.

Definition 2.10. Let W_{1}, W_{2} be two restricted reduced countable words over X. Their product, denoted $W_{1} \cdot W_{2}$, is the reduced form of the concatenation $W_{1} W_{2}$. By Definition 2.4 and Proposition 2.9, the set of all reduced countable words over X with respect to this multiplication is a group. We denote this group by $\mathcal{W}(X)$.

We stress that $\mathcal{W}(X)$ is not generated by X if X is an infinite set. In Section 3 this group will be related to the fundamental groups of the Hawaiian Earrings and of Griffiths' space. For technical reasons we will work with tame words which we define next.

Definition 2.11. A restricted reduced countable word is called a reduced (or irreducible) tame word. A finite concatenation of such words is called a tame word.

Remark 2.12. The class of tame words over X is closed under taking subwords and finite concatenations.
In general, a tame word W can be presented as a concatenation of reduced tame words in different ways. The following lemma states that at least one of these presentations can be transformed to the reduced form of W in the same way as in a free group.

Lemma 2.13. Any tame word W can be presented as a concatenation of nonempty reduced tame words $W \equiv v_{1} v_{2} \ldots v_{k}, k \geqslant 0$, such that the following process yields the reduced form of W :
(\dagger) if some adjacent factors v_{i}, v_{i+1} are mutually inverse, we delete them, and if this leaves $u s$ with mutually inverse adjacent factors, we also delete them. We repeat these steps until none of the remaining adjacent factors are mutually inverse.

Proof. As W is a tame word, W is a finite concatenation of reduced tame words: $W \equiv u_{1} u_{2} \ldots u_{l}$. We may assume that all u_{i} are nonempty and that $l \geqslant 2$, and we will use induction by l.

Let $l=2$, that is $W \equiv u_{1} u_{2}$. If W is reduced, we can set $v_{1}=u_{1}$ and $v_{2}=u_{2}$. If W is not reduced, there exists a nonempty maximal arch-system \mathcal{A} for W; since u_{1}, u_{2} are reduced, no arch of \mathcal{A} has both endpoints in u_{1} or in u_{2}. Hence the initial points of these arches lie in u_{1} and the terminal one in u_{2}, and all the arches are parallel. Therefore there exist concatenations $u_{1} \equiv v_{1} v_{2}, u_{2} \equiv v_{3} v_{4}$ such that v_{2}, v_{3} are mutually inverse and $v_{1} v_{4}$ is reduced. Thus, we can set $W \equiv v_{1} v_{2} v_{3} v_{4} \equiv v_{1} v_{2} v_{2}^{-1} v_{4}$ and the above described process yields $v_{1} v_{4}$ as the reduced form of W.

Fig. 2. Hawaiian Earring.

Now let $l \geqslant 3$. By induction, $W^{\prime} \equiv u_{1} u_{2} \ldots u_{l-1}$ can be presented as a concatenation $W^{\prime} \equiv w_{1} w_{2} \ldots w_{k}$, with the reduced form $W_{\text {red }}^{\prime} \equiv w_{i_{1}} w_{i_{2}} \ldots w_{i_{s}}$ which is obtained from this concatenation by applying the process (\dagger). Also $W_{\text {red }}^{\prime} u_{l}$ (as in case $l=2$) can be presented as $v_{1} v_{2} v_{3} v_{4}$, where $W_{\text {red }}^{\prime} \equiv v_{1} v_{2}, u_{l} \equiv v_{3} v_{4}$, and v_{2}, v_{3} are mutually inverse, and $v_{1} v_{4}$ is reduced.

Then there exists $1 \leqslant j \leqslant s$ and a subdivision $w_{i_{j}} \equiv p q$ such that $v_{2} \equiv q w_{i_{j+1}} \ldots w_{i_{s-1}} w_{i_{s}}$, and so $v_{3} \equiv$ $w_{i_{s}}^{-1} w_{i_{s-1}}^{-1} \ldots w_{i_{j+1}}^{-1} q^{-1}$. The desired concatenation is

$$
W \equiv w_{1} w_{2} \ldots w_{i_{j}-1} p q w_{i_{j}+1} \ldots w_{k-1} w_{k} w_{i_{s}}^{-1} w_{i_{s-1}}^{-1} \ldots w_{i_{j+1}}^{-1} q^{-1} v_{4}
$$

3. Hawaiian Earring and Griffiths' space

Definition 3.1. The Hawaiian Earring is the topological space which is the (countable) union of circles of radii $\frac{1}{n}, n=1,2, \ldots$, embedded into the Euclidean plane in such a way that they have only one common point o (called the base-point). The topology of the Hawaiian Earring is induced by the topology of the plane.

Usually one assumes that these circles lie on same side of the common tangent (see Fig. 2). If we name the circle of radius $\frac{1}{n}$ by p_{n}, we will denote our Hawaiian Earring by $H\left(p_{1}, p_{2}, \ldots\right.$) or shortly $H(P)$, where $P=\left\{p_{1}, p_{2}, \ldots\right\}$. For convenience we will use the same name p_{n} for the path traversing p_{n} in counterclockwise direction and also for the homotopy class of this path.

Note that each homotopy class in $\pi_{1}(H(P))$ can be represented by a path $f:[0,1] \rightarrow H(P)$ such that for each p_{i} the restriction of f to each component of $f^{-1}\left(p_{i} \backslash\{o\}\right)$ is bijective. Because of continuity the path cannot pass through p_{i} infinitely many times. This yields the natural map $\pi_{1}(H(P)) \rightarrow \mathcal{W}(P)$. The following theorem is well known; see [23, Theorem 4.1].

Theorem 3.2. The fundamental group of the Hawaiian Earring is isomorphic to the group $\mathcal{W}(P)$.

The Hawaiian Earring has the following remarkable properties, some of them are not shared by tame spaces (e.g. manifolds or triangulable spaces).

- It is not semi-locally simply connected.
(A locally path-connected space X is called semi-locally simply connected if each point $x \in X$ has a neighborhood N such that the homomorphism $\pi_{1}(N, x) \rightarrow \pi_{1}(X, x)$, induced by the inclusion $N \hookrightarrow X$, is trivial; there are non-equivalent definitions in literature, cf. [16, Definitions 1.1, 1.2 and Theorem 2.8].)
- It does not admit a universal covering space [27, Example 2.5.17].
- It is compact, but its fundamental group is uncountable.
(This is an easy exercise, see for example [7, Theorem 2.5 (1)].)
- It is one-dimensional, but its fundamental group is not free.
(This follows from [23, Theorem 4.1] and a remark in [20, p. 80]. See also a short proof in [26].)
- Its fundamental group contains countable subgroups which are not free.
(See [20, p. 80] or [30, Theorem 3.9 (iii)].)
- Every finitely generated subgroup of its fundamental group is free. (Since the fundamental group embeds in an inverse limit of free groups, see [23, Theorem 4.1].)
- Its first singular homology group is torsion free [15, Corollary 2.2].
- Its first singular homology group is uncountable; it contains a divisible torsion-free subgroup of cardinality $2^{\aleph_{0}}$, i.e. $\oplus \mathbb{Q}$.
$2^{N_{0}}$
(See [15, Theorem 3.1] or Corollary 8.7 (a) and Corollary 9.2 of the present paper.)
Short proofs of some of these statements are presented in [7, Theorem 2.5]. In [11], R. Diestel and P. Sprüssel considered the Freudenthal compactifications of locally finite connected graphs. If such a graph has exactly one end, then its Freudenthal

Fig. 3. An embedding of Griffiths' space into \mathbb{R}^{3}.
compactification is homotopy equivalent to the Hawaiian Earring. By analogy to Hawaiian Earring, they proved that the fundamental group of the Freudenthal compactification of an arbitrary locally finite connected graph Γ can be canonically embedded into the inverse limit of the free groups $\pi_{1}\left(\Gamma^{\prime}\right)$ with $\Gamma^{\prime} \subseteq \Gamma$ finite.

