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Abstract

We prove that, for a smooth complete variety X over a perfect field,

Hi(X, Zp(r))�HomDb
c (R)(1, R�(W�•X)(r)[i]),

where Hi(X, Zp(r))= lim← n
Hi−r (Xet, �n(r)) (Amer. J. Math. 108 (2) (1986) 297–360), W�•X

is the de Rham–Witt complex on X (Ann. Scient. Ec. Num. Sup. 12 (1979b) 501–661), and
Db

c (R) is the triangulated category of coherent complexes over the Raynaud ring (Inst. Hautes.
Etuder Sci. Publ. Math. 57 (1983) 73–212).
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1. Introduction

According to the standard philosophy (cf. [2, 3.1]), a cohomology theory X �→
Hi(X, r) on the algebraic varieties over a fixed field k should arise from a functor
R� taking values in a triangulated category D equipped with a t-structure and a Tate
twist D �→ D(r) (a self-equivalence). The heart D♥ of D should be stable under the
Tate twist and have a tensor structure; in particular, there should be an essentially
unique identity object F in D♥ such that F⊗D�D�D⊗ F for all objects in D♥. The
cohomology theory should satisfy

Hi(X, r)�HomD(F, R�(X)(r)[i]). (1)

For example, motivic cohomology Hi
mot(X, Q(r)) should arise in this way from a

functor to a category D whose heart is the category of mixed motives k. Absolute
�-adic étale cohomology Hi

et(X, Z�(r)), � �= char(k), arises in this way from a functor
to a category D whose heart is the category of continuous representations of Gal(k̄/k)

on finitely generated Z�-modules [5]. When k is algebraically closed, Hi
et(X, Z�(r))

becomes the familiar group lim← Hi
et(X, �⊗r

�n ) and lies in D♥; moreover, in this case, (1)

simplifies to

Hi(X, r)�Hi(R�(X)(r)). (2)

Now let k be a perfect field of characteristic p �= 0, and let W be the ring of Witt
vectors over k. For a smooth complete variety X over k, let W�•X denote the de Rham–
Witt complex of Bloch–Deligne–Illusie (see [10]). Regard � = �(X,−) as a functor
from sheaves of W-modules on X to W-modules. Then

Hi
crys(X/W)�Hi(R�(W�•X))

[9, 3.4.3], where Hi
crys(X/W) is the crystalline cohomology of X [1]. In other words,

X �→ Hi
crys(X/W) arises as in (2) from the functor X �→ R�(W�•X) with values in

D+(W).
Let R be the Raynaud ring, let D(X, R) be the derived category of the category

of sheaves of graded R-modules on X, and let D(R) be the derived category of the
category of graded R-modules [11, 2.1]. Then � derives to a functor

R�: D(X, R)→ D(R).

When we regard W�•X as a sheaf of graded R-modules on X, R�(W�•X) lies in the
full subcategory Db

c(R) of D(R) consisting of coherent complexes [12, II 2.2], which
Ekedahl has shown to be a triangulated subcategory with t-structure [11, 2.4.8]. In this
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note, we define a Tate twist (r) on Db
c(R) and prove that

Hi(X, Zp(r))�HomDb
c (R)(F, R�(W�•X)(r)[i]).

Here Hi(X, Zp(r)) =df lim← n
H i−r

et (X, �n(r)) with �n(r) the additive subsheaf of Wn�r
X

locally generated for the étale topology by the logarithmic differentials [14, §1], and F
is the identity object for the tensor structure on graded R-modules defined by Ekedahl
[11, 2.6.1]. In other words, X �→ Hi(X, Zp(r)) arises as in (1) from the functor
X �→ R�(W�•X) with values in Db

c(R).
This result is used in the construction of the triangulated category of integral motives

in [16].
It is a pleasure for us to be able to contribute to this volume: the Zp-cohomology

was introduced (in primitive form) by the first author in an article whose main purpose
was to prove a conjecture of Artin, and, for the second author, Artin’s famous 18.701-2
course was his first introduction to real mathematics.

