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Abstract SARS 8b is one of the putative accessory proteins of
the severe acute respiratory syndrome-associated coronavirus
(SARS-CoV) with unknown functions. In this study, the cellular
localization and activity of this estimated 9.6 kDa protein were
examined. Confocal microscopy results indicated that SARS
8b is localized in both nucleus and cytoplasm of mammalian
cells. Functional study revealed that overexpression of SARS
8b induced DNA synthesis. Coexpression of SARS 8b and
SARS 6, a previously characterized SARS-CoV accessory pro-
tein, did not elicit synergistic effects on DNA synthesis.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Severe acute respiratory syndrome (SARS) is a newly discov-

ered infectious disease that has caused more than 7900 cases

and 800 deaths worldwide in 2003 [1]. The SARS-CoV, which

is a novel coronavirus, was identified as the causative agent of

SARS. It is an enveloped, positive-stranded RNA virus with a

genome of approximately 30 kb, encompassing five major

open reading frames (ORFs) which encode the replicase poly-

proteins, the spike (S), envelope (E), membrane (M), and

nucleocapsid (N) proteins. Besides these major proteins,

SARS-CoV genome also encodes five to eight putative acces-

sory proteins that share little homology with any known pro-

teins of other coronaviruses [2,3].

Although accessory proteins from other coronaviruses are

often dispensable for viral replication, they may play vital

roles in virulence and pathogenesis by affecting host innate im-

mune responses, encoding pro- or anti-apoptotic activities, or

impacting other signaling pathways that might influence dis-

ease outcomes [4]. For instance, group-specific ORFs of mur-

ine coronavirus were found to be non-essential for viral

replication, yet their deletions were attenuating in natural

hosts [5]. Recent research on the SARS-CoV have also indi-
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cated that accessory proteins SARS 3a, 3b and 7a could in-

duce apoptosis [6–8]. On the other hand, coronavirus

infection in the early stages had been reported to stimulate epi-

thelial cells, causing cellular proliferation and squamous meta-

plasia in the lungs [9]. Interestingly, SARS 6 has been shown

to increase DNA synthesis in mammalian cells of epithelium

origins [10].

SARS 8b, also known as X5, is predicted to be a soluble pro-

tein with 84 amino acids and an estimated size of 9.6 kDa. It

shows minor homology to the human coronavirus E2 glyco-

protein precursor [2]. Several studies had suggested that hu-

man SARS-CoV evolved from SARS-CoV-like virus

harbored in exotic animals such as palm civet cats [11]. Evolu-

tionary studies of zoonotic and human SARS-CoV have indi-

cated that in the early phase of the SARS epidemic, ORF8 was

encoded as a single ORF while isolates of human SARS-CoV

at a later stage of the epidemic contained a 29-nucleotide dele-

tion which resulted in two ORFs designated as ORF8a and

ORF8b [11]. This deletion might be associated with transmis-

sion of the virus during the epidemic [12]. In this study, the cel-

lular localization and functional roles of SARS 8b were

examined.
2. Materials and methods

2.1. Cell culture
Vero E6 (African green monkey kidney fibroblasts) and CHO (Chi-

nese hamster ovary) cell lines were purchased from the American Type
Culture Collection (Manassas, VA, USA) and cultured at 37 �C in 5%
CO2 in Dulbecco modified eagle medium (Gibco BRL Life Technolo-
gies, Inc., Carlsbad, CA, USA) containing 10% FBS, 100 U/ml penicil-
lin, and 100 lg/ml streptomycin.
2.2. Plasmid construction
The SARS 8b cDNA (CUHK-Su10, GenBank Accession No.

