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BB-3001 Leu¨en, Belgium

Received May 13, 1997; accepted July 25, 1997

In this paper we compute the recurrence coefficients of orthogonal polynomials
using t-function techniques. It is shown that for polynomials orthogonal with
respect to positive weight functions on a noncompact interval, the recurrence
coefficient can be expressed as the change in the chemical potential which, for
sufficiently large N is the second derivative of the free energy with respect to N,
the particle number. We give three examples using this technique: Freud weights,
Erdos weights, and weak exponential weights. Q 1998 Academic Press˝

Key Words: Freud weights; recurrence relations; Erdos weights; weak exponential˝
weights; recursion coefficients; zeros; asymptotics; Hankel determinants.

* Research supported by NSF grant DMS 9625459, a visiting fellowship from the
Leverhulme Foundation, EPSRC GRrL25646, and the Belgian National Fund for Scientific
Research.

† E-mail: y.chen@ic.ac.uk.
‡ E-mail: ismail@math.usf.edu.
§ E-mail: Walter.VanAssche@wis.kuleuven.ac.be.

141

0196-8858r98 $25.00
Copyright Q 1998 by Academic Press

All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82737946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CHEN, ISMAIL, AND VAN ASSCHE142

1. INTRODUCTION

The theory of random matrices, originally conceived to provide a de-
scription of the energy levels of the excited states of heavy nuclei, has in
recent years found applications in a diverse area of theoretical physics,
such as low-dimensional string theory, quantum transport in disordered
electronic systems and quantum chaos. In the formulation of Wigner, a

Ž .probability measure P M dM, where dM is Haar measure, is constructed
� 4for an ensemble of N = N random matrices. If x ; 1 F j F N is thej

eigenvalue set of M, then

N
b w xdM s x y x dx d group ,Ł Łj k l

1Fj-kFN ls1

where, according to a theorem of Dyson, b takes on the values 1, 2, and 4,
for matrices with orthogonal, unitary, and symplectic symmetries, respec-

w xtively. Here d group is the measure of the corresponding unitary group.
The simplest choice for dM, which is invariant under a similarity transfor-
mation, is

P M A exp ytr ¨ M ,Ž . Ž .

Ž .where ¨ x is a function of x and for the purpose of this paper is taken to
be real. The proportional constant obtained by normalizing the probability
measure is

` `

Z s ??? exp yF x , . . . , x dx ??? dx ,Ž .H HN 1 n 1 N
y` y`

where,

F x , . . . , x [ yb ln x y x q ¨ x .Ž . Ž .Ý Ý1 N j k j
1Fj-kFN 1FkFN

If M is complex Hermitian, and therefore invariant under unitary transfor-
mation, then b s 2. This is the simplest case. With appropriate normaliza-

w xtion, it can be shown that 17 ,

N N

exp yF x , . . . , x dx s det K x , x dx ,Ž . Ž .Ł Ł1 N l N j k l
1Fj , kFNls1 ls1

where

Ny1

' 'K x , y [ ¨ x p x ¨ y p y ,Ž . Ž . Ž . Ž . Ž .ˆ ˆÝN j j
js0
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is the reproducing kernel of the following system of orthonormal polyno-
� Ž .4mials, p x ,n̂ nG 0

`

w x p x p x dx s d ,Ž . Ž . Ž .ˆ ˆH m n m , n
y`

with the positï e weight function,

W x [ exp ÿ x , ỳ - x - `.Ž . Ž .
w xAccording to the standard theory 17 , statistical quantities that measure

correlations between the eigenvalues can be expressed in terms of the
reproducing kernel. The best understood ensemble, also known as the

Ž . 2 Ž .Gaussian ensemble has ¨ x s x . In the Gaussian unitary case b s 2 ,
the appropriate polynomials are the normalized Hermite polynomials. If
we adopt a statistical physics point of view, Z becomes the partitionN
function of a gas of N logarithmically repelling classical charged particles

Ž .in one dimension held together by the confining potential ¨ x . Stability
Ž .requirement for the gas demands that w x must decrease sufficiently

quickly as x increases so that the partition function exists. The Hermitian
Ž . 2potential, ¨ x s x , is strongly confining in the sense that the associated

classical moment problem is determinate.
In the course of investigating quantum transport in disordered systems

we are led to a potential which diverges slowly, such that

< <lim ¨ x r x s 0.Ž .
xª`

Ž .Note that in this case, although w x decreases slowly, the partition
function exists. Of particular interest is the case where the weight function

Ž . Žw x2 .is log normal, i.e., ¨ x s O ln x . Here the classical moment problem is
indeterminate. Technically, the Jacobi matrix, constructed from the recur-
rence coefficients of the orthonormal polynomials, is unbounded and does
not have a unique self-adjoint extension. Because the reproducing kernel,

ŽK , which plays a central role in the theory, is via the Christoffel]DarbouxN
.formula expressed in terms of p , p , and the recurrence coefficients;ˆ ˆN Ny1

it is therefore of interest to have accurate information on polynomials that
are orthogonal with respect to weight functions that deviate from the
Hermite weight. These weights as previously discussed are not only physi-
cally interesting, they are also of independent interest in the theory of
approximation. We are led to investigate three classes of weight functions
and the associated recurrence coefficients.

