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a b s t r a c t

The filled functionmethod is an effective approach to find a globalminimizer. In this paper,
based on a new definition of the filled function for nonsmooth constrained programming
problems, a one-parameter filled function is constructed to improve the efficiency of
numerical computation. Then a corresponding algorithm is presented. It is a global
optimization method which modify the objective function as a filled function, and which
find a better local minimizer gradually by optimizing the filled function constructed on
the minimizer previously found. Illustrative examples are provided to demonstrate the
efficiency and reliability of the proposed filled function method.
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1. Introduction

Many recent advances in engineering, finance and social science rely on the globally optimal solutions. So a study of global
optimization problems has become a highly concerned topic. However, due to the existence of multiple local minimizers
that differ from the global solution, we have to face two difficulties: how to jump from a localminimizer to a smaller one and
how to judge that the current minimizer is a global one. Hence all these problems cannot be solved by classical nonlinear
programming techniques directly. In general, global optimization methods can be classified into two categories: stochastic
methods and deterministic methods. The stochastic methods such as those in [1–4], are based on biology or statistical
physics, which jump to the local minimizer by using a probability based approach. Although these methods have their uses,
they have some handicaps such as slow convergence or easiness of getting into local optimization. How to leave the local
minimizer previously found quickly is an issue to be considered. Some researchers have proposed a method which uses
several initial points to conduct multi-search to solve this problem. But this method employ random factors, for example
points are chosen randomly. Thus every run of such an algorithm could yield a different result. However, deterministic
methods such as those in [5–8], converge more rapidly, and can often escape from the previously found local minimizer to
a better one. The results obtained by deterministic methods are always reproducible.
The filled function method, first proposed for smooth optimization in [5], and recently reconsidered in [9,7], is one

of the effective deterministic global optimization methods. It provides us with a good idea to use the local optimization
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techniques to solve global optimization problems. The key idea of filled function method is to modify the objective function
as a filled function via the current local minimizer of the primal optimization problem, with the property that the better
local minimizer can gradually be obtained by optimizing the filled functions constructed on theminimizer previously found
locally. Both the theoretical and the algorithmic studies show that the filled function method is competitive with other
existing global optimization methods, such as the tunneling method [6], the branch-and-bound method [8] and stochastic
methods [1–4].
Nonsmooth constrained global optimization is an even tougher area to tackle, and there is lack of well-developed

methods. We note that all the existing filled function methods, such as those in [1,9,7], focus only on solving unconstrained
global optimization problems or box constrained global optimization problems or smooth constrained global optimization
problems, therefore we generalize the applicable area of the filled function method to nonsmooth constrained global
optimization. On the other hand, most of the existing filled functions include parameters in exponential terms and the
parameters are heavily restricted by the minimal radius of the local minimizers domain, the calculation performance is
imperfect. Therefore, an effective filled function with easily adjusting parameters is worth investigating.
The aim of this paper is to develop the filled function with certain satisfactory properties in nonsmooth constrained

global optimization. The remainder of the paper is organized as follows. Following this introduction, a one-parameter filled
function is proposed in Section 2. Then, the properties of the filled function are investigated. In Section 3, a novel filled
function method with satisfactory numerical results is presented. In Section 4, the performance of the proposed filled
functionmethod is compared to the performance of somewell-known global optimizationmethods, the branch-and-bound
method and the tunneling method. Finally, some suggestions and conclusions are given in Section 5.

2. A one-parameter filled function and its properties

2.1. Nonsmooth preliminaries

For readers’ convenience, we recall some definition and lemmas from [10].

Definition 2.1. Let f (x) be Lipschitz continuous with constant L at the point x, the generalized gradient of f (x) at x is

∂ f (x) = {ξ ∈ Rn|〈ξ, d〉 ≤ f 0(x; d),∀d ∈ Rn},

where

f 0(x; d) = lim sup
y→x,t↓0

f (y+ td)− f (y)
t

.