2. The Tate twist

According to the standard philosophy, the Tate twist on motives should be N �→
N(r) = N ⊗ T⊗r with T dual to L and L defined by Rh(P1) = F⊕ L[−2].

The Raynaud ring is the graded W-algebra R = R0 ⊕ R1 generated by F and V in
degree 0 and d in degree 1, subject to the relations FV = p = V F , Fa = �a · F ,
aV = V · �a, ad = da (a ∈ W ), d2 = 0, and FdV = d; in particular, R0 is
the Dieudonné ring W�[F, V ] [11, 2.1]. A graded R-module is nothing more than a
complex

M• = (· · · → Mi d−→Mi+1 → · · ·)

of W-modules whose components Mi are modules over R0 and whose differentials d
satisfy FdV = d. We define T to be the functor of graded R-modules such that (T M)i =
Mi+1 and T (d) = −d . It is exact and defines a self-equivalence T : Db

c(R)→ Db
c(R).

The identity object for Ekedahl’s tensor structure on the graded R-modules is the
graded R-module

F = (W, F = �, V = p�−1)

concentrated in degree zero [11, 2.6.1.3]. It is equal to the module E0/1 =df R0/(F−1)

of Ekedahl [3, p. 66].
There is a canonical homomorphism

F⊕T −1(F)[−1] → R�(W�•
P1)
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(in Db
c(R)), which is an isomorphism because it is on W1�•P1 = �•

P1 and we can apply
Ekedahl’s “Nakayama lemma” [11, 2.3.7]. See [8, I 4.1.11, p. 21], for a more general
statement. This suggests our definition of the Tate twist r (for r �0), namely, we set

M(r) = T r(M)[−r]

for M in Db
c(R).

Ekedahl has defined a nonstandard t-structure on Db
c(R) the objects of whose heart

� are called diagonal complexes [11, 6.4]. It will be important for our future work to
note that T = T (F)[−1] is a diagonal complex: the sum of its module degree (−1)

and complex degree (+1) is zero. The Tate twist is an exact functor which defines a
self-equivalence of Db

c(R) preserving �.

3. Theorem and corollaries

Regard W�•X as a sheaf of graded R-modules on X, and write R� for the functor
D(X, R)→ D(R) defined by �(X,−). As we noted above, R�(W�•X) lies in Db

c(R).

Theorem. For any smooth complete variety X over a perfect field k of characteristic
p �= 0, there is a canonical isomorphism

Hi(X, Zp(r))�HomDb
c (R)

(F, R�(W�•X)(r)[i]).

Proof. For a graded R-module M•,

Hom(F, M•) = Ker(1− F : M0 → M0).

To obtain a similar expression in Db(R) we argue as in Ekedahl [3, p. 90]. Let R̂

denote the completion lim← R/(V nR+dV nR) of R [3, p. 60]. Then right multiplication

by 1 − F is injective, and F�R̂0/R̂0(1 − F). As F is topologically nilpotent on R̂1,
this shows that the sequence

0 −→ R̂
·(1−F)−→ R̂ −→ F −→ 0, (3)

is exact. Thus, for a complex of graded R-modules M in Db(R),

HomD(R)(F, M)
[7,10.9]

� H 0(R Hom(F, M))
(3)

� H 0(R Hom(R̂
·(1−F)−→ R̂, M)).



40 J.S. Milne, N. Ramachandran / Advances in Mathematics 198 (2005) 36–42

If M is complete in the sense of Illusie 1983, 2.4, then R Hom(R̂, M)�R Hom(R, M)

[3, 5.9.3ii, p. 78], and so

HomD(R)(F, M) � H 0(Hom(R
·(1−F)−→ R, M))

� H 0(Hom(R, M)
1−F−→Hom(R, M)). (4)

Following Illusie [11, 2.1], we shall view a complex of graded R-modules as a
bicomplex M•• in which the first index corresponds to the R-grading: thus the j th row
M•j of the bicomplex is the R-module (· · · → Mi,j → Mi+1,j → · · ·), and the ith

column Mi• is a complex of (ungraded) R0-modules. The j th-cohomology Hj(M••)
of M•• is the graded R-module

(· · · → Hj(Mi•)→ Hj(Mi+1•)→ · · ·).