There are three classes of weight functions that attracted a lot of
attention in theory of orthogonal polynomials on infinite intervals in the

w xlast 25 years. The first class is the class of Freud weights 13, 15, 22 ,

< < aw x ; a [ exp y x , x g ỳ , ` . 1.1Ž . Ž . Ž . Ž .F
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The other two are Erdos weights,˝
< < aw x ; a [ exp yexp x , x g ỳ , ` , a ) 0, 1.2Ž . Ž . Ž . Ž .Ž .E

w xand weak exponential weights 5 ,

< < aw x ; a [ exp yc ln x , x g 0, ` , a ) 0, c ) 0. 1.3Ž . Ž . Ž . Ž .w e

� EŽ .4 � FŽ .4 � w eŽ .4Let p x; a , p x; a , p x; a be the polynomials orthogonaln n n
with respect to the Erdos, Freud, and weak exponential weight, respec-˝

w xtively. Freud 9 conjectured the large N behavior of the largest zeros of
F Ž .p x; a and the limiting behavior of their recursion coefficients. TheseN

w xconjectures were confirmed and Lubinsky’s papers 13, 15 provide an
excellent up to date survey of the research in this area.

w x w xMore recently the Erdos weights were studied in 11 and 14 and the˝
w x w xweak exponential weights were studied in 16 and 5 , although some

special cases of them go back at least to Stieltjes’ work in 1894, see
w xChihara 6, Chap. VI, Section 2 . Many of the q-orthogonal polynomials on

infinite intervals are orthogonal with respect to weight functions which
< < Ž .behave for large x as a weak exponential weight w x; 2 . It is morew e

Ž .convenient to rewrite 1.3 as

< < aln x
w x ; a [ exp y , x g 0, ` , a ) 0, b ) 0. 1.4Ž . Ž . Ž .w e ay1ž /ab

In Section 2 we outline the connection between Hankel determinants,
the tau function, and orthogonal polynomials. We also state the method of
Coulomb fluid approximation and we indicate how to use it in connection
with asymptotics of zeros and recursion coefficients of orthogonal polyno-
mials. Sections 3, 4 and 5 apply the material of Section 2 to the cases of
Freud, Erdos, and weak exponential weights, respectively. In each case we˝
carry out the details of the steps indicated in Section 2. In Section 4 we
apply the Birkhoff]Trjitzinsky method and state the form of the strong
asymptotics of the monic polynomials orthogonal with respect to an Erdos˝
weight. The corresponding result for Freud polynomials is stated in Section

w x3 and is taken from 4 .
The following lemma will be used repeatedly in later development and is

of independent interest. It will be proved in Section 6.

LEMMA 1.1. Let
` nc zn

G z s , 1.5Ž . Ž .Ý n!ns0

with
cn

lim s 1, 1.6Ž .annª`
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for some real number a . Then

lim zya G z eyz s 1. 1.7Ž . Ž .
zªq`

Our use of Lemma 1.1 will mostly consist of replacing quotients of
gamma functions of large arguments by their polynomial limiting behavior.
The idea of replacing a quotient of gamma functions by the first few terms
in their asymptotic development can be used, for example, to determine

Ž . w Ž .xthe large z behavior of F a; c; z and gives the result 8, 6.13.3 . It can1 1
also be applied to other entire generalized hypergeometric functions of the

Ž .type F . Lemma 1.1 and some mild extensions of it provide a derivationp p
of the limiting behavior which is more elementary than the use of the
Mellin]Barnes integral representations. This will be elaborated and ex-
plored in some detail in a future work on asymptotics of generalized
hypergeometric functions of the type F with r F s.r s

2. THE t-FUNCTION AND THE COULOMB FLUID ON R

The t-function is a multiple integral representation for the solution of
Ž .the multitime Toda Lattice,

j­ Q s Q, Q , j s 1, 2, 3, . . . , 2.1Ž .Ž .t qj

where,

t s t , t , . . . ,Ž .1 2

Ž .and Q is the tridiagonal or Jacobi matrix whose elements Q are them , n
recurrence coefficients of the three term recurrence relations of a monic

� Ž .4t-dependent family of orthogonal polynomials p x, t ,n

xp x , t s p x , t q Q t p x , t q Q t p x , t . 2.2Ž . Ž . Ž . Ž . Ž . Ž . Ž .n nq1 n , n n ny1, n ny1

If A is a finite or an infinite matrix, A is the matrix which results fromq
Ž .A by replacing all the entries below the diagonal by zeros. In 2.2 x is the

� Ž .4spectral parameter and the polynomials p x, t satisfy the orthogonalityk
relation,

M
jexp yu x y t x p x , t p x , t dx s h t d , 2.3Ž . Ž . Ž . Ž . Ž .ÝH j m n n m , n

K js1
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where K ; R and M is finite. Now the t-function is given by

Z tŽ .N
t t [ , 2.4Ž . Ž .N N !

where the partition function Z isN

N N M
lZ t [ exp y u x y t xŽ . Ž .Ý Ý ÝHN j l j

NK js1 js1 ls1

N
2

= x y x dx , M - `. 2.5Ž . Ž .Ł Łj k j
1Fj-kFN js1

The quantity F is defined throughN

Z tŽ .N
exp yF [ t t s . 2.6Ž . Ž . Ž .N N N !

Ž .We usually rename the recursion coefficients in 2.2 as

b t s Q t , a t s Q t . 2.7Ž . Ž . Ž . Ž . Ž .N Ny1, N N N , N

Note that the t-function is equal to the Hankel determinant,

D t s det m ,Ž . Ž .Ny1 jqk j , ks0, 1, . . . , Ny1

where,

M
n lm t s x exp yu x y t x dxŽ . Ž . ÝHn l j

K ls1

� Ž .4are the moments for the orthogonality weight for the polynomials p x, tn
w Ž . x21, Eq. 2.2.11 on p. 27 .

Ž . Ž . Ž .From the orthogonality relation 2.3 , 2.4 , and 2.5 it follows that

t t t tŽ . Ž .Ny1 Nq1
b t s . 2.8Ž . Ž .N 2

t tŽ .N

Therefore,

b t s exp y F q F y 2 F . 2.9Ž . Ž . Ž .N Nq1 Ny1 N
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Similarly we establish

t tŽ .N
a t s ­ ln s ­ F t y F t . 2.10Ž . Ž . Ž . Ž .N t t Nq1 N1 1t tŽ .Nq1

w xWe also note that a theorem of Dyson 17 yields
Ny1

Z t s h t , 2.11Ž . Ž . Ž .ŁN j
js0

Ž . Ž . Ž . w Ž . xwhich corresponds to h t s D t rD t 21, Eq. 2.2.15 on p. 28 .n n ny1
ŽFor polynomials orthogonal with respect to even weight functions such

. Ž .as Freud weights and Erdos weights it is clear that a t s 0. Such˝ N
polynomials are called symmetric. Thus for symmetric ‘‘unevolved’’ polyno-