Definition 3.3. Griffiths' space can be constructed as follows: take two Hawaiian Earrings, build a cone over each of them and finally take their one-point union with respect to the base-point of each of the Earrings.

We embed Griffiths' space into the 3-dimensional Euclidean space so that both Hawaiian Earrings lie in the (x, y)-plane and the cone-points lie in the planes $z=1$ and $z=-1$, respectively (see Fig. 3). Griffiths' space, if built from two Hawaiian Earrings $H\left(p_{1}, p_{2}, \ldots\right)$ and $H\left(q_{1}, q_{2}, \ldots\right)$, is denoted by $G\left(p_{1}, q_{1}, p_{2}, q_{2}, \ldots\right)$ or shortly $G(P ; Q)$. The following theorem is known; see [18, formula (3.55)]. For completeness we give here a straightforward proof.

Theorem 3.4. The fundamental group of Griffiths' space $G(P ; Q)$ is isomorphic to the factor group of $\mathcal{W}(P \cup Q)$ by the normal closure of $\langle\mathcal{W}(P), \mathcal{W}(Q)\rangle$.

Proof. We consider Griffiths' space $Y=G(P ; Q)$ with coordinates as in Definition 3.3. Let Y_{-1}, Y_{0}, Y_{1} be the subsets of Y consisting of all points with the z-coordinate from the intervals $\left[-1,-\frac{1}{3}\right),\left(-\frac{2}{3}, \frac{2}{3}\right),\left(\frac{1}{3}, 1\right]$, respectively. Note that $\pi_{1}\left(Y_{-1}\right)=\pi_{1}\left(Y_{1}\right)=1$ and $\pi_{1}\left(Y_{0}\right) \cong \pi_{1}(H(P \cup Q))$. By the van Kampen Theorem, $\pi_{1}\left(Y_{-1} \cup Y_{0}\right)$ is the quotient of the group $\pi_{1}(H(P \cup Q))$ by the normal closure of its subgroup $\pi_{1}(H(P))$. Finally, $\pi_{1}(Y)=\pi_{1}\left(\left(Y_{-1} \cup Y_{0}\right) \cup Y_{1}\right)$ is the factor group of the last quotient by the normal closure of the subgroup $\pi_{1}(H(Q))$.

Griffiths' space has the following remarkable properties.

- It is a one-point union of two contractible spaces, but itself it is not contractible. Moreover its fundamental group is uncountable [18, Claim 3.4].
- It is not semi-locally simply connected.
- It does not admit any non-identical covering, and thus it can serve as an example where the universal covering space (in this case the space itself) is not simply connected.
(See [27, Example 2.5.18 and Corollary 2.5.14].)
- It is a space where the natural homomorphism from the fundamental group to the shape group is not an injection [17, Example 3].
- Its first singular homology group is torsion free.
(This follows from [14, Theorem 1.2] and [15, Corollary 2.2].)
- Its first singular homology group is uncountable; it contains a divisible torsion-free subgroup of cardinality $2^{\aleph_{0}}$, i.e. $\oplus \mathbb{Q}$.
$2^{N_{0}}$
(See Corollary 8.7 (b) and Corollary 9.2 of the present paper.)
Recall that a space X is called homotopically Hausdorff if, for every point $x \in X$ and every nontrivial homotopy class $c \in \pi_{1}(X, x)$, there is a neighborhood of x which contains no representative for c. In particular, topological manifolds
and CW-complexes enjoy this property. Every one-dimensional space and every planar set is homotopically Hausdorff, see [8, Corollary 5.4 (2)] and [9, Theorem 3.4], respectively. In particular, the Hawaiian Earring is homotopically Hausdorff. However
- Griffiths' space is not homotopically Hausdorff since it contains the loop $p_{1} q_{1} p_{2} q_{2} \ldots$ which can be homotoped into any neighborhood of the base-point, but yet is not null-homotopic. This was noticed in [8, Example 2.0.2], but this also follows from our Theorem 8.1.

4. Description of the strategy of the proof

The commutator of two elements $u, v \in \mathcal{W}(X)$ is the element $u^{-1} \cdot v^{-1} \cdot u \cdot v \in \mathcal{W}(X)$, and it is denoted by $[u, v]$.
We describe an idea of the proof of Theorem 8.2 (Theorems 8.1 and 8.3 are proved similarly). Thus, we consider Griffiths' space $Y=G(P ; Q)$. Let w_{1}, w_{2} be two reduced tame words over the alphabet $P \cup Q$. Suppose that they represent the same element in $H_{1}(Y)=\left[\pi_{1}(Y), \pi_{1}(Y)\right]$. Then, by Theorem 3.4 we have

$$
\begin{equation*}
w_{2}=w_{1} \cdot \prod_{j=1}^{m} \theta_{j}^{-1} \cdot \eta_{j} \cdot \theta_{j} \cdot \prod_{i=1}^{n}\left[\sigma_{i}, \tau_{i}\right] \tag{4.1}
\end{equation*}
$$

for some reduced tame words $\theta_{j}, \sigma_{i}, \tau_{i}, \eta_{j} \in \mathcal{W}(P \cup Q)$, where for every j holds $\eta_{j} \in \mathcal{W}(P)$ or $\eta_{j} \in \mathcal{W}(Q)$. Therefore w_{2} is the reduced form of the concatenation

$$
\begin{equation*}
w \equiv w_{1} \prod_{j=1}^{m} \theta_{j}^{-1} \eta_{j} \theta_{j} \prod_{i=1}^{n}\left[\sigma_{i}, \tau_{i}\right] . \tag{4.2}
\end{equation*}
$$

By Lemma 2.13, w can be written as

$$
\begin{equation*}
w \equiv t_{1} u_{1} t_{2} u_{2} \ldots t_{k} u_{k} t_{k+1} \tag{4.3}
\end{equation*}
$$

where the reduced form of each u_{q} is the empty word and

$$
\begin{equation*}
w_{2} \equiv t_{1} t_{2} \ldots t_{k+1} \tag{4.4}
\end{equation*}
$$

With the concatenations (4.2)-(4.3) we will associate a geometric object called arch-line-band system (see Section 5). In this system we define leaves and parallelity classes of leaves. By Proposition 6.6, the number of these classes is finite and we will call it complexity of concatenations (4.2)-(4.3).

Using transformations (i) and (ii) from Theorem 8.2 , we will simplify w, w_{1} and w_{2} in several steps, so that

1) at each step the new tame words w_{1}^{\prime} and w_{2}^{\prime} represent the same elements of $H_{1}(Y)$;
2) the new tame words $w^{\prime}, w_{1}^{\prime}$ and w_{2}^{\prime} are related by equations which are analogous to (4.2)-(4.4), have the same parameters n, m, k, but smaller complexity:

$$
\begin{align*}
w^{\prime} & \equiv w_{1}^{\prime} \prod_{j=1}^{m} \theta_{j}^{\prime-1} \eta_{j}^{\prime} \theta_{j}^{\prime} \prod_{i=1}^{n}\left[\sigma_{i}^{\prime}, \tau_{i}^{\prime}\right] \\
w^{\prime} & \equiv t_{1}^{\prime} u_{1}^{\prime} t_{2}^{\prime} u_{2}^{\prime} \ldots t_{k}^{\prime} u_{k}^{\prime} t_{k+1}^{\prime}
\end{align*}
$$

and

$$
\begin{equation*}
w_{2}^{\prime} \equiv t_{1}^{\prime} t_{2}^{\prime} \ldots t_{k+1}^{\prime} \tag{4.4'}
\end{equation*}
$$

where $t_{s}^{\prime}, u_{l}^{\prime}, w_{1}^{\prime}, \theta_{j}^{\prime}, \eta_{j}^{\prime}, \sigma_{i}^{\prime}, \tau_{i}^{\prime}$ are obtained from $t_{s}, u_{l}, w_{1}, \theta_{j}, \eta_{j}, \sigma_{i}, \tau_{i}$ by removing a finite number of subwords, and where the reduced form of each u_{q}^{\prime} is the empty word;
3) the final word w_{2}^{\prime} can be obtained from the final word w_{1}^{\prime} by applying a finite number of transformations (iii).