Lemma 2.1. Let f (x) be Lipschitz continuous with constant L at the point x, then
(a) f 0(x; d) is finite, sublinear and satisfies |f 0(x; d)| ≤ L‖d‖; for any d ∈ Rn, one has f 0(x; d) = max{〈ξ, d〉|ξ ∈ ∂ f (x)}.
(b) ∂ f (x) is a nonempty compact convex set; for any ξ ∈ ∂ f (x), one has ‖ξ‖ ≤ L.
(c) ∂(

∑n
i=1 sifi)(x) ⊆

∑n
i=1 si∂ fi(x), for any scalar si ∈ R.

Lemma 2.2. If x∗1 is a local minimizer of f (x), then 0 ∈ ∂ f (x
∗

1).

2.2. Problem formulation

The original intention of the filled function method was to solve unconstrained global optimization problems. When
objective function f : Rn → R satisfies the condition f (x) → +∞, as ‖x‖ → +∞, that is, f (x) is coercive, then it implies
the existence of a closed bounded box S ⊂ Rn, called the operated region, such that S contains all minimizers of f (x) and
the value of f (x) when x is on the boundary of S is greater than any values of f (x) when x is inside S. But this is just for
the purpose of analysis and such a region is assumed to exist already. The configuration of the filled function method in a
constrained environment involves a constructive process that establishes the operated region S.
Consider the following nonsmooth constrained global optimization problem (P):

min
x∈Ω
f (x) (2.1)

where feasible region Ω = {x ∈ Rn|gi(x) ≤ 0, i = 1, . . . ,m}, f (x) and gi(x), i = 1, . . . ,m are Lipschitz continuous with
constant Lf and Lgi , i = 1, . . . ,m, respectively. For convenience, by L(P) we denote the set of local minimizers for problem
(P) and G(P) the set of the global minimizers for problem (P).
To begin with, we have the following assumptions.

Assumption 1. The number of minimizers of problem (P) can be infinite, but the number of different function values at the
minimizers is finite.

Assumption 2. For every local minimizer x∗1 , the set L
x∗1 = {x ∈ L(P) : f (x) = f (x∗1)} is a bounded closed set.
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The following definitions of basin and hill from [11] will be needed in what follows.

Definition 2.2. A basin of f (x) at an isolatedminimizer x∗1 is a connected domain B1 which contains x
∗

1 and in which starting
from any point the steepest descent trajectory of f (x) converges to x∗1 , but outside which the steepest descent trajectory of
f (x) does not converge to x∗1 . A hill of f (x) at x

∗

1 is the basin of−f (x) at its minimizer x
∗

1 , if x
∗

1 is a maximizer of f (x).

Definition 2.3. A local minimizer x∗2 is said to be higher than x
∗

1 if and only if f (x
∗

2) > f (x
∗

1), and, for this case, B2 is said to
be a higher basin than B1.

The initial definition of the filled function was proposed in [5] as follows.

Definition 2.4. A function P(x, x∗1) is called a filled function of f (x) at a local minimizer x
∗

1 if
(P1) x∗1 is a strictly maximizer of P(x, x

∗

1) and the whole basin B
∗

1 of f (x) at x
∗

1 becomes a part of a hill of P(x, x
∗

1).
(P2) P(x, x∗1) has no minimizers or saddle points in any basin of f (x) higher than B

∗

1 .
(P3) If f (x) has a lower basin than B∗1 , then there is a point x

′ in such a basin that minimizes P(x, x∗1) on the line through x
and x∗1 .

Definition 2.4 depends on the concepts of basin and hill of f (x), then it needs the assumption that f (x) has only a finite
number of local minimizers and there exists a minimizer on the line joining x′ and x∗1 . These features may affect the
computability when applied to numerical optimization. We present a new definition of the filled function as follows.

Definition 2.5. A function P(x, x∗1) is called a filled function of f (x) at a local minimizer x
∗

1 if
(P1) x∗1 is a strictly local maximizer of P(x, x

∗

1) onΩ .
(P2) To any x ∈ Ω1 \ x∗1 or x ∈ R

n
\Ω , one has 0 6∈ ∂P(x, x∗1), whereΩ1 = {x ∈ R

n
| f (x) ≥ f (x∗1), gi(x) ≤ 0, i = 1, . . . ,m}.