� 4 Ž .mials the only nonzero recursion coefficients are b . Therefore 2.9 atn
t s 0 is

b s exp y F q F y 2 F . 2.12Ž . Ž .N Nq1 Ny1 N

Therefore we have established the limiting relation,
2 4 6­ F 1 ­ F ­ FN N N

b s exp y 1 y q O . 2.13Ž .N 2 4 6ž / ž /12­ N ­ N ­ N

We shall denote the distribution function of the zeros of the unevolved
� Ž .4 Ž .polynomials p x by s x . The Coulomb fluid method asserts that thisn

function s can be obtained from the following minimization problem,

w xmin F s subject to s x dx s N , 2.14Ž . Ž .Hs
J

where,

< <w xF s s u x s x dx y s x ln x y y s y dy dx. 2.15Ž . Ž . Ž . Ž . Ž .H HH
J J J

Ž .The function s satisfies the requirement s x G 0 for x g J and is a
solution to the integral equation,

< <A s u x y 2 s y ln x y y dy , x g J .Ž . Ž .H
J

Ž .Here A known as the chemical potential a constant for x g J is the
Ž . w Ž .x Ž .Lagrange multiplier for the constraint H s x dx s N, exp yu x s w xJ

is the weight function and N is the degree of polynomials orthonormal
Ž .with respect to weight w x ,

p x p x w x dx s d , 2.16Ž . Ž . Ž . Ž .H M N M , N
K
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where K is the interval of orthogonality. It is also assumed that we seek a
Ž .solution for s that is nonnegative in J. Observe that 2.14 is an extremal

Ž .problem in logarithmic potential theory for the external field u x r2 N
Ž .and the solution s x rN is a probability density with support J for the

corresponding equilibrium measure, which describes the asymptotic distri-
w xbution of the zeros 20, Appendix IX . In this paper we shall focus our

attention on cases for which K is the real line and where the external field
w x Ž .is such that the set J is an interval J s e , e . Note that s ? , being anL R

approximation to the zero counting function, is positive over its support J.
The minimizing function s satisfies an equivalent singular integral equa-
tion,

e s yŽ .R
u9 x s 2 P dy , x g e , e . 2.17Ž . Ž . Ž .H L Rx y yeL

w xThe Coulomb fluid method was developed by Dyson 7 for orthogonal
polynomials on the unit circle and has proved to be very accurate and

w xeffective in other problems concerning random matrices 2, 3 . In was used
w xin 4, 5 to obtain asymptotics of the extreme zeros of orthogonal polyno-

mials supported on infinite intervals. It may be appropriate here to quote
w Ž .xDyson’s description of the Coulomb fluid method, 7, p. 158 p. 382

These assumptions . . . can be summarized in the single statement that for large
N the Coulomb gas obeys the laws of classical thermodynamics. The assump-
tion . . . means that the free energy density at any point being a function of the
local density and temperature alone. To a physicist these assumptions are so
hallowed by custom that they hardly require justification . . .

Ž .In the examples in the subsequent sections J will always be yb, b or
Ž .0, b , because the zeros of the polynomials orthogonal with respect to

Ž . Ž .w x; a or w x; a are symmetrically distributed around the originF E
Ž .while the zeros of the polynomials orthogonal with respect to w x; aw e

Ž .are in 0, ` . The edge parameter b is determined by the normalization
condition,

s x dx s N. 2.18Ž . Ž .H
J

Ž .The general solution of the singular integral equation 2.17 is given by

e1 e y x u9 y y y eŽ .RR L
s x s s x , b s P dyŽ . Ž . H2( (x y e y y x e y y2p eL RL

C
q , 2.19Ž .

x y e e y x'Ž . Ž .L R
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Ž .for x g e , e where C does not depend on x but may depend on b. IfL R
Ž . Ž .s x vanishes at x s b then C s 0. In 2.19 P stands for Principal value.

Ž . Ž .The function s x given by 2.19 is the potential theoretic approximation
of

Ny1
2

s x [ w x p x ,Ž . Ž . Ž .ÝN n
ns0

and is expected to be valid for sufficiently large N. This technique was
w xdeveloped by Dyson 7 on certain random matrix ensembles in the 1960s

w xand has recently found application in other matrix ensembles 17 . The
extremal problem of logarithmic potential theory and its relation to
orthogonal polynomials was explored by Rakhmanov, Gonchar, Mhaskar

Ž w x w x.and Saff see Lubinsky’s surveys 13 and 15 . In this context the edge
parameter b is known in the theory of orthogonal polynomials as the
Mhaskar]Rakhmanov]Saff number. It is worth noting that this number
appeared earlier in the linear theory of elasticity. It determines the points

w xof contact between the elastic material and a rigid stamp 18 .
Central to our approach are the concepts of chemical potential, interac-

tion energy, and free energy. Recall the chemical potential A is

< <A s u x y 2 s y ln x y y dy , 2.20Ž . Ž . Ž .H
J

while the interaction energy F isint

1F s s x , b u x dx. 2.21Ž . Ž . Ž .Hint 2
J

The chemical potential A is a Lagrange multiplier for the extremal
Ž . Ž .problem 2.14 and 2.15 , hence is independent of x for x g J but A may

Ž .depend on b. Also the free energy F s is now F ,N

< <F s u x s x , b dx y s x , b ln x y y s y , b dy dx. 2.22Ž . Ž . Ž . Ž . Ž .H HHN
J J J

Observe that s depends on x and b and its domain is the sector

S s x , b : x g RR, b g RR, x g yb , b , b ) 0 , 2.23� 4Ž . Ž . Ž .
in the upper half plane.

In the potential theory framework the solution srN of the extremal
Ž . w xproblem 2.14 satisfies 20, Appendix IX ,

s u xŽ .
U x ; s y q F , quasi everywhere on J ,sž /N 2 N

2.24Ž .
s u xŽ .

U x ; F y q F , x f J ,sž /N 2 N
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Ž . < <y1 Ž Ž . .where U x; srN s H log x y t s t rN dt is the logarithmic poten-J
Žtial of srN and F is a constant Robin’s constant for the external fields

Ž . .u x r2 N . Quasi everywhere means that the property holds everywhere
Ž . Ž .except for a set of capacity zero. Observe that 2.24 gives 2U x; s q

Ž .u x s 2 NF so that the chemical potential A is equal to 2 NF , which iss s

Ž .indeed a constant quasi everywhere for x g J.

