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a b s t r a c t

This short note is devoted to the study of the spatial decay estimates for the solutions of
the generalized Tricomi equation. The relevance of this kind of study is that we obtain the
decay for an equation which can be elliptic, parabolic and hyperbolic depending on the
different points of the region. This equation is relevant in the study of fluids as well as for
the anti-plane deformations of prestressed functionally graded linear elastic solids.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The spatial evolution with distance from the end for solutions of equations is relevant to the study of Saint-Venant’s
principle in continuum mechanics. In fact, the study of edge effects for several thermomechanical situations has deserved
much attention in the last three decades. Several decay estimates for elliptic [1], parabolic [2,3], and hyperbolic equations
[4,5] and combinations of them [6,7] have been obtained. In these contributions the authors obtain growth/decay estimates
for the solutions. However, there are few contributions in the case that the character of the equation changeswith the points
of the region [8]. Our contribution in this short note is addressed in this direction. That is, we will obtain spatial estimates
in case that the character of the equation depends on the point. One known relevant example of this kind of equation is the
Tricomi equation

yuxx + uyy = 0. (1.1)

In this paper we will study the spatial behavior of solutions of the generalized Tricomi equation in a semi-infinite strip R
with cross-section [b1, b2], where b1 < 0 < b2. The finite end segment of the strip is contained in the line x = 0. We note
that when y is positive Eq. (1.1) is elliptic and hyperbolic when y < 0. The x-axis is usually referred to as the parabolic line.

Tricomi’s equation plays a relevant role in the study of transonic flow. It is a mixture of hyperbolic and elliptic equations
in the regions where the sign of y changes. As the simplest equation satisfying this property, it proposes an interesting
mathematical example of the transition from subsonic to supersonic speeds in aerodynamics. The mysteries of transonic
flow lead to an particular situation in which the formulation of correct problems for this equation furnishes the best guide
to an understanding of what should be expected of the corresponding physical phenomena. As the same time Tricomi’s
equation can be obtained in the study of anti-plane shear deformations for prestressed non-homogeneous neither isotropic
elastic solids (see [9] for a recent contribution on the spatial stability of prestressed elastic solids). It is worth recalling that
functionally graded materials are also an aspect under intensive investigation.
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en Derivadas Parciales en Termomecánica. Teoría y Aplicaciones’’ (MTM2009-08150) of the Spanish Ministry of Science and Technology. I also thank the
referees their useful comments.
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In the next section we recall the equations with which we will work. In Section 3 we obtain a spatial decay estimate for
the solutions of the generalized Tricomi equation. Further comments concerning nonexistence for a nonlinear version of the
Tricomi equation are proposed in the last section.

2. Basic equations

We propose a problem for the generalized Tricomi differential equation

K(y)uxx + uyy = 0, (2.1)

in the semi-infinite strip R, with a coefficient K(y)which can be positive for several values of y and negative or null for other
values. We adjoin to this equation the boundary conditions

u(x, b1) = u(x, b2) = 0, x ≥ 0, (2.2)
u(0, y) = f (y), y ∈ [b1, b2], (2.3)

and the asymptotic conditions

u(x, y), ux(x, y), uy(x, y) → 0 uniformly in y ∈ [b1, b2], as x → ∞. (2.4)

It is worth noting that for suitable choices of the data of the problem it is possible to find solutions which are different
from zero. For instance let us consider the functions

M1(y) = 1 +

∞
k=1

(−y)3k

(2.3)(5.6) · · · ((3k − 1)(3k))
, M2(y) = −y +

∞
k=1

(−y)3k+1

(3.4)(6.7) · · · ((3k)(3k + 1))
.

They are solutions of the backward in time version of Airy’s equationM ′′(y) = −yM(y). It is known that when y < 0, these
two functions agree in a point y0; meanwhile when y > 0 they agree in a sequence of points y1 < y2 < y3 < · · ·. If we
consider b1 = y0 and b2 = yn, n ≥ 1, the function u(x, y) = exp(−x)(M1(y) −M2(y)) satisfies our problemwhen K(y) = y
and f (y) = M1(y) − M2(y).

To analyze our problem we first consider the function

F(z) =
1
2


L(z)

K(y)u2dy, (2.5)

where L(z) = {(x, y) ∈ R, x = z}. We have that

F(z + h) − F(z) =


R(z+h,z)

K(y)uuxdy, (2.6)

where R(z + h, z) = {(x, y) ∈ R, z < x < z + h}. In view of the asymptotic conditions (2.4), we see that

F(z) = −


R(z)

K(y)uuxdydx, (2.7)

where R(z) = R(∞, z), and

F ′(z) =


L(z)

K(y)uuxdy. (2.8)

A direct differentiation gives

F ′′(z) =


L(z)

K(y)(u2
x + uuxx)dy =


L(z)

(K(y)u2
x + u2

y)dy. (2.9)

The last equality is a consequence of Eq. (2.1) and the boundary conditions. If we multiply Eq. (2.1) by ux and after an
integration we see that the function

E(z) =


L(z)

(K(y)u2
x − u2

y)dy, (2.10)

is a constant which must vanish because of the asymptotic condition (2.4). That is
L(z)

K(y)u2
xdy =


L(z)

u2
ydy, (2.11)

for every z ≥ 0. It then follows that

F ′′(z) = 2

L(z)

u2
ydy, (2.12)
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which after two quadratures implies that

F(z) = 2

R(z)

(ξ − z)u2
ydydξ . (2.13)

We then see that F(z) defines a measure on the sub-class of the solutions that satisfy the asymptotic conditions.