(P3) If Ω2 = {x|f (x) < f (x∗1), x ∈ Ω} is not empty, then there exists a point x
∗

2 ∈ Ω2 such that x
∗

2 is a local minimizer of
P(x, x∗1).

Note that Definition 2.5 about the filled function is different from Definition 2.4. This novel definition is stronger than that
one. If P(x, x∗1) is a filled function in the sense of Definition 2.5 and x

∗

1 is not a global minimizer, then we can find a point x̄
satisfying f (x̄) < f (x∗1) in the course of minimizing P(x, x

∗

1). Therefore, we can obtain a local minimizer of f (x) with lower
objective value by searching f (x) starting at x̄ via local search schemes.
In a constrained global optimization problem, the global minimizers must be in the feasible regionΩ . Consequently, the

filled function method only needs to be effective throughout region Ω . It could let region S coincide with region Ω . This
approach, however, has pitfalls. An analysis is perhaps helpful to gain the insight.
The filled function method consists of two phases. In Phase 1, a conventional local minimization is performed and a local

minimizer x∗1 of f (x) is found. In Phase 2, a filled function is constructed so as to admit x
∗

1 as a maximizer. A local method
is then applied on the filled function to reach a new starting point for Phase 1. In many constrained problems, some of the
minimizers reside near or on the boundaries. If we setΩ = S, and the current iterate x∗1 lies near the boundary of S, then the
local minimization of the filled function will lead to a point close to x∗1 , without improving on the current iterate. Therefore,
the approach ofΩ = S, although simple, is not applicable. A feasible configuration schememust haveΩ ⊂ S, and this leads
to the discussion on what particular technique should be employed in Phase 1 to deal with the constraints.
Most effective methods for solving nonsmooth constrained problems are indirect in that the constrained formulation is

converted to an unconstrained one. In the case of minimizers located on the boundaries of feasible regionΩ , some indirect
approaches, such as interior penalty function method [12], exterior penalty function method [13], exact penalty function
method [14], may introduce a deviation.

2.3. A one-parameter filled function and its properties

We propose in this section a one-parameter filled function as follows:

P(x, x∗1, µ) = −‖x− x
∗

1‖ + µ(f (x)− f (x
∗

1)+

m∑
i=1

(gi(x)− gi(x∗1)))

+
1
µ
min[0,max(f (x)− f (x∗1), gi(x), i = 1, . . . ,m)] (2.2)

where µ > 0 is a parameter, x∗1 is a current local minimizer of f (x), ‖ · ‖ indicates the Euclidean vector norm.
The first transformation effect defined in (2.2) stretches the objective function f (x) upwards in the region where the

function values are higher than the obtained one f (x∗1), andmakes all the local minimizers with values higher than the value
of the obtained local minimizer x∗1 disappear. However, the minimizers with lower values of the objective function remain
unaffected by the transformation. The second one makes the local minimizer x∗1 become a maximizer of P(x, x

∗

1, µ). There
is a big slop near the point x∗1 , and a stationary point of P(x, x

∗

1, µ)must appear in the region lower than which x
∗

1 exists in.
The proofs see the theorems as follows.

Theorem 2.1. Assume that x∗1 ∈ L(P). If 0 < µ < 1
Lf+

∑m
i=1 Lgi

, then x∗1 is a strictly local maximizer of P(x, x
∗

1, µ).
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Proof. Since x∗1 ∈ L(P), there exists a neighborhood O(x
∗

1, δ1) of x
∗

1 with δ1 > 0 such that f (x) ≥ f (x∗1) for all x ∈
O(x∗1, δ1)

⋂
Ω . We consider the following two cases:

Case 1: for all x ∈ O(x∗1, δ1)
⋂
Ω , we have

min[0,max(f (x)− f (x∗1), gi(x), i = 1, . . . ,m)] = 0.

Case 2: For all x ∈ O(x∗1, δ1)
⋂
(Rn \Ω), there exists at least an i0 ∈ {1, . . . ,m} such that gi0(x) > 0. Then

min[0,max(f (x)− f (x∗1), gi(x), i = 1, . . . ,m)] = 0.