Ž . Ž .THEOREM 2.1. Assume that J s yb, b and s is such that ­s x, b r­ b
< < Ž .exists in S, and is such that ln x y y ­s y, b r­ b as a function of y is

Ž . Ž .integrable on yb, b for e¨ery fixed x g yb, b . Furthermore assume
Ž .s "b, b s 0. Then

dA b
s y2 ln , 2.25Ž .

dN 2

and

2 2b d ln b
b s 1 q O , 2.26Ž .N 2ž /4 dN

as N ª ` pro¨ided that

d2 ln b
s o 1 , 2.27Ž . Ž .2dN

Ž . Ž .where N in 2.18 and 2.19 is now treated as a continuous ¨ariable.

Ž . Ž .Proof. Because u x does not depend on b we differentiate 2.17 with
respect to b and obtain

­s y , b dyŽ .b
0 s P , x g yb , b ,Ž .H

­ b x y yyb

whose solution is

­s y , b c bŽ . Ž .
s , 2.28Ž .

2 2­ b 'b y y

Ž . Ž .where c b may depend on b but not on x. Now 2.20 gives

< <dA ln x y yb
s y2c b dy ,Ž .H 2 2db yb 'b y y
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and by letting x ª 0q we get

'dA ln b yŽ .1 y1r2s y2c b y dyŽ .Hdb '1 y y0

­ 1 y1r2ns y2c b p ln b q y 1 y y dyŽ . Ž .H
­n ns1r20

1s yp c b 2 ln b q c y c 1 ,Ž . Ž .Ž .2

w Ž .xafter the evaluation of a beta integral. From 8, 1.7.29 and the fact that
Ž .c 1 s yg we find

1c y c 1 s y2 ln 2. 2.29Ž . Ž .Ž .2

Thus
dA b2

s yp c b ln . 2.30Ž . Ž .
db 4

Ž .On the other hand differentiating 2.18 with respect to b gives

dN ­s x , bŽ .b
s dxHdb ­ byb

dxb
s c b ,Ž .H 2 2'yb b y x

Ž .after using 2.28 . Thus,
dN

s p c b . 2.31Ž . Ž .
db

Ž . Ž .This result combined with 2.30 establishes 2.25 .
Ž . Ž .To prove 2.26 we differentiate 2.22 with respect to b and get

dF ­s x , bŽ .b bN
< <s u x y 2 s y , b ln x y y dy dxŽ . Ž .H Hdb ­ byb yb

dxb b
< <s c b u x y 2 s y , b ln x y y dyŽ . Ž . Ž .H H 2 2'yb yb b y x

dx dNb
s c b A s p c b A s A .Ž . Ž .H 2 2' dbyb b y x

Thus,
dFN s A , 2.32Ž .
dN

Ž . Ž .and 2.26 follows from 2.25 .
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Ž . Ž .From 2.20 , 2.28 and the fact that A does not depend on x, and in
Ž .view of 2.1 we get

b1 1 1F s NA q F s NA q s x u x dx. 2.33Ž . Ž . Ž .HN int2 2 2
yb

3. FREUD WEIGHTS

Ž .In the case of the Freud weight 1.1 , a standard integration gives the
w x Ž .density 4 s x, a ,

1yaa 2 G a a 3 xŽ .
ay2 2 2's x , a s b b y x F 1 y , 1; ; 1 y .Ž . 2 12 2ž /p 2 2 bG ar2Ž .

3.1Ž .

b Ž .The normalization condition, H s x, a dx s N, gives the edgeyb
parameter

1ra2 ay1G ar2 2 NŽ .
b s . 3.2Ž .

G aŽ .

We now proceed to compute the chemical potential A and the interac-
w Ž .xtion energy F . We need the integral representation 19, 4.1.3 ,int

G eŽ .
F a, b , c ; d , e ; z sŽ .3 2 G c G e y cŽ . Ž .

1 eycy1cy1= t 1 y t F a, b; d; zt dt. 3.3Ž . Ž . Ž .H 2 1
0

Ž . Ž . Ž .From 2.19 , 2.20 , and 3.1 we obtain

2ya2 a G a t a 3Ž . 1
aA s y b F 1 y , 1; ; t(H 2 12 ž /p 1 y t 2 20G ar2Ž .

1= ln b q ln 1 y t dt. 3.4Ž . Ž .2

Ž .On the other hand 3.3 and Gauss’s theorem,

G c G c y a y bŽ . Ž .
F a, b; c ; 1 s , R c y a y b ) 0, 3.5Ž . Ž . Ž .2 1 G c y a G c y bŽ . Ž .
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w Ž .x8, 2.1.14 imply the evaluation,

t a 31
F 1 y , 1; ; t dt(H 2 1 ž /1 y t 2 20

G 3r2 G 1r2 a 3 3Ž . Ž .
s F 1 y , 1, ; , 2; 13 2 ž /G 2 2 2 2Ž .

p
s . 3.6Ž .

a

Ž . w xThe power series defining the F in 3.4 converges for all t g 0, 1 if and2 1
w Ž .xonly if a ) 1. If a F 1 we apply the Kummer transformation 8, 2.1.23 ,

cyaybF a, b; c ; z s 1 y z F c y a, c y b; c ; z , 3.7Ž . Ž . Ž . Ž .2 1 2 1

Ž .and conclude that the value of the integral in 3.6 is indeed pra . In order
Ž .to evaluate the integral in 3.4 we need to consider the integral,

a 31 ny13r2y1I n [ t 1 y t F 1 y , 1; ; t dt. 3.8Ž . Ž . Ž .H 2 1 ž /2 20

Ž . Ž .Using 3.3 we see that I n is a multiple of a F with a numerator3 2
parameter equal to a denominator parameter, hence reduces to a F . The2 1
result is

G 3r2 G n a 3Ž . Ž .
I n s F 1 y , 1; q n ; 1Ž . 2 1 ž /G n q 3r2 2 2Ž .