3. Spatial decay

In this section we establish the spatial decay estimate. The argument is standard in the sense that it has been proposed
in other easier situations, but we must adapt it to our particular case saving the difficulties proposed by the fact that K(y)
does not have a definite sign. We have

F(z) =
1
2


L(z)

K(y)u2dy ≤
(K ∗)2

2


L(z)

u2dy ≤
(b2 − b1)2(K ∗)2

2π2


L(z)

u2
ydy, (3.1)

where (K ∗)2 is the supremum of |K(y)| and we have used the Poincaré inequality in the interval [b1, b2]. We then see that

F ′′(z) ≥ a2F(z), z ≥ 0, (3.2)

where a = 4π/((b2−b1)K ∗). The last inequality implies that either the function F(z) blows-up in an exponential waywhen
z becomes unbounded or the decay estimate

F(z) ≤ F(0) exp(−az), z ≥ 0, (3.3)

is satisfied. The asymptotic conditions are only compatible with the last inequality. Thus, we have obtained the following
theorem:

Theorem 3.1. Let u(x, y) be a solution of the problem determined by (2.1)–(2.4). Then, the following relation
R(z)

(ξ − z)u2
ydydξ ≤


L(0) K(y)f 2(y)dy

4
exp(−az), z ≥ 0, (3.4)

is satisfied, where a = 4π/((b2 − b1)K ∗).

Poincaré’s inequality implies the estimate
R(z)

(ξ − z)u2dydξ ≤
(b2 − b1)2


L(0) K(y)f 2(y)dy

4π2
exp(−az), z ≥ 0. (3.5)

Uniqueness of solutions in the class of functions considered is a direct consequence.

Remark. Let us consider the case that K(y) = y, b1 = −L, b2 = L and f (y) such that f 2(−y) = f 2(y) for every
y. The right hand side of the estimates vanishes. Thus, the problem determined by these functions, the boundary and
asymptotic conditions previously proposed have only the null solution. Thus, the problem only has a solution in the case
that f (y) = 0. This comment can be extended whenever f (y) and K(y) are such that


L(0) K(y)f 2(y)dy ≤ 0. That is, when

L(0) K(y)f 2(y)dy ≤ 0 and f (y) ≠ 0, the problem determined by the boundary and the asymptotic conditions does not have
a solution. This suggests that the class of functions f (y) and K(y) which have a solution satisfying the boundary and the
asymptotic conditions is a relevant problem to be analyzed, but we don’t consider it here.

We could also consider the nonlinear equation

K(y)uxx + uyy = g(u), (3.6)

with conditions (2.2)–(2.4). The function F(z) satisfies

F ′′(z) =


L(z)

(K(y)u2
x + u2

y + g(u)u)dy, (3.7)

and

E(z) =


L(z)

(K(y)u2
x + 2G(u) − u2

y)dy = E(0) ≡ 0, (3.8)

where G(0) = 0 and G′(s) = g(s). We obtain

F ′′(z) =


L(z)

(2u2
y + g(u)u − 2G(u))dy. (3.9)

In case that g(u)u − 2G(u) ≥ −2ϵu2 where ϵ < π2/(b2 − b1)2 we can obtain a spatial decay estimate of the type of (3.4).
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4. Further comments

It is also possible to obtain some instability results for the generalized Tricomi equation when we do not assume a priori
asymptotic conditions. For Eq. (2.1) with the proposed boundary conditions the function F(z) satisfies

F ′′(z) = 2

L(z)

u2
ydy + E(0) ≥ E(0). (4.1)

We then obtain F(z) ≥ F(0) + F ′(0)z +
z2
2 E(0). In case that we assume that E(0) > 0 the solution becomes unbounded as

z increases. In fact, we can see the exponential instability because of the inequality (3.2). A similar result could be obtained
when E(0) = 0 and F ′(0) > 0. The instability of solutions holds even in the case that the set of points y such that K(y) is
positive is very small, but with positive measure. For the nonlinear equation (3.6) the function F(z) satisfies

F ′′(z) =


L(z)

(2u2
y + g(u)u − 2G(u))dy + E(0). (4.2)

When we assume that g(u)u − 2G(u) ≥ αu2+δ
− 2ϵu2 where ϵ satisfies the previous condition and α is strictly positive

and E(0) > 0, we obtain that the function F(z) satisfies

F ′′(z) ≥ C1F 1+δ1 , (4.3)

where C1 and δ1 are two calculable positive constants. As F(z) and F ′(z) are greater than zero (at least for z large enough
when E(0) > 0), we see that

(F ′(z))2 ≥ C2F 2+δ1(z) + (F ′(z0))2 − C2F 2+δ1(z0), z ≥ z0. (4.4)

One starts with this inequality and argues that u exists for all time. We separate variables and integrate to find

z − z0 ≤

 F(z)

F(z0)

dF
(F ′(z0))2 − C2F 2+δ1(z0) + C2F 2+δ1

≤


∞

F(z0)

dF
(F ′(z0))2 − C2F 2+δ1(z0) + C2F 2+δ1

< ∞. (4.5)

This inequality leads to a contradiction and so the solution cannot exist in a classical sense for all time. Thus, the nonexistence
is proved whenever the initial conditions satisfy the suitable E(0) > 0.

One sees that an upper bound for the existence of solutions when E(0) > 0, F(0) > 0 and F ′(0) > 0 is

Zu =


∞

0

dF
(F ′(0))2 − C2F 2+δ1(0) + C2F 2+δ1

.

Whenever the subset of points where K(y) > 0 has a nonzeromeasure, we can always select boundary conditions such that
E(0) > 0.
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