So, for any x ∈ O(x∗1, δ1), x 6= x
∗

1 , when 0 < µ < 1
Lf+

∑m
i=1 Lgi

, we have

P(x, x∗1, µ) = −‖x− x
∗

1‖ + µ(f (x)− f (x
∗

1)+

m∑
i=1

(gi(x)− gi(x∗1)))

≤ −‖x− x∗1‖ + µ

(
Lf +

m∑
i=1

Lgi

)
‖x− x∗1‖ < 0 = P(x

∗

1, x
∗

1, µ).

Thus, x∗1 is a strictly local maximizer of P(x, x
∗

1, µ). �

Theorem 2.2. Assume that x∗1 ∈ L(P) and x ∈ Ω1 \ x
∗

1 or x ∈ R
n
\Ω . If 0 < µ < 1

Lf+
∑m
i=1 Lgi

, then one has 0 6∈ ∂P(x, x∗1, µ).

Proof. We consider the following two cases:
Case 1: For all x ∈ Ω1 \ x∗1 , we have

f (x) ≥ f (x∗1), gi(x) ≤ 0, i = 1, . . . ,m,

then

min[0,max(f (x)− f (x∗1), gi(x), i = 1, . . . ,m)] = 0.

Case 2: For all x ∈ Rn \Ω , there exists at least an i0 ∈ {1, . . . ,m} such that gi0(x) > 0. Then

min[0,max(f (x)− f (x∗1), gi(x), i = 1, . . . ,m)] = 0.

So, by P(x, x∗1, µ) = −‖x− x
∗

1‖ + µ(f (x)− f (x
∗

1)+
∑m
i=1(gi(x)− gi(x

∗

1))), we have

∂P(x, x∗1, µ) ⊂ −
x− x∗1
‖x− x∗1‖

+ µ

(
∂ f (x)+

m∑
i=1

∂gi(x)

)
.

Denoting d = x−x∗1
‖x−x∗1‖

, one has

〈∂P(x, x∗1, µ), d〉 ⊂ −
〈x− x∗1, d〉
‖x− x∗1‖

+ µ

(
〈ξ, d〉 +

m∑
i=1

〈ηi, d〉

)

= −
(x− x∗1)

T(x− x∗1)
‖x− x∗1‖2

+ µ

(
〈ξ, x− x∗1〉
‖x− x∗1‖

+

m∑
i=1

〈ηi, x− x∗1〉
‖x− x∗1‖

)

≤ −1+ µ

(
‖ξ‖ +

m∑
i=1

‖ηi‖

)

≤ −1+ µ

(
Lf +

m∑
i=1

Lgi

)
< 0,

where ξ ∈ ∂ f (x), ηi ∈ ∂gi(x), i = 1, . . . ,m. So, to any ζ ∈ ∂P(x, x∗1, µ), when 0 < µ < 1
Lf+

∑m
i=1 Lgi

, one has ζ Td < 0. Then
0 6∈ ∂P(x, x∗1, µ). �

Theorem 2.3. Assume that x∗1 ∈ L(P) but x
∗

1 6∈ G(P) and clintΩ = clΩ . If 0 < µ < 1
Lf+

∑m
i=1 Lgi

and µ is appropriate small,
then there exists a point x∗0 ∈ Ω2 such that x

∗

0 is a local minimizer of P(x, x
∗

1, µ).

Proof. Since x∗1 ∈ L(P) but x
∗

1 6∈ G(P), there exists an x
∗

2 is another local minimizer of f (x) such that f (x
∗

2) < f (x
∗

1), gi(x
∗

2) ≤
0, i = 1, . . . ,m. Since f (x), gi(x), i = 1, . . . ,m are Lipschitz continuous and clintΩ = clΩ , there exists an x∗3 ∈ intΩ such
that f (x∗3) < f (x

∗

1), gi(x
∗

3) < 0, i = 1, . . . ,m.
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When 0 < µ < 1
Lf+

∑m
i=1 Lgi

, one has

P(x∗3, x
∗

1, µ) = −‖x
∗

3 − x
∗

1‖ + µ(f (x
∗

3)− f (x
∗

1)+

m∑
i=1

(gi(x∗3)− gi(x
∗

1)))

+
1
µ
max[f (x∗3)− f (x

∗

1), gi(x
∗

3), i = 1, . . . ,m]

≤

(
µ

(
Lf +

m∑
i=1

Lgi

)
− 1

)
‖x∗3 − x

∗

1‖ +
1
µ
max[f (x∗3)− f (x

∗

1), gi(x
∗

3), i = 1, . . . ,m]

<
1
µ
max[f (x∗3)− f (x

∗

1), gi(x
∗

3), i = 1, . . . ,m] < 0.