AY282752) [13] was subcloned into pEGFP-N1 (BD Bioscience, Clon-
tech, Palo Alto, CA, USA) and pcDNA3.1 (Invitrogen, Carlsbad, CA,
USA) vectors, respectively. Primers SARS 8b-GFP-F (5 0 GGC GCC
GAG CTC ATG TGC TTG AAG ATC CTT 3 0) and SARS 8b-
GFP-R (5 0 CCG GGG TAC CTC ATT TGT TCG TTT ATT TAA
3 0) containing SacI and KpnI restriction cut sites were used for poly-
merase chain reaction (PCR) of the SARS 8b cDNA. Amplicons that
had been cut with SacI and partially digested with KpnI were sub-
cloned into pEGFP-N1 vectors, yielding the SARS 8b-pEGFP vector
that encodes the SARS 8b-EGFP (enhanced green fluorescent protein).
For constructing the untagged plasmid of SARS 8b, primers SARS 8b-
F (5 0 GGC GCC GGT ACC ATG TGC TTG AAG ATC CTT 3 0) and
blished by Elsevier B.V. All rights reserved.
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SARS 8b-R (5 0 GGC GCC TCT AGA TTA ATT TGT TCG TTT
ATT 3 0) which contain KpnI and XbaI cut sites were used for PCR
amplification of the SARS 8b cDNA. Amplicons that had been cut
with XbaI and paritally digested with KpnI were cloned into
pcDNA3.1 at the appropriate cut sites, generating pcDNA3.1-SARS
8b construct which encodes the SARS 8b proteins.

The SARS 6 cDNA were subcloned into pDsRed-N1 vectors (BD
Biosciences, Clontech). Primers SARS 6-RFP-F (5 0 GGC GCC
GAG CTC ATG TTT CAT CTT GTT GAC 3 0) and SARS 6-
RFP-R (5 0CCG GGG TAC CTC TGG ATA ATC TAA CTC
CAT 3 0) containing SacI and KpnI restriction cut sites were used
for PCR of the SARS 6 cDNA and amplicons cut with the appropri-
ate enzymes were subcloned into pDsRed-N1 vectors, yielding the
SARS 6-pDsRed vector that encodes the SARS 6-RFP (red fluores-
cent protein). The SARS 6-pcDNA3.1 vectors were constructed as
described elsewhere [10].

The sequences of all constructs in the present study were confirmed
by DNA sequencing (Macrogen Inc., Seoul, Korea).

2.3. Western blot analysis
Western blotting was performed as described elsewhere [10].

2.4. Cellular localization of SARS 8b and SARS 6 proteins
Cells plated on sterile coverslips in 12-well plates were allowed to at-

tach overnight followed by transient transfection with SARS 8b-EGFP
fusion constructs and/or SARS 6-pDsRed vectors by using Lipofect-
amine� 2000 reagent (Invitrogen). Prior to transfection, the cells were
washed with PBS and 500 ll of medium with no serum. 1.6 lg of the
appropriate vector was diluted in 100 ll of medium with no serum
and incubated for 5 min before mixing with 4 ll of Lipofectamine�
2000. The complex was then added onto the cells after incubation at
room temperature for 20 min. Maintenance medium was replaced
5.5 h after transfection.

Cells were washed with phosphate-buffered saline (PBS) 30 h post-
transfection. Coverslips were mounted and fluorescent images were
captured at 2000· magnification with a laser scanning confocal micro-
scope (Leica Model TCS-NT, Leica Microsystems, Heidelberg, Ger-
many). Green fluorescence (excitation wavelength: 476–488 nm;
emission wavelength: 525/50 nm) and red fluorescence (excitation
wavelength: 568 nm; emission wavelength: 600/30 nm) were detected
through FITC and rhodamine filters, respectively.