5. A visualization of cancellation processes. Arch-line-band systems

In this section we define geometric objects, the so called arch-line-band systems, which are associated with concatenations (4.2) and (4.3) of tame words. They are designed to control cancellations in these concatenations. In Section 7 we introduce transformations of these systems that will be used in Section 8 to prove our main Theorems 8.1, 8.2 and 8.3.

First we define components of an arch-line-band system, giving the definition of the entire system on after that. The following definitions use the visualization of countable words as described in Definition 2.2.
(a) Bands. Here we define two types of bands, line-bands and arch-bands.

Line-bands. Let t be a countable word and T be a t-segment. We glue a rectangle $[0,1] \times[0,1]$ to the t-segment by a homeomorphism which identifies the side $[0,1] \times\{0\}$ with this segment. The opposite side $[0,1] \times\{1\}$ is called free.

Fig. 4. An example of an arch-line-band system. The boundaries of bands are depicted, but the arches and lines inside of them are not.
Inside of this rectangle we draw parallel vertical lines starting from the letters of this segment and ending at its free side. The system consisting of the t-segment, this rectangle and all these lines is called the line-band associated with T. We will say that this line-band is glued to T.

Arch-bands. Now let T be a t-segment and T_{1} be a t^{-1}-segment. We glue a rectangle $[0,1] \times[0,1]$ to T and T_{1} along the sides $[0,1] \times\{0\}$ and $[0,1] \times\{1\}$ with the help of homeomorphisms which preserve and reverse the orientation, respectively. Then we connect the corresponding inverse letters of T and T_{1} by parallel arcs inside of this rectangle. The system consisting of the segments T, T_{1}, this rectangle and all these arcs is called the arch-band associated with T and T_{1}. We will say that this arch-band connects T and T_{1}.
(b) Arch-band system. Let u be a tame word, and suppose that u is reducible to the empty word. According to Lemma 2.13, there exists a cancellation pattern for u, that is a subdivision $u \equiv z_{1} z_{2} \ldots z_{2 k}$, where some neighboring factors $z_{i(1)}, z_{j(1)}$ are mutually inverse, and after removing them some other neighboring factors $z_{i(2)}, z_{j(2)}$ will be mutually inverse, and so on until we get the empty word. The factors $z_{i(s)}, z_{j(s)}$ are called associated factors.

This cancellation procedure may be not unique, but for any fixed one we define the corresponding arch-band system in the following way. First we visualize the words z_{i} on the real line so that the z_{i+1}-segment is situated to the right of the z_{i}-segment in the adjacent position, $i=1, \ldots, 2 k-1$. Clearly, the union of these z_{i}-segments is a u-segment.

We connect the associated $z_{i(s)}$ - and $z_{j(s)}$-segments by an arch-band. The system consisting of the u-segment and all these arch-bands is called the arch-band system associated with u.

Now, let w be a tame word which is represented as a concatenation in two ways, see (4.2) and (4.3), where u_{i} 's are tame words which are reducible to the empty word. We visualize w by a w-segment.
(c) Upper arch-line-band system. Consider $2 k+1$ consecutive subsegments of the w-segment which correspond to the factors on the right-hand side of (4.3). For every t_{i}-segment we draw the associated line-band and for every u_{i}-segment we draw the associated arch-band system. The system consisting of the w-segment, the line-bands and the arch-bands is called the upper arch-line-band system associated with the concatenation (4.3). The corresponding bands are called upper.
(d) Lower arch-line-band system. Consider $1+3 m+4 n$ consecutive subsegments of the w-segment which correspond to the factors in the right side of (4.2). Then for each i, j we
(i) connect the θ_{j}^{-1} - and θ_{j}-segments by an arch-band,
(ii) connect the σ_{i}^{-1} - and σ_{i}-segments and also connect the τ_{i}^{-1} - and τ_{i}-segments by arch-bands,
(iii) glue line-bands to the w_{1} - and to the η_{j}-segments.

The system consisting of the w-segment, all these line-bands and arch-bands is called the lower arch-line-band system associated with the concatenation (4.2). The corresponding bands are called lower.
(e) The arch-line-band system associated with Eqs. (4.2) and (4.3) is the union of the corresponding upper and lower arch-line-band systems based on the same w-segment (see Fig. 4). It will be denoted by

$$
\begin{equation*}
\frac{t_{1} u_{1} t_{2} u_{2} \ldots t_{k} u_{k} t_{k+1}}{w_{1} \prod_{j=1}^{m} \theta_{j}^{-1} \eta_{j} \theta_{j} \prod_{i=1}^{n}\left[\sigma_{i}, \tau_{i}\right]} \tag{5.1}
\end{equation*}
$$

Fig. 5. An example of a leaf in the arch-line-band system from Fig. 4.
Definition. Let $\left(\ldots, \sigma_{i-1}, \sigma_{i}, \sigma_{i+1}, \ldots\right)$ be a finite or infinite sequence of arches or vertical lines of our system, which lie alternately in upper or lower bands such that the terminal point of each σ_{j} coincides with the initial point of its successor σ_{j+1}. The union of these vertical lines and arches is called a curve.

A leaf in the arch-line-band system is a maximal curve (see Fig. 5). Clearly, vertical lines can appear only at the beginning or at the end of the leaf. Note that a leaf cannot intersect itself and it never splits.

6. Properties of leaves of an arch-line-band system

Proposition 6.1. Any leaf of an arch-line-band system consists of a finite number of arcs and vertical lines.
Proof. We will use notations of Section 5. Any leaf intersects the w-segment of the system at points which are marked by letters of $\left\{x, x^{-1}\right\}$ for some $x \in X$. Since w is a tame word, each letter of $X^{ \pm}$occurs only finitely many times in w. Thus, any leaf intersects the w-segment in a finite set of points.

Therefore each leaf σ can be written in the form $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{p}$, where p is finite and all σ_{i} are arches, except for σ_{1} and σ_{p} which also may be vertical lines.

Now we introduce the concept of parallelity for arches, lines and leaves within arch-line-band systems. This concept technically differs from the corresponding one for arches within arch-systems (cf. Definition 2.3 (1)-(2)), though it is morally in the same spirit.

Definition 6.2. a) Two arches (lines) of an arch-line-band system are called parallel if they lie in the same arch-band (lineband).
b) Two nonclosed leaves $\sigma_{1} \sigma_{2} \ldots \sigma_{p}$ and $\tau_{1} \tau_{2} \ldots \tau_{q}$ are called parallel if $p=q$ and σ_{i}, τ_{i} are parallel for any $i=1, \ldots, p$.

Two closed leaves $\sigma_{1} \sigma_{2} \ldots \sigma_{p}$ and $\tau_{1} \tau_{2} \ldots \tau_{q}$ are called parallel if $p=q$ and there is a natural k such that the arches σ_{i}, τ_{i+k} are parallel for any $i=1, \ldots, p$ (addition modulo p).

Remark 6.3. Let $\sigma_{1} \sigma_{2} \ldots \sigma_{p}$ and $\tau_{1} \tau_{2} \ldots \tau_{q}$ be two nonclosed leaves such that $p \leqslant q$ and σ_{i}, τ_{i} are parallel for any $i=$ $1, \ldots, p$. Then σ_{p} ends on the free side of some line-band and so does τ_{p}. Therefore $p=q$.

Definition 6.4. Let S be a topological space with a distinguished subset D. Two nonclosed curves l_{1}, l_{2} in S with endpoints in D will be called homotopic relatively D if there exists a homotopy carrying l_{1} to l_{2} which moves the endpoints of l_{1} and l_{2} inside of D. If we apply this term to two closed curves, we mean that they are freely homotopic.