Now, Hom(R, M••) = M0•, and so

H 0(Hom(R, M••(r)[i])) = Hi−r (Mr•). (5)

The complex of graded R-modules R�(W�•X) is complete [11, 2.4, Example (b),
p. 33], and so (4) gives an isomorphism

HomD(R)(F, R�(W�•X)(r)[i])

�H 0(Hom(R, R�(W�•X)(r)[i]) 1−F−→Hom(R, R�(W�•X)(r)[i])). (6)

The j th-cohomology of R�(W�•X) is obviously

Hj(R�(W�•X)) = (· · · → Hj(X, W�i
X)→ Hj(X, W�i+1

X )→ · · ·)

[11, 2.2.1], and so (5) allows us to rewrite (6) as

HomD(R)(F, R�(W�•X)(r)[i])�Hi−r (R�(W�r
X)

1−F−→R�(W�r
X)).

This gives an exact sequence

· · · → Hom(F, R�(W�•X)(r)[i])→ Hi−r (X, W�r
X)

1−F−→Hi−r (X, W�r
X)→ · · · (7)

On the other hand, there is an exact sequence [10, I 5.7.2]

0→ �•(r)→ W•�r
X

1−F−→W•�r
X → 0
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of prosheaves on Xet, which gives rise to an exact sequence

· · · → Hi(X, Zp(r))→ Hi−r (X, W•�r
X)

1−F−→Hi−r (X, W•�r
X)→ · · · (8)

[14, 1.10]. Here �•(r) denotes the projective system (�n(r))n�0, and Hi(X, W•�r
X)

= lim← n
H i(X, Wn�r

X) (étale or Zariski cohomology—they are the same).

Since Hr(X, W�r
X)�Hr(X, W•�r

X) [9, 3.4.2, p. 101], the sequences (7) and (8)
will imply the theorem once we check that there is a suitable map from one sequence
to the other, but the right hand square in

W�r
X

1−F−→ W�r
X↓ ↓

W•�r
X

1−F−→ W•�r
X

R�−→
R�W�r

X

1−F−→ R�W�r
X↓ ↓

R�W•�r
X

1−F−→ R�W•�r
X

gives rise to such a map. �

As in Milne [14, p. 309], we let Hi(X, (Z/pnZ)(r)) = Hi−r
et (X, �n(r)).

Corollary 1. There is a canonical isomorphism

Hi(X, (Z/pnZ)(r))�HomDb
c (R)(F, R�Wn�

•
X(r)[i]).

Proof. The canonical map �•(r)/pn�•(r) → �n(r) is an isomorphism [10, I 5.7.5, p.
598], and the canonical map W�•X/pnW�•X → Wn�•X is a quasi-isomorphism [10, I
3.17.3, p. 577]. The corollary now follows from the theorem by an obvious five-lemma
argument. �

Lichtenbaum [13] conjectures the existence of a complex Z(r) on Xet satisfying cer-
tain axioms and sets Hi

mot(X, r) = Hi
et(X, Z(r)). Milne [15, p. 68] adds the “Kummer

p-sequence” axiom that there be an exact triangle

Z(r)
pn

−→Z(r)→ �n(r)[−r] → Z(r)[1].

Geisser and Levine [6, Theorem 8.5] show that the higher cycle complex of Bloch (on
Xet) satisfies this last axiom, and so we have the following result.

Corollary 2. Let Z(r) be the higher cycle complex of Bloch on Xet. Then there is a
canonical isomorphism

Hi
et(X, Z(r)

pn

−→Z(r))�HomDb
c (R)(F, R�Wn�

•
X(r)[i]).
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