Then

lim
µ→0

P(x∗3, x
∗

1, µ) = −∞.

For all x ∈ ∂Ω , there exists at least an i0 ∈ {1, . . . ,m} such that gi0(x) = 0. Then

min[0,max(f (x)− f (x∗1), gi(x), i = 1, . . . ,m)] = 0,

when 0 < µ < 1
Lf+

∑m
i=1 Lgi

, we have

P(x, x∗1, µ) = −‖x− x
∗

1‖ + µ(f (x)− f (x
∗

1)+

m∑
i=1

(gi(x)− gi(x∗1)))

≤

(
µ

(
Lf +

m∑
i=1

Lgi

)
− 1

)
‖x− x∗1‖.

So, when µ is appropriate small, there must be

P(x∗3, x
∗

1, µ) < P(x, x
∗

1, µ).

Therefore,

min
x∈Ω
P(x, x∗1, µ) = min

x∈Ω\∂Ω
P(x, x∗1, µ) = P(x

∗

0, x
∗

1, µ) ≤ P(x
∗

3, x
∗

1, µ),

and Ω \ ∂Ω is an open set. Then, If 0 < µ < 1
Lf+

∑m
i=1 Lgi

and µ is appropriate small, x∗0 ∈ Ω \ ∂Ω is a local minimizer of
P(x, x∗1, µ), and by P(x

∗

0, x
∗

1, µ) ≤ P(x
∗

3, x
∗

1, µ), there must be f (x
∗

0) < f (x
∗

1), gi(x
∗

0) < 0, i = 1, . . . ,m, that is x
∗

0 ∈ Ω2. �

Theorems 2.1–2.3 show that under some conditions on parameterµ, the function P(x, x∗1, µ) at point x
∗

1 is a filled function
satisfying Definition 2.5. The following theorem further shows that under some conditions on parameter µ, P(x, x∗1, µ) has
a good property that the farther the point x leaves x∗1 , the smaller the value of P(x, x

∗

1, µ) is. This property guarantees that
in the minimizing search for local minimizers of P(x, x∗1, µ), it will not return to the primary basin.

Theorem 2.4. Assume that x∗1 ∈ L(P). Suppose that x1, x2 ∈ R
n such that 0 < ‖x1 − x∗1‖ + η < ‖x2 − x

∗

1‖, ‖x1 − x2‖ ≤
σ , σ , η > 0 or x1∈Ω x2∈Ω , and f (x1) > f (x∗1), f (x2) > f (x

∗

1). If 0 < µ < min{ η

(Lf+
∑m
i=1 Lgi )σ

, 1
Lf+

∑m
i=1 Lgi
}, then

P(x2, x∗1, µ) < P(x1, x
∗

1, µ) < 0 = P(x
∗

1, x
∗

1, µ).

Proof. For such x1 and x2 satisfying hypothesis, it is easy to get min[0,max(f (x1) − f (x∗1), gi(x1), i = 1, . . . ,m)] = 0 and
min[0,max(f (x2)− f (x∗1), gi(x2), i = 1, . . . ,m)] = 0. We consider

P(x2, x∗1, µ)− P(x1, x
∗

1, µ) = −(‖x2 − x
∗

1‖ − ‖x1 − x
∗

1‖)+ µ

(
f (x2)− f (x1)+

m∑
i=1

(gi(x2)− gi(x1))

)

≤ −(‖x2 − x∗1‖ − ‖x1 − x
∗

1‖)+ µ

(
Lf +

m∑
i=1

Lgi

)
‖x2 − x1‖

= (‖x2 − x∗1‖ − ‖x1 − x
∗

1‖) ·

{
−1+ µ

(
Lf +

m∑
i=1

Lgi

)
‖x2 − x1‖

‖x2 − x∗1‖ − ‖x1 − x
∗

1‖

}
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≤ (‖x2 − x∗1‖ − ‖x1 − x
∗

1‖) ·

(
−1+ µ

(
Lf +

m∑
i=1

Lgi

)
σ

η

)
< 0.