G 3r2 G nŽ . Ž .
s , 3.9Ž .

n y 1r2 q ar2 G n q 1r2Ž . Ž .

Ž .where in the last step we used the Gauss summation theorem 3.5 . From
this calculation we find

­ I n 2pŽ .
s y 1 q a ln 2 . 3.10Ž . Ž .2­n ans1r2

Ž . Ž . Ž .Combining 3.4 , 3.6 , and 3.10 we establish

2ya2 G a b 1Ž .
aA s y b ln y . 3.11Ž .2 2 aG ar2Ž .
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Ž .We next evaluate the integral 2.21 which gives the interaction energy.
Ž . Ž .The relationships 2.21 and 3.1 imply

2yaa G aŽ .
2 aF s bint 2p G ar2Ž .

a 31 Ž .aq1 r2y13r2y1= t 1 y t F 1 y , 1; ; t dtŽ .H 2 1 ž /2 20

2 ay3aN 2 G2 ar2 G a q 1 r2 a 3 3 aŽ . Ž .Ž .
s F 1 y , 1, ; , 2 q ; 1 ,3 2 ž /' G a G 2 q ar2 2 2 2 2Ž . Ž .p

Ž .where we used 3.3 . Therefore,

N 2

F s . 3.12Ž .int 2a

Ž . Ž . Ž .We again used the Gauss summation theorem 3.5 . Using 2.22 , 3.10 ,
Ž .and 3.11 we obtain

22 2N N N G ar2Ž .
F s y ln . 3.13Ž .N 2a a 2G a eŽ .

Thus,

22­ 2 G ar2Ž .
F s y ln N . 3.14Ž .N2 a 2G a­ N Ž .

Ž . Ž .Therefore 2.13 and 3.14 yield

2ra2N G ar2 2Ž . y2b s 1 q N 1 q o 1 . 3.15Ž . Ž .Ž .N 2G a aŽ .

w xThe Birkhoff]Trjitzinsky 1, 23 method can be used to determine the
F Ž .strong asymptotics of p x from the knowledge of the asymptotics of b sN N

Ž . w x Ž .in 3.15 . This was carried out in 4 assuming 3.15 . The result for a G 1
is

pF x pŽ .N N 1y1ras O c cos c xN q N q f x q e , 3.16Ž . Ž .1 2 N1ra ž /ž /2N !Ž .
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as N ª ` and x fixed, where,

1ra 1ra2G ar2 1 2G aŽ . Ž .
c s , c s , 3.17Ž .1 2 22G a 2 1 y a G ar2Ž . Ž . Ž .

Ž 1y1r a.and f is a phase factor independent of N, e s o N and the ON
term contains a function of x.

˝4. ERDOS WEIGHTS

We follow the plan of Section 3 and we evaluate approximately the
integrals giving the chemical potential and the internal and the free energy

Ž .functionals. The weight function now is given by 1.2 . Set

's tŽ .
D t [ . 4.1Ž . Ž .'2 t

Ž .In this case s of 2.18 is

2a b y s t dt2b ar2 a r2y1w xD s s P exp t tŽ . ( H (2 2s t y s4p b y t0

2 `a b y s 1 dt2 y1r2b Ža Žkq1.y1.r2 2s P t b y tŽ .( Ý H2 s k! t y s4p 0ks0

2 `a b y s y1 1 a k q 1 q 1Ž . Ž .
a Žkq1.y2s b B y ,( Ý2 ž /s k! 2 24p ks0

a k q 1 3 sŽ .
= F 1 y , 1; ; 1 y . 4.2Ž .2 1 2ž /2 2 b

Therefore s is given by

ay2 a k`a b G a k q 1 q 1 r2 bŽ .Ž .
2 2's x s b y xŽ . Ý3r2 G a k q 1 r2 k!p Ž .Ž .ks0

a k q 1 3 x 2Ž .
= F 1 y , 1; ; 1 y . 4.3Ž .2 1 2ž /2 2 b

The F in the preceding representation in the hypergeometric series2 1
together with its analytic continuations. For example, the direct power
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series is valid near x s "b. Near x s 0 the series converges if a ) 1. If
this latter condition is not satisfied we must use an appropriate analytic
continuation of the F function. Thus as x ª b we see that2 1

's x ; G b b y x , 4.4Ž . Ž . Ž .
and

ay3r2 `'a 2 b G a k q 1 q 1 r2Ž .Ž .
a kG b s b . 4.5Ž . Ž .Ý3r2 k! G a k q 1 r2p Ž .Ž .ks0

Recall that
k cyaG k q aŽ .

lim s 1, 4.6Ž .
G k q ckª` Ž .

w Ž .x Ž .8, 1.1.4 . Because we are interested in the behavior of G b for large b
Ž . Ž Ž . .1r2we can replace the quotient of gamma functions in 4.5 by a k q 1 r2

Ž .then through the use of Lemma 1.1 we can approximate G b as
1r2ay3r2 `'a 2 b k q 1 aŽ .

a k yaG b s b 1 q O b . 4.7Ž . Ž . Ž .Ý (3r2 k! 2p ks0

Thus by Lemma 1.1,

a 3r2 bŽ3Žay1.r2.
a yaG b s exp b 1 q O b . 4.8Ž . Ž . Ž . Ž .3r2p

We now proceed with the determination of the largest zero b of an
b Ž .Erdos polynomial through the side condition H s x dx s N. Therefore,˝ yb

a a n`2a b G a n q 1 q 1 r2 bŽ .Ž .b
s x dx sŽ . ÝH 3r2 G a n q 1 r2 n!p Ž .yb ns0

a n q 1 3Ž .1 1r22 2= 1 y x F 1 y , 1; ; 1 y x dxŽ .H 2 1 ž /2 20

a a n`a b G a n q 1 q 1 r2 bŽ .Ž .
s Ý3r2 G a n q 1 r2 n!p Ž .ns0

a n q 1 3Ž .1 y1r21r2= y 1 y y F 1 y , 1; ; y dyŽ .H 2 1 ž /2 20

a a n`a b G a n q 1 q 1 r2 bŽ .Ž .
s Ý' G a n q 1 r2 n!Ž .p ns0

a n q 1 3 3Ž .
= F 1 y , 1, ; , 2; 1 . 4.9Ž .3 2 ž /2 2 2
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The last F is a F of argument 1 and can be summed by Gauss’s3 2 2 1
Ž .theorem 3.5 . The result is

a a n`a b G a n q 1 q 1 r2 bŽ .Ž .b
N s s x dx s .Ž . ÝH ' G 1 q a n q 1 r2 n!Ž .2 pyb ns0