2.5. RT-PCR
Cells were transiently transfected with appropriate vectors and total

RNA was extracted using an RNA extraction kit (Molecular Research
Center, Inc., Cincinnati, OH, USA). cDNAs were synthesized with
8.5 ll of reaction mixture containing 5 lg of RNA, 0.5 ll of 10 mM
dNTP, 4 ll of 5· reaction buffer, 2 ll of 100 lM oligo dT, 0.5 ll of
RNAse inhibitor and 0.5 ll of M-MuLV reverse transcriptase (Amer-
sham Biosciences, Buckinghamshire, UK) at 37 �C for 1 h followed by
70 �C for 10 min. PCR amplification was performed with primer sets b-
actin-F (5 0 AGC GGG AAA TCG TGC GTG AC 3 0) and b-actin-R
(5 0 GAC TCG TCA TAC TCC TGC TTG 3 0), SARS 6-F and SARS
6-R [10] and SARS 8b-F and SARS 8b-R on the resulting cDNAs with
an initial denaturation of 5 min at 95 �C followed by 30 cycles of 94 �C
for 45 s, 55 �C for 45 s, and 72 �C for 90 s.
Fig. 1. Expression of recombinant SARS 8b-EGFP protein in Vero E6 and
were resolved by 12% SDS–PAGE. Western blots of these proteins were pro
cells transfected with pEGFP vectors. Lane 2: 150 lg of proteins from Ver
proteins from Vero E6 cells transfected with SARS 8b-EGFP vectors. Lane
Lane 5: 30 lg of proteins from CHO cells transfected with SARS 8b-EGFP
2.6. DNA synthesis analysis
Cells were plated in 24-well plates (9 · 104 cells/well) and allowed to

attach overnight. 0.8 lg of the appropriate vectors were transiently
transfected into the cells using the Lipofectamine� 2000 reagent (Invit-
rogen). Thirty-six hours posttransfection, the cells were synchronized
for 40 h in DMEM containing 0.1% FBS. Cells were then incubated
in media containing 10% FBS and 1 lCi/ml [3H]-thymidine (Amer-
sham Biosciences) for 24 h at 37 �C. [3H]-thymidine incorporation as-
say was performed as described elsewhere [10].

2.7. Statistical analysis
Data were expressed as means ± SD. Mean values were compared

by Student’s t-tests or Kruskal–Wallis one-way analysis of variance
(ANOVA) on Ranks. All the data were analyzed with the SigmaStat
2.03 software (SPSS Inc., Chicago, IL, USA). A statistical significant
difference was defined as p < 0.05.
3. Results and discussion

3.1. Expression of SARS 8b in Vero E6 and CHO cells

To express the SARS 8b-EGFP fusion proteins, Vero E6

and CHO cells were transfected with SARS 8b-pEGFP. The

expression of the EGFP and SARS 8b-EGFP proteins in both

cell types were detected by Western blotting using anti-GFP

primary antibodies (Fig. 1). The expected bands of EGFP

(�27 kDa) and SARS8b-EGFP (�36.6 kDa) were observed,

indicating the proteins were expressed in the cells. Interest-

ingly, a smaller band with size of about 30 kDa was observed

in both transfected Vero E6 and CHO cells (Fig. 1, lanes 2 and

5). This band was speculated to be a truncated form of the

SARS 8b-EGFP protein due to proteolytic cleavages, which

are common processing steps of viral proteins. For instance,

Ito et al. reported that the 3a protein of SARS-CoV might un-

dergo specific proteolytic processing [14]. Studies have also

shown that the multiple cleavages of the precore protein of

the hepatitis B virus resulted in different sizes of smaller pro-

teins which could be translocated from the cytosol to other

compartments of the cell [15]. SARS 8b may possibly employ

similar mechanism as the 3a or the precore protein and the

smaller band might be a processed form of the protein. How-

ever, further investigation is required to verify this hypothesis.

3.2. Cellular localization of SARS 8b protein

EGFP fusion proteins have been widely used for studying

localization and monitoring the expression of proteins

[16,17]. Hence, the SARS 8b-EGFP fusion protein was used

in this study for the cellular localization of SARS 8b analysis

to circumvent the problem of the lack of SARS 8b antibodies.
CHO cells. Total cell proteins were extracted and 50–150 lg of protein
bed with anti-GFP antibodies. Lane 1: 50 lg of proteins from Vero E6
o E6 cells transfected with SARS 8b-EGFP vectors. Lane 3: 50 lg of
4: 30 lg of proteins from CHO cells transfected with pEGFP vectors.
vectors.