Sometimes we will consider an arch-line-band system as a topological space which is the union of the corresponding rectangles glued to a segment of the real line.

Lemma 6.5. Let A be an arch-line-band system and $D=b_{1} \cup \cdots \cup b_{t}$ be the union of the free sides of its line-bands. Two leaves of A are parallel if and only if they are homotopic relatively D.

Proof. If two leaves of A are parallel, then clearly they are homotopic relatively D. We prove the converse statement.
We construct a quotient space R of the arch-line-band system A : the w-segment is collapsed to one point and each subset $[0,1] \times\{t\}$ of each of the bands is also collapsed to one point. The resulting quotient space will be a graph with

Fig. 6. The quotient map $\pi: A \rightarrow R$.

Fig. 7. An embedding of an arch-line-system A into a surface T.
one central vertex v, closed edges that we call petals, and nonclosed edges that we call thorns (see Fig. 6). The quotient map $\pi: A \rightarrow R$ is a homotopy equivalence. Observe that π maps free sides of line-bands to the vertices of thorns different from v. The set of these vertices is $\pi(D)$.

Let l_{1}, l_{2} be two nonparallel leaves in A, both closed or both nonclosed. If they are closed, their images in R are different cyclically reduced paths. If l_{1}, l_{2} are nonclosed, their images in R are different reduced paths with endpoints in $\pi(D)$. In both cases these paths are not homotopic in R relatively $\pi(D)$, and so the leaves are not homotopic in A relatively D.

Proposition 6.6. There is only a finite number of parallelity classes of leaves in the arch-line-band system (5.1).
Proof. Let A be the topological space associated with the system (5.1). We embed this space into a surface so that this embedding will be a homotopy equivalence. To construct the surface we will glue to A a finite number of triangles and rectangles.

More exactly, for any two adjacent upper (lower) bands in A their non-free sides are either disjoint or meet at a point of the w-segment; in the first case we glue a rectangle, in the second case we glue a triangle as it shown in Fig. 7. Denote the resulting space by T and note that it is a finite genus orientable surface.

The boundary of T contains parts of the lateral sides of all bands, some sides of the triangles and rectangles, and the free sides of all line-bands. Within ∂T we consider these free sides b_{1}, \ldots, b_{t} as distinguished boundary segments.

Since the space A is contained in T, we may assume that all leaves of A are contained in T. These leaves are of two types: closed curves in the interior of T and curves with ends on distinguished boundary segments.

Taking into account that A and T are homotopy equivalent relatively $D=b_{1} \cup \cdots \cup b_{t}$, we conclude from Lemma 6.5 that two leaves of A are parallel if and only if they are homotopic in T relatively D. Now the statement follows from Lemma 6.7.

For any compact surface S we denote by $g(S)$ its genus and by $b(S)$ the number of its boundary components.
Lemma 6.7. Let S be a compact surface with a finite set of distinguished segments b_{1}, \ldots, b_{t} on its boundary. Let L be a set of disjoint simple curves in S such that each curve of L is either
(1) a closed curve in the interior of S, or
(2) a nonclosed curve which has both endpoints in $\left\{b_{1} \cup \cdots \cup b_{t}\right\}$ and lies, apart from them, in the interior of S.

Then the number of relatively- $\left\{b_{1} \cup \cdots \cup b_{t}\right\}$ homotopy classes of these curves does not exceed a constant depending only on $g(S)$, $b(S)$ and t.

Proof. We will proceed by induction on $(g(S), b(S))$ trying to decrease the pair in the lexicographical order \preccurlyeq on $\mathbb{N} \times \mathbb{N}$ by cutting S along a curve $l \in L$. There are 2 cases.

Case $1 . l$ is a nonseparating curve. Then, after cutting along l, we get a new surface S_{1}. In this case there are 3 subcases.
a) l is a closed curve. Then $g\left(S_{1}\right)=g(S)-1$ and $b\left(S_{1}\right)=b(S)+2$.
b) l is a nonclosed curve with endpoints at different boundary components of S. Then $g\left(S_{1}\right)=g(S)$ and $b\left(S_{1}\right)=b(S)-1$.
c) l is a nonclosed curve with endpoints at the same boundary component of S. Then $g\left(S_{1}\right)=g(S)-1$ and $b\left(S_{1}\right)=$ $b(S)+1$.

Case 2. l is a separating curve. Then, if we cut along l, we get two surfaces S_{1}, S_{2}. In this case there are 2 subcases.
a) l is a closed curve. Then $g\left(S_{1}\right)+g\left(S_{2}\right)=g(S)$ and $b\left(S_{1}\right)+b\left(S_{2}\right)=b(S)+2$.
b) l is a nonclosed curve with endpoints at the boundary of S. Since l is separating, its endpoints lie at the same boundary component of S. Then $g\left(S_{1}\right)+g\left(S_{2}\right)=g(S)$ and $b\left(S_{1}\right)+b\left(S_{2}\right)=b(S)+1$, and $b\left(S_{1}\right)>0, b\left(S_{2}\right)>0$.

We see that in Case 1 the pair $(g(\cdot), b(\cdot))$ decreases in the lexicographical order \preccurlyeq. In Case 2 we have also $\left(g\left(S_{j}\right), b\left(S_{j}\right)\right) \prec(g(S), b(S))$ for $j=1,2$ except of three subcases, where for some j holds:
(i) l is closed and $\left(g\left(S_{j}\right), b\left(S_{j}\right)\right)$ equals to $(0,1)$,
(ii) l is closed and $\left(g\left(S_{j}\right), b\left(S_{j}\right)\right)$ equals to (0,2),
(iii) l is nonclosed and $\left(g\left(S_{j}\right), b\left(S_{j}\right)\right)$ equals to (0,1).

Note that the curve l lies on ∂S_{j}.
In Subcase (i), S_{j} is a disc and $l=\partial S_{j}$. In particular l is null-homotopic in S.
In Subcase (ii), S_{j} is an annulus and l is one of its boundary components. In particular, l is parallel to the other boundary component of S_{j} which is a boundary component of S.

In Subcase (iii), S_{j} is a disc and l, having endpoints on distinguished segments of ∂S, is parallel to ∂S.
Thus, if L contains more than $b(S)+2 t^{2}+1$ relatively- $\left\{b_{1} \cup \cdots \cup b_{t}\right\}$ homotopy classes of curves, then one of them does not fall into the exceptional Subcases (i), (ii) or (iii). Cutting S along this curve, we get one or two surfaces with smaller $(g(\cdot), b(\cdot))$. Note that for each of the resulting surfaces $g(\cdot)$ cannot increase, $b(\cdot)$ can increase by at most 2 and t can increase by at most 2 . Thus for each of the new surfaces we can apply the induction.

Note that the number of the relatively- $\left\{b_{1} \cup \cdots \cup b_{t}\right\}$ homotopy classes of curves in L does not exceed the sum of the corresponding numbers after cutting of S along a curve $l \in L$. This completes the proof.