Here again we take advantage of

y1r2
G a n q 1 q 1 r2 a n q 1 1Ž . Ž .Ž .

s 1 q O ,ž /ž /G 1 q a n q 1 r2 2 nŽ .

and apply Lemma 1.1. This leads to the asymptotic transcendental
equation,

aa b
a yaN s exp b 1 q O b . 4.10Ž . Ž . Ž .( 2p

The value of b given by the Coulomb fluid method seems to be an upper
bound for the largest zero. To find a better approximation to the largest
zero we set

b
c s s x dx , 4.11Ž . Ž .H

a

Ž xfor some c, c g 0, 1 , and we determine a asymptotically. In the earlier
w xpapers of Chen and Ismail, 4, 5 , c was chosen as 1, but this choice may

over compensate and gives a smaller a then need be, so we just assume c
Ž . Ž . Ž .is a constant in 0, 1 . From 4.4 and 4.11 we get

2r33c
yaa s b y 1 q O b , c g 0, 1 ,Ž . Ž .ž /2G bŽ .

which after some simplification becomes

2r31 3p c 1
a s b 1 y 1 q O . 4.12Ž .ž / ž /2 aN ln N ln N

w xThis is the form conjectured by Lubinsky 14, p. 14 , which was subse-
w xquently proved in 12, Corollary 1.3 on p. 205 . Observe that the latter

ŽŽ .y2r3.reference gives the correct order O N log N whereas our result in
addition gives the correct sign in the second order term. We now summa-
rize our findings so far in the form of a theorem.
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E Ž . EŽ .THEOREM 4.1. The largest zero X a of an Erdos polynomial p x; a˝N, N N
satisfies the limiting relationship,

2r31 3p c 1
EX a s b 1 y 1 q O , 4.13Ž . Ž .N , N N ž / ž /2 aN ln N ln N

where b is the solution to the transcendental equation,N

aa bN aN s exp b , 4.14Ž .Ž .( N2p

Ž .and c g 0, 1 .

Ž .2r3 Ž . y1r3We feel that 3p c r2 in 4.13 is very likely to be 6 i , i being the1 1
smallest positive zero of the Airy function. This amounts to taking c s
0.758671.

It is worth noting that

2p 1 2p
ab s ln N y ln ln N . 4.15Ž .( (N ž / ž /a ln N 2 a ln N

To compute the interaction energy we proceed as follows,
1 b

F s s x u x dxŽ . Ž .Hint 2 yb

b
s s x u x dxŽ . Ž .H

0

ay2 2 a k`a b b y x G a k q 1 q 1 r2 b2 Ž .Ž .bs ( ÝH3r2 x G a k q 1 r2 k!2p Ž .Ž .0 ks0

a k q 1 3 xŽ .
ar2= F 1 y , 1; ; 1 y exp x dxŽ .2 1 2ž /2 2 b

a a k`a b x G a k q 1 q 1 r2 bŽ .Ž .1
s ÝH (3r2 1 y x G a k q 1 r2 k!2p Ž .Ž .0 j , ks0

b ja a k q 1 3Ž . jar2
= F 1 y , 1; ; x 1 y x dxŽ .2 1 ž /j! 2 2

a a Ž jqk .`b G a k q 1 q 1 r2 bŽ .Ž .
s Ý2p G a k q 1 r2 k! j!Ž .Ž .j, ks0

G a j q 1 r2Ž .Ž .
= . 4.16Ž .

G 1 q a jr2 j q k q 1Ž . Ž .
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Ž . ` yyŽ jqkq1.At this stage we write 1r j q k q 1 as H e dy and we obtain0

a a Ž jqk .``b G a k q 1 q 1 r2 bŽ .Ž .
F s ÝHint 2p G a k q 1 r2 k! j!Ž .Ž .0 j , ks0

G a j q 1 r2Ž .Ž . yy Ž jqk . yy= e e dy.
G 1 q a jr2Ž .

The double sum now factors as a product of two single sums each of which
can be estimated for large ba through Lemma 1.1. We can then inter-
change the limit and the integral and we arrive at the approximation,

a
`b

a yy yaF s exp yy q 2b e dy 1 q O b . 4.17Ž . Ž . Ž .Hint 2p 0

This establishes the following result.

Ž .THEOREM 4.2. The interaction energy for the Erdos weight w x; a is˝ E
gï en by

1
a yaF s exp 2b 1 q O b . 4.18Ž . Ž . Ž .int 4p

Ž . Ž .The next step is to compute the chemical potential A. From 2.19 , 4.3
Ž .and the fact that A is independent of x, so we may set x s 0 in 2.20 , it

follows that
b 1

A s 1 y 2 ln b s x dx y 4b s yb ln y dyŽ . Ž .H H
yb 0

1
s 1 y 2 N ln b y 4b s yb ln y dyŽ .H

0

aa b ­ 1 sy1r21r2s 1 y 2 N ln b y y 1 y yŽ .H3r2 ­ sp 0

` G a k q 1 q 1 r2Ž .Ž .
= Ý

G a k q 1 r2Ž .Ž .ks0

a kb a k q 1 3Ž .
= F 1 y , 1; ; y dy2 1 ž /k! 2 2

ss0

a a k`2b G a k q 1 q 1 r2 bŽ .Ž .
s 1 y 2 N ln b q Ý' G a k q 1 r2 k!Ž .Ž .a p ks0

1
ya= 1 q a k q 1 ln 2 1 q O b .Ž . Ž .Ž .2k q 1Ž .
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The foregoing steps parallel the corresponding calculations of A in
Žw Ž . x . Ž Ž . .Section 3. Now replace G a k q 1 q 1 r2 rG a k q 1 r2 by

'a k q 1 r2 and apply Lemma 1.1. The result isŽ .