P.Y.P. Law et al. / FEBS Letters 580 (2006) 3643–3648 3645
Results of confocal microscopy showed that the fusion SARS

8b-EGFP possessed a similar fluorescent pattern as the EGFP

control because signals for both proteins were observed in the

cytosol and nuclei in Vero E6 and CHO cells (Fig. 2A, B, D

and E).

Recently, our group has reported that SARS 6 is localized at

the endoplasmic reticulum (ER) [10]. Fig. 2C and F reconfirm

such results with SARS 6-RFP fusion protein expression. As

SARS 8b was shown to be distributed throughout the cell,

the possibility that the two viral accessory proteins interact

and redistribute in the cell was investigated. Confocal micros-

copy results showed that the coexpression of these two pro-

teins do not incur observable changes of localization relative

to individually expressed SARS 6 or SARS 8b (Fig. 3). Such

observation, however, does not rule out the possible interac-

tion of the two proteins.

3.3. Thymidine incorporation studies

In the present study, we examined the effect of SARS 6 and

SARS 8b on DNA synthesis following transient transfection of

SARS 6- and SARS 8b-encoding vectors. Studies have shown

that some viruses such as the murine leukemia virus induce

host cell proliferation for productive infection [18]. Coronavi-

rus infection in the early stages had been reported to stimulate

epithelial cells, causing cellular proliferation and squamous

metaplasia in the lungs [9]. SARS pathology of the lung has

also been associated with diffuse alveolar damage in addition

to epithelial cell proliferation [9,19]. We have previously re-

ported that SARS 6 affects cell-proliferative function by induc-

ing DNA synthesis in vitro [10]. We questioned if SARS 8b has
Fig. 2. Subcellular localization of individually expressed recombinant SARS
transfected with vectors encoding (A) EGFP, (B) SARS 8b-EGFP, and (C)
EGFP, (E) SARS 8b-EGFP, and (F) SARS 6-RFP.
a similar effect. RT-PCR was used to confirm the expression of

the mRNA of these untagged SARS-CoV genes. Fig. 4 showed

that mRNAs of untagged SARS 8b and SARS 6 proteins were

expressed when transfected alone or together into the Vero E6

cells. Similar results were obtained in CHO cells (data not

shown).

[3H]-thymidine incorporation assays were performed to mea-

sure DNA synthesis in cells expressing the untagged SARS 8b.

Results indicated that SARS 8b expression induced DNA syn-

thesis in both cell lines, with an approximate of 18% and 36%

increase of DNA synthesis in Vero E6 and CHO cells, respec-

tively (Fig. 5). [3H]-thymidine incorporation assays done on

CHO cells expressing SARS 8b-EGFP fusion protein also in-

duced DNA synthesis (data not shown). These results further

support the active expression of SARS 8b in the cells.

Thymidine incorporation assays on cotransfected cells indi-

cated that the co-existence of untagged SARS 6 and SARS 8b

proteins do not elicit additional or synergistic effects on DNA

synthesis (Fig. 6). These results raise the possibility that SARS

6 and SARS 8b induce DNA synthesis via shared pathways.

Although the ability of SARS 8b in cell proliferation may seem

counterintuitive to the apoptotic characteristics of SARS 3a,

3b and 7a [6–8], past examples have shown that accessory pro-

teins produced by a virus can be multifunctional and some-

times elicit counteracting effects. For instance, p12I, one of

the accessory proteins of the human T-cell lymphotropic virus

type 1 (HTLV-1) which localizes at the ER and cis-Golgi com-

partments, is able to promote T-lymphocytes proliferation and

enhances the effectiveness of viral transmission during the early

stage of infection [20–22]. Interestingly, HTLV-1 p13II, which
8b-EGFP and SARS 6-RFP proteins. Images shown are Vero E6 cells
SARS 6-RFP; and CHO cells transfected with vectors encoding (D)



Fig. 4. Expression of untagged SARS 6 and SARS 8b mRNAs in Vero E6 cells. RT-PCR was performed with b-actin, SARS 6, and/ or SARS 8b
primers on mRNAs extracted from control cells and cells transiently transfected with SARS 6 and/or SARS 8b vectors. PCR products for SARS 6,
SARS 8b, b-actin were 192, 255, and 481 bp, respectively.