Then, when 0 < µ < min{ η

(Lf+
∑m
i=1 Lgi )σ

, 1
Lf+

∑m
i=1 Lgi
}, combining Theorem 2.1, we have

P(x2, x∗1, µ) < P(x1, x
∗

1, µ) < 0 = P(x
∗

1, x
∗

1, µ). �

3. Algorithm and numerical experiments

We introduce here the following optimization problem named filled function problem (F):

min
x∈Rn
P(x, x∗1, µ). (3.1)

Based on the proposed filled function P(x, x∗1, µ), we can obtain a filled function method for the nonsmooth constrained
global optimization problem (P). The general idea of this filled function method is as follows: if the current local minimizer
x∗1 is not a global minimizer of (P), then we can manage to obtain a point xk ∈ Ω with f (xk) < f (x

∗

1) by applying some
local search schemes to problem (F). Consequently we can obtain a better local minimizer of (P) by applying local search
schemes to problem (P) starting from xk. Finally, a global minimizer of (P) can be obtained. The corresponding algorithm
denoted by Algorithm NFFM is detailed as follows.

3.1. Algorithm NFFM

Initialization step
1. Choose a disturbance constant δ, e.g., set δ := 0.1.
2. Choose a lower bound of µ such that µL > 0, e.g., set µL := 10−8.
3. Choose a constant µ̂ > 0, e.g., µ̂ = 0.1.
4. Choose direction ek, k = 1, 2, . . . , k0 with integer k0 ≥ 2n, where n is the number of variable.
5. Set k := 1.

Main step
1. Start from an initial point x, minimize the original problem (P) by implementing a nonsmooth local search procedure
and obtain the first local minimizer x∗1 of f (x).

2. Let µ = 1.
3. Construct the filled function:

P(x, x∗1, µ) = −‖x− x
∗

1‖ + µ

(
f (x)− f (x∗1)+

m∑
i=1

(gi(x)− gi(x∗1))

)

+
1
µ
min[0,max(f (x)− f (x∗1), gi(x), i = 1, . . . ,m)]

4. If k > k0 then go to 7.
else set x := x∗1+δek as initial point, minimize the filled function problem (F) by implementing a nonsmooth local search
procedure and obtain a local minimizer denoted xk.

5. If xk∈̄Ω then set k := k+ 1, go to 4
else next step.

6. If xk satisfies f (xk) < f (x∗1) then set x := xk and k := 1, start from x as a new initial point, minimize the original problem
(P) by implementing a local search procedure and obtain another local minimizer x∗2 of f (x), set x

∗

1 := x
∗

2 , go to 2.
else next step.

7. Decrease µ by setting µ := µ̂µ.
8. If µ ≥ µL then set k := 1, go to 3.

else the algorithm is incapable of finding a better local minimizer. The algorithm stops and x∗1 is taken as a global
minimizer.

Now we make some remarks.
(1). Algorithm NFFM consists of two phases, local minimization and filling:
Phase 1: In this phase, a local minimizer x∗1 of f (x) is found.
Phase 2: In this phase, filled function P(x, x∗1, µ) is constructed. Minimize P(x, x

∗

1, µ) and phase 2 ends when such an xk
is found that xk is in Ω2. Then, Algorithm NFFM reenters phase 1, with xk as the starting point to find a new minimizer x∗2
of f (x)(if such one exists), and so on. Actually, in the course of minimizing P(x, x∗1, µ), once such an xk in Ω2 is found that
f (xk) < f (x∗1), then phase 2 ends, and xk should not be a local minimizer of P(x, x

∗

1, µ).
The above process is repeated until a stopping criterion is met. The last local minimizer to be found is assumed to be the

global minimizer.
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Table 3.1
Computational results with initial point (−1.6,−1.0, 0.2).