7. Transformations of arch-line-band systems

Now we consider an important transformation of an arch-line-band system:
Removing the parallelity class of a leaf. Let σ be a leaf in the arch-line-band system (5.1) and [σ] be the parallelity class of σ. We then "remove $[\sigma]$ ", i.e. we remove from the factors of (5.1) all letters that lie on the intersection of the w-segment and leaves from $[\sigma]$, and we also remove these leaves from our picture. Due to Proposition 6.6, only finitely many subwords will be removed from each of the factors $t_{s}, u_{l}, w_{1}, \theta_{j}, \eta_{j}, \sigma_{i}, \tau_{i}$ of (5.1). The remaining parts of these factors form new factors $t_{s}^{\prime}, u_{l}^{\prime}, w_{1}^{\prime}, \theta_{j}^{\prime}, \eta_{j}^{\prime}, \sigma_{i}^{\prime}, \tau_{i}^{\prime}$ and we obtain a new system:

$$
\begin{equation*}
\frac{t_{1}^{\prime} u_{1}^{\prime} t_{2}^{\prime} u_{2}^{\prime} \ldots t_{k}^{\prime} u_{k}^{\prime} t_{k+1}^{\prime}}{w_{1}^{\prime} \prod_{j=1}^{m} \theta_{j}^{\prime-1} \eta_{j}^{\prime} \theta_{j}^{\prime} \prod_{i=1}^{n}\left[\sigma_{i}^{\prime}, \tau_{i}^{\prime}\right]} \tag{7.1}
\end{equation*}
$$

Note that the remaining letters are still connected by the same upper or lower arches as before. Therefore we conclude:
Remark 7.1. 1) The words u_{s}^{\prime} are reducible to the empty word.
2) We have $\theta_{j}^{-1 \prime} \equiv \theta_{j}^{\prime-1}, \sigma_{i}^{-1 \prime} \equiv \sigma_{i}^{\prime-1}, \tau_{i}^{-1 \prime} \equiv \tau_{i}^{\prime-1}$, i.e. letters were deleted from pairs of inverse factors in such a way that the new factors remained inverse to each other.
3) By Remark 2.12, all the words in the numerator and the denominator of (7.1) are tame since they are finite concatenations of subwords of tame words.
4) Summing up 1)-3) we obtain: the system (7.1) indeed satisfies all conditions of an arch-line-band system and has complete analogous structure of factors as (5.1) (although some factors might have become empty). In particular, the numerator and the denominator in (7.1) are equal.

We are especially interested in the exact description of the structure of $t_{1}^{\prime}, \ldots, t_{k}^{\prime}$ and w_{1}^{\prime}. This structure depends on the type of the parallelity class of σ.
(1) If σ is closed it cannot run through w_{1} and t_{i}. In this case we have $w_{1} \equiv w_{1}^{\prime}$ and $t_{i} \equiv t_{i}^{\prime}$ for every i.
(2) If σ starts at an upper t_{i}-band and ends at another upper t_{j}-band, then there exists a tame word W such that t_{i} contains W, t_{j} contains W^{-1} and we have the following transformation:

$$
\begin{array}{ll}
t_{i} \equiv A_{i} W B_{i} & \mapsto \quad t_{i}^{\prime} \equiv A_{i} B_{i} \\
t_{j} \equiv A_{j} W^{-1} B_{j} & \mapsto \quad t_{j}^{\prime} \equiv A_{j} B_{j} \\
t_{l} & \mapsto \quad t_{l}^{\prime} \equiv t_{l} \quad \text { for } l \neq i, j \\
w_{1} & \mapsto
\end{array} w_{1}^{\prime} \equiv w_{1} .
$$

(2') If σ starts and ends at the same upper t_{i}-band, then t_{i} has the form $t_{i} \equiv A_{i} W B_{i} W^{-1} C_{i}$ and we have the following transformation:

$$
\begin{array}{lll}
t_{i} \equiv A_{i} W B_{i} W^{-1} C_{i} & \mapsto & t_{i}^{\prime} \equiv A_{i} B_{i} C_{i} \\
t_{l} & \mapsto & t_{l}^{\prime} \equiv t_{l} \quad \text { for } l \neq i \\
w_{1} & \mapsto & w_{1}^{\prime} \equiv w_{1}
\end{array}
$$

(3) If σ starts at a lower η_{i}-band and ends at an upper t_{j}-band, then there is a common subword W of η_{i} and t_{j} such that we have the following transformation:

$$
\begin{array}{ll}
t_{j} \equiv A_{j} W B_{j} & \mapsto \quad t_{j}^{\prime} \equiv A_{j} B_{j}, \\
t_{l} & \mapsto \quad t_{l}^{\prime} \equiv t_{l} \quad \text { for } l \neq j, \\
w_{1} & \mapsto \quad w_{1}^{\prime} \equiv w_{1} .
\end{array}
$$

(4) If σ starts at the lower w_{1}-band and ends at an upper t_{j}-band, then there is a common subword W of w_{1} and t_{j} such that we have the following transformation:

$$
\begin{array}{ll}
t_{j} \equiv A_{j} W B_{j} & \mapsto \quad t_{j}^{\prime} \equiv A_{j} B_{j}, \\
t_{l} & \mapsto \quad t_{l}^{\prime} \equiv t_{l} \quad \text { for } l \neq j, \\
w_{1} \equiv A W B & \mapsto \quad w_{1}^{\prime} \equiv A B .
\end{array}
$$

(5) If σ starts at a lower η_{i}-band and ends at the lower w_{1}-band, then there exists a tame word W such that η_{i} contains W, w_{1} contains W^{-1} and we have the following transformation:

$$
\begin{array}{ll}
t_{l} & \mapsto \quad t_{l}^{\prime} \equiv t_{l} \quad \text { for } l=1, \ldots, k+1 \\
w_{1} \equiv A W^{-1} B & \mapsto \quad w_{1}^{\prime} \equiv A B
\end{array}
$$

(6) If σ starts at a lower η_{i}-band and ends at a lower η_{j}-band, then $w_{1}^{\prime} \equiv w_{1}$ and $t_{l}^{\prime} \equiv t_{l}$ for all l.
(7) If σ starts and ends at the lower w_{1}-band, then w_{1} has the form $w_{1} \equiv A W B W^{-1} C$ and we have the following transformation:

$$
\begin{array}{ll}
t_{l} & \mapsto \quad t_{l}^{\prime} \equiv t_{l} \quad \text { for } l=1, \ldots, k+1 \\
w_{1} \equiv A W B W^{-1} C & \mapsto \quad w_{1}^{\prime} \equiv A B C
\end{array}
$$

8. Main theorems

Theorem 8.1. Let Y be Griffiths' space $G\left(p_{1}, q_{1}, p_{2}, q_{2}, \ldots\right)$. Two reduced tame words w_{1}, w_{2} over the alphabet $\left\{p_{1}, q_{1}, p_{2}, q_{2}, \ldots\right\}$ represent the same element in $\pi_{1}(Y)$ if and only if each of them can be transformed to the same reduced tame word by applying a finite number of transformations of type (i) and finally the transformation of type (ii):
(i) Deletion of a countable subword containing only p - or q-letters;
(ii) Reducing the resulting countable word.

Proof. The "if"-part follows from Theorem 3.4: by this theorem any restricted countable word containing only p - or q-letters represents the identity element of $\pi_{1}(Y)$. So, we prove the "only if"-part.

Let w_{1}, w_{2} be two reduced tame words over the alphabet $\left\{p_{1}, q_{1}, p_{2}, q_{2}, \ldots\right\}$ representing the same element in $\pi_{1}(Y)$. By Theorem 3.4, the word w_{2} is the reduced form of a finite concatenation

$$
\begin{equation*}
w_{1} \prod_{j=1}^{m} \theta_{j}^{-1} \eta_{j} \theta_{j} \tag{8.1}
\end{equation*}
$$

where $\theta_{j} \in \mathcal{W}\left(p_{1}, q_{1}, p_{2}, q_{2}, \ldots\right)$ and each $\eta_{j} \in \mathcal{W}\left(p_{1}, p_{2}, \ldots\right)$ or $\eta_{j} \in \mathcal{W}\left(q_{1}, q_{2}, \ldots\right)$. By Lemma 2.13 , there exists a decomposition of (8.1),

$$
\begin{equation*}
w_{1} \prod_{j=1}^{m} \theta_{j}^{-1} \eta_{j}^{-1} \theta_{j} \equiv t_{1} u_{1} t_{2} u_{2} \ldots t_{k} u_{k} t_{k+1} \tag{8.2}
\end{equation*}
$$

where all the subwords u_{i} are reducible to the empty word, all t_{i} are irreducible and

$$
w_{2} \equiv t_{1} t_{2} \ldots t_{k+1}
$$

Now we consider the arch-line-band system

$$
\begin{equation*}
\frac{t_{1} u_{1} t_{2} u_{2} \ldots t_{k} u_{k} t_{k+1}}{w_{1} \prod_{j=1}^{m} \theta_{j}^{-1} \eta_{j} \theta_{j}} \tag{8.3}
\end{equation*}
$$