Fig. 3. Subcellular localization of co-expressed SARS 8b-EGFP and SARS 6-RFP proteins. Localization of cotransfected SARS 8b-EGFP and
SARS 6-RFP in Vero E6 cells: (A) SARS 8b-EGFP, (B) SARS 6-RFP, (C) overlay image of (A) and (B). Localization of cotransfected SARS 8b-
EGFP and SARS 6-RFP in CHO cells: (D) SARS 8b-EGFP, (E) SARS 6-RFP, (F) overlay image of (D) and (E).
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Fig. 5. Stimulation of DNA synthesis by untagged SARS 8b expres-
sion. [3H]-thymidine incorporation assays were performed on (A) Vero
E6 cells and (B) CHO cells transiently transfected with vector control
and SARS 8b vectors. Each bar represents the means ± S.D. of three
experiments in four- to six-replicate setup. *Significant difference
between the control and SARS 8b-expressing cells detected by
Student’s t test (p < 0.05).
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Fig. 6. Stimulation of DNA synthesis by untagged SARS 6 and SARS
8b expression. [3H]-thymidine incorporation assays were performed on
(A) Vero E6 cells and (B) CHO cells transiently transfected with vector
controls, SARS 6 and/or SARS 8b, respectively. Each bar represents
the means ± S.D. of three to five experiments in four- to six-replicate
setup. *Significant differences among the controls and SARS proteins-
expressing cells detected by Kruskal–Wallis ANOVA on Ranks
(p < 0.05).
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is another accessory protein of HTLV-1 that localizes in the in-

ner membranes of mitochondria, displays apoptotic effect on

both animal model and human Jurkat T-cells [23,24]. There-

fore, it is possible that SARS 8b work in a similar fashion as

the HTLV-1 p12I, causing cell proliferation that helps in viral

transmission in the early stage of the infection. In fact, the cell

proliferative effect of SARS 8b in epithelial cell lines used in

this study is consistent to the pathology of epithelial prolifera-

tion observed in SARS patients [9].

Although viral accessory proteins are often not involved in

viral replication, their roles in viral pathogenesis should not

be overlooked. For example, the HIV accessory protein Vpr

is essential for inducing cell cycle arrest and apoptosis [25].

Studies have also shown that SARS 3a, 3b and 7a could cause

apoptosis in mammalian cells [6–8]. In this study, we examined

the effects of SARS 8b on DNA synthesis in the context of

mammalian cell lines as a prelude. The possibility that in the

context of the complete SARS-CoV genome, the function of

the SARS 8b may not be related to an increase in DNA synthe-

sis cannot not be excluded. For instance, a combination of

SARS-CoV 8b and some other accessory proteins may func-

tion to shut off host macromolecular synthesis. Further analy-

ses will be required to verify the significance of the cell

proliferative function of SARS 8b in the context of SARS-

CoV infection and the whole viral genome. Nevertheless, con-

sistent with the previous report of the presence of SARS 6 and

SARS 8b mRNA associated with SARS-CoV infection [26],

the results in this study further substantiate the compatible

co-expression of the two viral proteins in the cells. The distri-

bution of SARS 8b throughout the cell suggests its potential to
interact with multiple cellular partners as well as the products

of the SARS-CoV genome located both in the cytoplasm and

nucleus which may in turn modify cellular function, i.e.

DNA synthesis.
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