2a
ar2 a yaA s 1 y 2 N ln b q ln 2 b exp b 1 q O b . 4.19Ž . Ž . Ž . Ž .(

p

In summary we were led to the following theorem.

Ž .THEOREM 4.3. The chemical potential of an Erdos weight w x; a is˝ E
gï en by

yaA s 1 y 2 N ln b q 2 ln 2 N 1 q O b . 4.20Ž . Ž . Ž .
a Ž .Proof. Use the relation of b and N in 4.10 to write the chemical

Ž . Ž .potential in 4.19 in the form 4.20 .

Now that we established the asymptotics of both the interaction energy
and the chemical potential we proceed with the computation of the

Ž .recursion coefficients. The total free energy F as given by 2.22 isN

2N N 1
2 2 yaF s y N ln b q y q N ln 2 1 q O b . 4.21Ž . Ž .N a2 2a b 4p

THEOREM 4.4. The recursion coefficients in the monic recurrence relation
are asymptotically gï en by

b2
N yab s 1 q O b , 4.22Ž .Ž .N N4

Ž .where b is as in 4.14 .N

Ž .Proof. Apply 2.13 and observe that

­ ba 2ba

s .
a­ N N 1 q 2bŽ .

One can easily verify that the contribution of the terms containing the
Ž ya . 2 2term O b to ­ F r­ N is smaller than the main terms. Indeed,N

­ 2F 2N a yas 2 ln 2 y ln b q O b .Ž .2 a­ N

Furthermore,

­ 4FN yas O b .Ž .4­ N

Ž .This establishes 4.22 .
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w xWe next apply the Birkhoff]Trjitzinsky method, 23 and determine the
EŽ .strong asymptotics of p x for large N and fixed x. In order to do so weN

first apply the Birkhoff]Trjitzinsky theory to solutions of

xy s y q b y , 4.23Ž .n nq1 n n

where,

2 ln ln n2ra1b s ln n 1 y q ??? . 4.24Ž . Ž .n 4 a ln n

Ž .We shall restrict ourselves to the case a ) 1. We try a solution of 4.23 of
the type,

N dyN gy s 2 "i exp lN ln ln N q mN ln N . 4.25Ž . Ž . Ž .Ž .N

yN Ž .N Ž .The presence of the factors 2 and "i in 4.25 is more or less clear,
Ž . Ž .so we proceed and substitute 4.25 into 4.23 . After some tedious calcula-

tions we find that

l N q 1r2 dŽ . dgy12 x s "i exp l ln ln N q q mN ln N g qŽ . Ž . ž /N ln N ln N

2 ln ln N 2 l N y 1r2Ž .
q .i 1 y exp y l ln ln N yŽ . ž /a ln N a N ln N

ddgy1ymN ln N g q .Ž . ž /ln N

This suggests that we choose

1
l s . 4.26Ž .

a

The result is

1ra2 x s "i ln NŽ . Ž .
1 1ra ddgy1= exp q q mN ln N g qŽ . ž /a ln N 2 N ln N ln N

2 ln ln N1ra
. i ln N 1 yŽ .

a ln N

1 1ra ddgy1= exp y q y mN ln N g q .Ž . ž /a ln N 2 N ln N ln N
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This calculation points to the choices,

1
g s 1, d s y , for a ) 1. 4.27Ž .

a

Hence,

m1ra y1ra2 x s "i ln N 1 y ln N q ???Ž . Ž .
a

m1ra y1ra
. i ln N 1 q ln N q ???Ž . Ž .

a

2 im
s . .

a

Therefore,

m s "ia x , 4.28Ž .

Ž .and we proved that for x / 0 the difference equation 4.23 has two linear
Ž .independent solutions of the form 4.25 with l, m, and; g and d given by

Ž . Ž . Ž .4.26 , 4.28 , and 4.27 , respectively. This proves that for x real the monic
polynomials orthogonal with respect to an Erdos weight satisfy˝

p a xNNrap x ; a s O ln N cos N q q f x q e ,Ž . Ž . Ž .N N1raž /ž /2 ln NŽ .
4.29Ž .

Ž . Ž Ž .y1rawith a possibly x-dependent phase f x and e s o N ln N .N

5. WEAK EXPONENTIAL WEIGHTS

In this section we shall only consider the cases

a s m s positive even integers. 5.1Ž .

w xIn these cases s is given by 5 ,

my 11 b y x ln y dyŽ .b
s x s s x ; m s P . 5.2Ž . Ž . Ž .( H2 my1 x y y x2p b 'y b y y0 Ž .

� Ž . 4The sequence s x; m : m s 1, 2, . . . can now be formally defined for all
Ž .positive integers m by the right-hand side of 5.2 and this would make
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Ž . w xs x; 1 s 0. Chen and Ismail 5 established the generating function,
` my 1 my1b t

s x ; mŽ .Ý m y 1 !Ž .ms1

ty1b G t q 1r2 b y x 3 xŽ .
s F 1 y t , 1; ; 1 y . 5.3Ž .( 2 13r2 ž /G t q 1 x 2 bp Ž .

Because we will use a generating function technique we will denote the
Ž .corresponding chemical potential of 2.20 by A , that ism

m
ln xŽ . b

< <A s y 2 s y ; m ln x y y dy. 5.4Ž . Ž .Hm my1mb 0

Consider the generating function,
` my 1 my1b t

A t s A . 5.5Ž . Ž .Ý n m y 1 !Ž .ms1

Ž . Ž . Ž .Now, 5.3 , 5.5 , and the Kummer transformation 3.7 give for t ) 0 the
relationship,

x t y 1 bt tG t q 1r2Ž . 1 1r2ty1 < <A t s y 2 y 1 y y ln x y byŽ . Ž .H3r2t G t q 1p Ž . 0

1 1 3= F t q , ; ; 1 y y dy. 5.6Ž .Ž .2 1 2 2 2

Ž .The power series expansion of the F on the right-hand side of 5.62 1
w x Ž .converges for all y g 0, 1 for t g 0, 1r2 , which we shall now assume.
Ž . qBecause A , hence A t does not depend on x and we let x tend to 0 inm

Ž .5.6 . After a change of variables we obtain

1 bt tG t q 1r2Ž .
A t s y y 2Ž . 3r2t G t q 1p Ž .