Consecutively remove all parallelity classes of leaves from it which start at lower η_{j}-bands (cf. Section 7). This process is finite by Proposition 6.6. Then the words η_{j} completely disappear and we get a new arch-line-band system

$$
\begin{equation*}
\frac{t_{1}^{\prime} u_{1}^{\prime} t_{2}^{\prime} u_{2}^{\prime} \ldots t_{k}^{\prime} u_{k}^{\prime} t_{k+1}^{\prime}}{w_{1}^{\prime} \prod_{j=1}^{m} \theta_{j}^{\prime-1} \theta_{j}^{\prime}} \tag{8.4}
\end{equation*}
$$

By analogy with $w_{2} \equiv t_{1} t_{2} \ldots t_{k+1}$ we denote $w_{2}^{\prime} \equiv t_{1}^{\prime} t_{2}^{\prime} \ldots t_{k+1}^{\prime}$. According to Cases (3), (5), (6) from Section 7, the countable words w_{2}^{\prime} and w_{1}^{\prime} are obtained from w_{2} and w_{1} by applying a finite number of transformations (i).

Since the numerator and the denominator in (8.4) are equal as countable words and still tame (see statements 4) and 3) of Remark 7.1), they have the same reduced form by Proposition 2.9. Hence w_{2}^{\prime} and w_{1}^{\prime} have the same reduced form. In other words, after applying to w_{2}^{\prime} and w_{1}^{\prime} the transformation (ii) we get the same reduced tame word.

Theorem 8.2. Let Y be Griffiths' space $G\left(p_{1}, q_{1}, p_{2}, q_{2}, \ldots\right)$. Two reduced tame words w_{1}, w_{2} over the alphabet $\left\{p_{1}, q_{1}, p_{2}, q_{2}, \ldots\right\}$ represent the same element in $H_{1}(Y)$ if and only if each of them can be transformed to the same tame word by applying a finite number of transformations of type (i), then of type (ii) and finally of type (iii):
(i) Deletion of a countable subword containing only p - or q-letters;
(ii) Deletion of two distinct mutually inverse countable subwords: $A X B X^{-1} C \rightarrow A B C$;
(iii) Permuting two consecutive countable subwords.

Proof. We will prove the nontrivial "only if" part. Let w_{1}, w_{2} be two reduced tame words over the alphabet $\left\{p_{1}, q_{1}\right.$, $\left.p_{2}, q_{2}, \ldots\right\}$ representing the same element in $H_{1}(Y)$. By Theorem 3.4, the word w_{2} is the reduced form of a finite concatenation

$$
\begin{equation*}
w \equiv w_{1} \prod_{j=1}^{m} \theta_{j}^{-1} \eta_{j} \theta_{j} \prod_{i=1}^{n}\left[\sigma_{i}, \tau_{i}\right], \tag{8.5}
\end{equation*}
$$

where each η_{j} contains only p - or q-letters. This means that there exists a decomposition of (8.5),

$$
\begin{equation*}
w_{1} \prod_{j=1}^{m} \theta_{j}^{-1} \eta_{j} \theta_{j} \prod_{i=1}^{n}\left[\sigma_{i}, \tau_{i}\right] \equiv t_{1} u_{1} t_{2} u_{2} \ldots t_{k} u_{k} t_{k+1} \tag{8.6}
\end{equation*}
$$

where all the subwords u_{i} are reducible to the empty word and

$$
w_{2} \equiv t_{1} t_{2} \ldots t_{k+1}
$$

Now we consider the arch-line-band system

$$
\begin{equation*}
\frac{t_{1} u_{1} t_{2} u_{2} \ldots t_{k} u_{k} t_{k+1}}{w_{1} \prod_{j=1}^{m} \theta_{j}^{-1} \eta_{j} \theta_{j} \prod_{i=1}^{n}\left[\sigma_{i}, \tau_{i}\right]} . \tag{8.7}
\end{equation*}
$$

We will simplify this system by removing certain parallelity classes of leaves. First we eliminate all η_{j} exactly in the same way as in the proof of Theorem 8.1 (so we use transformations (i) several times). Thus, without loss of generality, we may assume that we have the arch-line-band system

$$
\begin{equation*}
\frac{t_{1} u_{1} t_{2} u_{2} \ldots t_{k} u_{k} t_{k+1}}{w_{1} \prod_{j=1}^{m} \theta_{j}^{-1} \theta_{j} \prod_{i=1}^{n}\left[\sigma_{i}, \tau_{i}\right]} \tag{8.8}
\end{equation*}
$$

The only line-bands of this system are the upper t_{s}-bands, $s=1, \ldots, k+1$, and the lower w_{1}-band. Note that $t_{1} t_{2} \ldots t_{k+1}$ is a tame word, but may be already non-reduced.

Now suppose that the system contains a leaf σ starting at some t_{p}-band and ending at the same or another t_{q}-band. By Cases (2) and (2') from Section 7, the tame word $w_{2} \equiv t_{1} t_{2} \ldots t_{k+1}$ has the form $A X B X^{-1} C$. Removing the parallelity class of σ, we do not change the form of (8.8) and do not change w_{1}, but we replace w_{2} by $A B C$ (this is the transformation (ii)).

We remove all parallelity classes starting and ending at the union of the upper t-bands. Analogously we remove all parallelity classes starting and ending at the lower w_{1}-band.

Thus, we may assume that every parallelity class starting at an upper t-band ends at the lower w_{1}-band. Conversely, every parallelity class starting at the lower w_{1}-band ends at some upper t-band. Moreover, every letter of $w_{2} \equiv t_{1} t_{2} \ldots t_{k+1}$ and every letter of w_{1} lies on some leaf. Therefore there is a partition $w_{2} \equiv v_{1} v_{2} \ldots v_{r}$ and a permutation $\sigma \in S_{r}$ such that $w_{1} \equiv v_{1 \sigma} v_{2 \sigma} \ldots v_{r \sigma}$. Thus, w_{1} and w_{2} can be made equal by a finite number of transformations (iii).

Theorem 8.3. Let Z be the Hawaiian Earring $H\left(p_{1}, p_{2}, \ldots\right)$. Two reduced tame words over the alphabet $\left\{p_{1}, p_{2}, \ldots\right\}$ represent the same element in the first homology group $H_{1}(Z)$ if and only if each of them can be transformed to the same tame word by applying a finite number of transformations of type (ii) and finally of type (iii):
(ii) Deletion of two distinct mutually inverse countable subwords: $A X B X^{-1} C \rightarrow A B C$;
(iii) Permuting two consecutive countable subwords.

Proof. We will prove the nontrivial "only if" part. The word w_{2} is the reduced form of a finite concatenation

$$
\begin{equation*}
w_{1} \prod_{i=1}^{n}\left[\sigma_{i}, \tau_{i}\right] \tag{8.9}
\end{equation*}
$$

(compare with (8.5)). The further proof is the same as the proof of Theorem 8.2, starting from formula (8.8) with empty θ_{j}.

Note that this theorem can be also deduced from [8, Theorem 6.1] and conversely.
We fix two disjoint infinite countable alphabets $P=\left\{p_{1}, p_{2}, \ldots\right\}$ and $Q=\left\{q_{1}, q_{2}, \ldots\right\}$ for the rest of this section. Below we introduce legal and (P, Q)-legal words which, in view of Lemma 8.6 , will be used later to construct uncountably many words with certain nice properties.

Definition 8.4. 1) A countable word U over the alphabet P is called legal if it is restricted and for any presentation $U \equiv$ $A X B X^{-1} C$ the subword X is finite.
2) A countable word U over the alphabet $P \cup Q$ is called (P, Q)-legal if it is restricted, every subword of U containing only p - or only q-letters is finite, and for any presentation $U \equiv A X B X^{-1} C$ the subword X is finite.

The proof of the following useful lemma is straightforward.

Lemma 8.5. The class of legal words over the alphabet P and the class of (P, Q)-legal words over the alphabet $P \cup Q$ both are closed under applying the transformations (i) and (ii) from Theorem 8.2 a finite number of times.

Lemma 8.6.

1) A reduced legal word U over the alphabet P determines a nonzero element in $H_{1}(Z)$ if and only if it is infinite or it is finite and has a nonzero exponent sum in some letter.
2) A reduced (P, Q)-legal word U over the alphabet $P \cup Q$ determines a nonzero element in $H_{1}(Y)$ if and only if it is infinite.

Proof. We will prove only the more difficult statement 2). By Theorem 8.2, U determines the zero element in $H_{1}(Y)$ if and only if it can be carried to the empty word by applying a finite number of transformations (i), (ii). By Lemma 8.5, each transformation leaves words in the class of (P, Q)-legal words. Therefore at each step at most two finite subwords can be deleted. Thus, if U is infinite, we cannot get the empty word in a finite number of steps. If U is finite, we can delete all its letters with the help of several transformations (i).

The proof of the statement 1) is analogous and uses Theorem 8.3.
Recall that \aleph_{0} denotes the cardinality of natural numbers, and so $2^{\aleph_{0}}$ is the cardinality of continuum.
Corollary 8.7. For the Hawaiian Earring $Z=H\left(p_{1}, p_{2}, \ldots\right)$ and for Griffiths' space $Y=G\left(p_{1}, q_{1}, p_{2}, q_{2}, \ldots\right)$, there are $2^{\aleph_{0}}$ functions $k: \mathbb{N} \rightarrow \mathbb{N}$ such that
(a) all the elements $\left[p_{k(1)}, p_{k(2)}\right]\left[p_{k(3)}, p_{k(4)}\right] \ldots$ are different in $H_{1}(Z)$;
(b) all the elements $\left[p_{k(1)}, q_{k(1)}\right]\left[p_{k(2)}, q_{k(2)}\right] \ldots$ are different in $H_{1}(Y)$.

Proof. Consider the set of all strictly monotone functions $k: \mathbb{N} \rightarrow \mathbb{N}$. It has cardinality $2^{\aleph_{0}}$. Two such functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ will be called equivalent if there exist natural n, m such that for every $l \geqslant 0$ we have that $f(n+l)=g(m+l)$. Roughly speaking, the tails of equivalent functions are the same. Since each equivalence class of these functions is countable, the cardinality of the set of equivalence classes is $2^{N_{0}}$. We choose a system \mathcal{K} of representatives of these classes to define $2^{\aleph_{0}}$ infinite products according to (a) and (b), respectively.

It is easy to see that for any two such products U, V the concatenation $U V^{-1}$ is reduced legal in Case (a) or reduced (P, Q)-legal in Case (b). The proof can be completed by applying Lemma 8.6.

9. Divisible subgroups of $H_{1}(Z), H_{1}(Y)$ and $\pi_{1}(Y)$

Definition 9.1. An element g of a group G is called \mathbb{N}-divisible if for any $n \in \mathbb{N}$ there exists an element $x \in G$ such that $g=x^{n}$. An abelian group G is called divisible if every element of $g \in G$ is \mathbb{N}-divisible.

Corollary 9.2. The homology groups $H_{1}(Z)$ and $H_{1}(Y)$ of the Hawaiian Earring $Z=H\left(p_{1}, p_{2}, \ldots\right)$ and of Griffiths' space $Y=$ $G\left(p_{1}, q_{1}, p_{2}, q_{2}, \ldots\right)$ contain subgroups isomorphic to $\underset{2^{N_{0}}}{\oplus} \mathbb{Q}$.

Furthermore, the fundamental group of Griffiths' space contains a subgroup isomorphic to \mathbb{Q}.
Proof. a) We construct a nontrivial \mathbb{N}-divisible element in $H_{1}(Y)$ using limits of word sequences. Let a_{1}, a_{2}, \ldots be an infinite sequence of countable words. First we define a countable word w as a limit word ${ }^{1}$ resulting from the following recursive process: set $w_{1}=a_{1}$ and construct w_{i+1} from w_{i} by inserting a_{i+1}^{i+1} after each occurrence of a_{i} :

$$
\begin{aligned}
& w_{1}=a_{1} \\
& w_{2}=a_{1} \quad a_{2} \quad a_{2} \\
& w_{3}=a_{1} \quad a_{2} \quad a_{3} a_{3} a_{3} \quad a_{2} \quad a_{3} a_{3} a_{3} \\
& \vdots
\end{aligned}
$$

Specifically for $a_{i}=\left[p_{i}, q_{i}\right], i=1,2, \ldots$, we denote the limit word w by W. Clearly, W is restricted and reduced, and so W is a nontrivial element of $G=\mathcal{W}(P \cup Q)$. By Theorem 3.4, there is a natural homomorphism $G \rightarrow \pi_{1}(Y)$. We compose it with the canonical homomorphism $\pi_{1}(Y) \rightarrow H_{1}(Y)$ and denote the image of W in $H_{1}(Y)$ by \bar{W}.

Note that if we delete in W a finite number of a_{i} 's, the resulting word will not change modulo $[G, G]$. Thus, by deleting all occurrences of a_{1} in W, we see that W is a square modulo $[G, G]$. Similarly, for any natural n, if we delete all occurrences of $a_{1}, a_{2}, \ldots, a_{n}$ in W, we see that W is an $(n+1)$-th power in G modulo $[G, G]$. Therefore \bar{W} is \mathbb{N}-divisible in $H_{1}(Y)$. Moreover, \bar{W} is nontrivial in $H_{1}(Y)$ by Lemma 8.62).
b) Now we construct $2^{\aleph_{0}} \mathbb{N}$-divisible elements in $H_{1}(Y)$. For that we will use functions $k: \mathbb{N} \rightarrow \mathbb{N}$ from the class \mathcal{K} which was defined in the proof of Corollary 8.7. For each function $k \in \mathcal{K}$ we define the limit word W_{k} just by putting $a_{i}=\left[p_{k(i)}, q_{k(i)}\right]$ in the above construction. And as above, one can show that these words determine \mathbb{N}-divisible elements $\overline{W_{k}}$ in $H_{1}(Y)$.

It remains to prove that the words $W_{k}, k \in \mathcal{K}$, determine different elements in $H_{1}(Y)$. This follows from Lemma 8.6 2) if we prove that for different $k, l \in \mathcal{K}$ the reduced form $R_{k, l}$ of the word $W_{k}^{-1} W_{l}$ is infinite and (P, Q)-legal. The word $R_{k, l}$ is infinite since

$$
W_{k}^{-1} W_{l} \equiv\left(\ldots\left[p_{k(3)}, q_{k(3)}\right]^{-1}\left[p_{k(2)}, q_{k(2)}\right]^{-1}\left[p_{k(1)}, q_{k(1)}\right]^{-1}\left[p_{l(1)}, q_{l(1)}\right]\left[p_{l(2)}, q_{l(2)}\right]\left[p_{l(3)}, q_{l(3)}\right] \ldots\right),
$$

and so the reduction can affect only a finite number of the middle commutators.

[^1]The word $R_{k, l}$ is (P, Q)-legal since:
(1) p - and q-subwords of $R_{k l}$ are finite;
(2) if $R_{k, l} \equiv A X B X^{-1} C$, then X is finite.

The first assertion is clear since p - and q-subwords of W_{k} and W_{l} contain only one letter. For the second one we need the following claim which can be proved straightforward.

Claim. Every infinite subword of the limit word w contains an infinite subword of the form $a_{n} a_{n+1} a_{n+2} \ldots$ which is ordered as \mathbb{N}. Moreover, each subword of w which is ordered as \mathbb{N} has this form.