1 ty1 1r2= ln b q ln 1 y y 1 y y yŽ . Ž .H
0

1 1 3= F t q , ; ; y dyŽ .2 1 2 2 2

1 bt tG t q 1r2Ž .
s y y 2 3r2t G t q 1p Ž .

G 3r2 G tŽ . Ž .
1 1 3= ln b F t q , ; t q ; 1Ž .2 1 2 2 2G t q 3r2Ž .

­ G 3r2 G t q nŽ . Ž .
1 1 3q F t q , ; t q n q ; 1 ,Ž .2 1 2 2 2ž /­n G t q n q 3r2Ž . ns0
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Ž .where we used the integral representation 3.3 . Now Gauss’s theorem
Ž .3.5 and the fact,

1 ­ G n q 1r2Ž .
1y2 y1s yt q c y c 1 t ,Ž .Ž .2G 1r2 ­n t q n G n q 1Ž . Ž . Ž . ns0

Ž .enables us to express A t in the form,

t1 b G t q 1r2Ž .
1 y1A t s y y ln b q c y c 1 y t . 5.7Ž . Ž . Ž .Ž .21r2t G t q 1p Ž .

Ž .From the analytic structure of the generating function 5.7 it is clear that
� 4dA rdb exists and the sequence dA rdb has the generating functionm m

dArdb. It is straight forward to derive

` my 1 my1 ty1dA b t tG t q 1r2 bŽ .m 1s y ln b q c y c 1 .Ž .Ž .Ý 2'db m y 1 ! G t q 1Ž . Ž . pms1

5.8Ž .

Ž .On the other hand the normalizing condition in 2.14 is

my 11 ln btŽ .b
N s dt , 5.9Ž .Hm my12pb 't 1 y t0 Ž .

� 4which gives the generating function for the sequence N ,m

` my 1 my1b t
N t s NŽ . Ý m m y 1 !Ž .ms1

bt G t q 1r2Ž .
s . 5.10Ž .' G t q 1Ž .2 p

Therefore,

` my 1 my1 ty1b t dN tb G t q 1r2Ž .m s . 5.11Ž .Ý 'm y 1 ! db G t q 1Ž . Ž .2 pms1
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Ž . Ž .Now 5.8 and 5.11 give

` my 1 my1 ` my 1 my1dA b t b t dNm m1sy2 ln bqc yc 1 .Ž .Ž .Ý Ý2db m y 1 ! m y 1 ! dbŽ . Ž .ms1 ms1

5.12Ž .

my 1 Ž . Ž .Equating coefficients of t in 5.12 and making use of 2.29 lead to

dA dA b2
m my s y s ln . 5.13Ž .

dN dN 16m

Thus,

Ž .2r my12 my1b exp NbŽ .
b ; ; . 5.14Ž .N 4 16

Ž .It is worth noting that from 5.10 it follows that

1 1my 11ymN s b ln b 1 q q o . 5.15Ž . Ž .ž /ln b ln b

6. PROOF OF LEMMA 1.1

We now give a proof of Lemma 1.1.

Proof. First take a F 0, in which case we put a s yb. Observe that
Ž . Ž . yb aG n q 1 rG n q b q 1 f n so that this ratio behaves like n . For this

ratio we have

` nG n q 1 zŽ .
G z sŽ . Ý1 G n q b q 1 n!Ž .ns0

` n1 z
s B n q 1, bŽ .Ý

G b n!Ž . ns0

` n1 z1 by1ns t 1 y t dtŽ .Ý H
G b n!Ž . 0ns0

1 1 by1t zs e 1 y t dt ,Ž .H
G bŽ . 0
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where the interchanging of sum and integral is justified because all the
terms are positive for z ) 0. Taking tz s x gives

z1 by1yb xG z s z e z y x dx ,Ž . Ž .H1 G bŽ . 0

and another substitution z y x s y gives

z1
yb z yy by1G z s z e e y dy ,Ž . H1 G bŽ . 0

from which obviously follows that

lim z bG z eyz s 1.Ž .1
zªq`

From this we can prove the result for a F 0 and any sequence c satisfyingn
c rna ª 1, because thenn

c G n q b q 1Ž .nUc s ª 1, as n ª `,n G n q 1Ž .
and

` nG n q 1 zŽ .
UG z s c .Ž . Ý n G n q b q 1 n!Ž .ns0

Ž . Ž . UThe ratio G z rG z is a transformation of the sequence c of the1 n
` U Ž . Ž . n w Ž . Ž .xform Ý c a z with a z s z r G n q b q 1 G z , for whichns0 n n n 1
Ž . Ž . ` Ž .lim a z s 0 and a z ) 0 for every integer n, and Ý a z s 1.z ª` n n ns0 n

Hence by the Toeplitz]Silverman theorem for regular transformations
w x10 ,

G zŽ .1
lim s 1,

G zzªq` Ž .1

Ž .which combined with the asymptotic behavior of G z obtained earlier1
gives

lim zya G z eyz s 1.Ž .
zªq`

Now consider the case when a ) 0. There exists an integer m such that
m - a F m q 1, which gives a y m y 1 F 0. Write

m n ` nz z
mq 1G z s c q c s P z q z G* z .Ž . Ž . Ž .Ý Ýn n mn! n!ns0 nsmq1
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Ž .Here G* z is a series of the form considered in the lemma for the
sequence

cnqmq1Uc s .n n q m q 1 ??? n q 1Ž . Ž .

Clearly cUrnaymy1 ª 1 as n ª `, and because a y m y 1 F 0 wen
can use the result we already proved to conclude that

mq 1ya Ž . yz Ž .lim z G* z e s 1. Finally, because P z is a polynomial,z ªq` m
this gives

lim zya G z eyz s lim zya P z eyz q lim z mq 1ya G* z eyzŽ . Ž . Ž .m
zªq` zªq` zªq`

s 1,

which is what we wanted to prove.
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