If (2) were not true, then W_{k} and W_{l} would have a common infinite subword. Then by the Claim, we would have $\left[p_{k(n)}, q_{k(n)}\right]\left[p_{k(n+1)}, q_{k(n+1)}\right] \ldots \equiv\left[p_{l(m)}, q_{l(m)}\right]\left[p_{l(m+1)}, q_{l(m+1)}\right] \ldots$ for some natural n, m. But this is impossible since k, l are different in \mathcal{K}.
c) Note that the group $H_{1}(Y)$ is torsion-free by [14, Theorem 1.2] and [15, Corollary 2.2]. Therefore its minimal divisible subgroup containing $\left\{\overline{W_{k}} \mid k \in \mathcal{K}\right\}$ is isomorphic to the direct sum $\bigoplus_{i \in I} \mathbb{Q}$ for some index set I. Since the set $\left\{\overline{W_{k}} \mid k \in \mathcal{K}\right\}$ has cardinality $2^{\aleph_{0}}$, the set I has cardinality $2^{\aleph_{0}}$, too.
d) The statement of Corollary 9.2 concerning $H_{1}(Z)$ can be proven analogously if in a) we take $a_{i}=\left[p_{2 i-1}, p_{2 i}\right]$ and in b) we take $a_{i}=\left[p_{k(2 i-1)}, p_{k(2 i)}\right]$.
e) Now we prove that $\pi_{1}(Y)$ contains a subgroup isomorphic to \mathbb{Q}. In a) we have constructed a nontrivial element W in $G=\mathcal{W}(P \cup Q)$ and noticed that there is a natural homomorphism $\varphi: G \rightarrow \pi_{1}(Y)$. By Theorem 8.1, $\varphi(W)$ has infinite order in $\pi_{1}(Y)$.

For any $i=2,3, \ldots$, let W_{i} denote the word obtained from W by deletion of all occurrences of $a_{1}, a_{2}, \ldots, a_{i-1}$. By Theorem 8.1, $\varphi\left(W_{i}\right)=\varphi(W)$. We define a countable subword U_{i} of W_{i} as the subword which starts from the first letter of W_{i} (that is from a_{i}) and contains all letters of W_{i} before the second occurrence of a_{i}.

One can easily see that $W_{i} \equiv\left(U_{i}\right)^{i!}$ and that $\varphi\left(U_{i}\right)=\varphi\left(\left(U_{i+1}\right)^{i+1}\right)$. Therefore the elements $\varphi\left(U_{i}\right), i=2,3, \ldots$, generate a group with the presentation $\left\langle u_{i}(i=2,3, \ldots) \mid u_{i}=u_{i+1}^{i+1}\right\rangle$. The group \mathbb{Q} also has this presentation, as can be seen if we interpret u_{i} as $\frac{1}{i!}$.

Acknowledgements

The first named author thanks the MPIM at Bonn for its support and excellent working conditions during the fall 2008, while this research was finished. He also thanks the University of Gdansk for the hospitality during several visits in 20052010. The second named author acknowledges financial support from the University of Gdańsk (BW UG 5100-5-0096-5) and from the Polish Ministry of Science (KBN 0524/H03/2006/31).

References

[1] M. Bestvina, M. Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995) 287-321.
[2] W.A. Bogley, A.J. Sieradski, Weighted combinatorial group theory and wild metric complexes, in: Y.G. Baik, D.L. Johnson, A.C. Kim (Eds.), GroupsKorea 98, de Gruyter, Berlin, New York, 2000, pp. 53-80.
[3] W.A. Bogley, A.J. Sieradski, Universal path spaces, preprint, available at http://people.oregonstate.edu/~bogleyw/\#research/ups.pdf.
[4] O. Bogopolski, W. Singhof, Generalized presentations of infinite groups, in particular of Aut (F_{ω}), available at http://arxiv.org/abs/1107.1332, 2011, 49 pp .
[5] O. Bogopolski, A. Zastrow, On a space of Karimov, preprint, in preparation.
[6] W.W. Boone, The word problem, Proc. Natl. Acad. Sci. USA 44 (1958) 1061-1065.
[7] J.W. Cannon, G.R. Conner, The combinatorial structure of the Hawaiian earring group, Topology Appl. 106 (3) (2000) 225-271.
[8] J.W. Cannon, G.R. Conner, On the fundamental groups of one-dimensional spaces, Topology Appl. 153 (14) (2006) 2648-2672.
[9] G.R. Conner, J.W. Lamoreaux, On the existence of universal covering spaces for metric spaces and subsets of the Euclidean plane, Fund. Math. 187 (2005) 95-110.
[10] M. Dehn, Über unendliche diskontinuierliche Gruppen, Math. Ann. 71 (1911) 116-144.
[11] R. Diestel, P. Sprüssel, The fundamental group of a locally finite graph with ends, Adv. Math. 226 (2011) 2643-2675.
[12] K. Eda, Free σ-products and noncommutatively slender groups, J. Algebra 148 (1992) 243-263.
[13] K. Eda, Free σ-products and fundamental groups of subspaces of the plane, Topology Appl. 84 (1-3) (1998) 283-306.
[14] K. Eda, The first integral singular homology groups of one-point union, Quart. J. Math. Oxford 42 (1991) 443-456.
[15] K. Eda, K. Kawamura, The singular homology of the Hawaiian Earring, J. Lond. Math. Soc. (2) 62 (2000) 305-310.
[16] H. Fischer, D. Repovš, Ž. Virk, A. Zastrow, On semilocally simply connected spaces, Topology Appl. 158 (3) (2011) 397-408.
[17] H. Fischer, A. Zastrow, The fundamental groups of subsets of closed surfaces inject into their first shape groups, Algebr. Geom. Topol. 5 (2005) 16551676.
[18] H.B. Griffiths, The fundamental group of two spaces with a common point, Quart. J. Math. Oxford Ser. (2) 5 (1954) 175-190.
[19] H.B. Griffiths, The fundamental group of two spaces with a common point: A correction, Quart. J. Math. Oxford Ser. (2) 6 (1955) $154-155$.
[20] G. Higman, Unrestricted free products and varieties of topological groups, J. Lond. Math. Soc. (2) 27 (1952) 73-81.
[21] U.K. Karimov, An example of a space of trivial shape, all finite coverings of which are cyclic, Soviet. Math. Dokl. 33 (1) (1986) 113-117, Russian original in: Dokl. Akad. Nauk SSSR 286 (3) (1986) 531-534.
[22] W. Magnus, Beziehungen zwischen Gruppen und Idealen mit einem speziellen Ring, Math. Ann. 111 (1935) 259-280.
[23] J.W. Morgan, I. Morrison, A van Kampen theorem for weak joins, Proc. Lond. Math. Soc. (3) 53 (1986) 562-576.
[24] P.S. Novikov, On the algorithmic unsolvability of the word problem in group theory, Proc. Steklov Inst. Math. 44 (1955) 1-143 (in Russian).
[25] A.J. Sieradski, Omega-groups, preprint, available at http://people.oregonstate.edu/~bogleyw/\#research/og.pdf.
[26] Bart de Smit, The fundamental group of the Hawaiian Earring is not free, Internat. J. Algebra Comput. 2 (1) (1992) 33-37.
[27] E.H. Spanier, Algebraic Topology, Springer-Verlag, Berlin, 1995, 1966.
[28] A. Zastrow, The non-abelian Specker-group is free, J. Algebra 229 (2000) 55-85.
[29] A. Zastrow, Construction of an infinitely generated group that is not a free product of surface groups and abelian groups, but which acts freely on an \mathbb{R}-tree, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 433-445.
[30] A. Zastrow, Free and non-free subgroups of the fundamental group of the Hawaiian Earrings, Cent. Eur. J. Math. 1 (2003) 1-35.

[^0]: * Corresponding author at: Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. E-mail addresses: Oleg_Bogopolski@yahoo.com (O. Bogopolski), zastrow@mat.ug.edu.pl (A. Zastrow).

[^1]: 1 This limit word is a modification of those described in [7, pp. 235-236] and [30, p. 14].