NFFM
k µ xk f (xk) x∗k f (x∗k )

1 – (−1.6,−1.0, 0.2) 0.0480 (−1.9802, 0.0013,−0.0006) −1.9410
2 0.1 (1.1931, 0.6332,−1.1931) −3.9140 (1.9889,−0.0001,−0.0111) −5.9446

(2). The motivation and mechanism behind Algorithm NFFM are explained below.
In Step 4 of the Initialization step, we can choose direction ek, k = 1, 2, . . . , k0 as positive and negative unit coordinate

vectors, at this case, k0 = 2n. For example, when n = 2, the directions can be chosen as (1, 0), (0, 1), (−1, 0), (0,−1).
In steps 1, 6 of the Main step, we minimize the original problem (P) by nonsmooth constrained local optimization

algorithms such as penalty function method, bundle trustering method, quasi-newton method and composite optimal
method. In step 4 of the Main step, we minimize the filled function problem (F) by nonsmooth unconstrained local
optimization algorithms such as cutting-planes method, Powell method and Hooke–Jeeve method. They are all effective
methods to find local minimizers.
In Main step, we let µ = 1 in step 2. Afterwards, it is gradually decreased via the two-phase cycle until it is smaller than

sufficiently small positive scales. If the parameter µ is sufficiently small, we cannot find the point x with f (x) < f (x∗1) yet,
then we believe that there does not exist a better local minimizer of f (x), the last local minimizer to be found is assumed to
be the global minimizer. The algorithm is terminated. This is the stopping condition of Algorithm NFFM.
(3). In (P), ifΩ = {ai ≤ xi ≤ bi, i = 1, . . . , n},−∞ < ai < bi < +∞, then let

gi(x) = ai − xi, ci(x) = xi − bi, i = 1, . . . , n,

obviously, Ω = {ai ≤ xi ≤ bi, i = 1, . . . , n} is equivalent to the following formulation Ω = {x ∈ Rn | gi(x) ≤ 0, ci(x) ≤
0, i = 1, . . . , n}. That is to say, Algorithm NFFM can solve box constrained programming problems.
(4). The proposed filled function method also adapts to smooth constrained programming problems.

3.2. Numerical experiments

In this subsection we give some numerical examples to illustrate the efficiency of Algorithm NFFM. FORTRAN 95 is used
to code this algorithm. The composite optimal method is used to find local minimizers of the original constrained problem,
and the Hooke–Jeeve method is used to search for local minimizers of the filled function problems.
The iteration process show the expected behavior: in most cases the sequence of iteration points achieved some

neighborhood of the global minimizer after a few number of iterations.
The computational results of AlgorithmNFFMare summarized in tables. The following symbols are used: k is the iteration

number in finding the kth local minimizer;µ is the parameter to find the (k+ 1)th local minimizer; xk is the kth new initial
point in finding the kth local minimizer; x∗k is the kth local minimizer; f (xk) is the function value of the kth new initial point;
f (x∗k) is the function value of the kth local minimizer.

Problem 3.1.
min f (x) = −x21 + x

2
2 + x

2
3 − x1

s.t. x21 + x
2
2 + x

2
3 − 4 ≤ 0

min{x2 − x3, x3} ≤ 0.

Algorithm NFFM succeeds in finding an approximate global minimizer x∗ = (1.9889,−0.0001,−0.0111)T with f (x∗) =
−5.9446. The computational results are summarized in Table 3.1.

Problem 3.2.
min f (x) = max{f1(x), f2(x), f3(x)}
s.t. x21 − x2 − x

2
4 ≤ 0

0 ≤ xi ≤ 3, i = 1, . . . , 4.

where
fi(x) = f0(x)+ 10 · gi(x), i = 1, 2, 3
f0(x) = x21 + x

2
2 + 2x

2
3 + x

2
4 − 5x1 − 5x2 − 21x3 + 7x4

g1(x) = x21 + x
2
2 + 2x

2
3 + x

2
4 + x1 − x2 + x3 − x4 − 8

g2(x) = x21 + 2x
2
2 + x

2
3 + 2x

2
4 − x1 − x4 − 10

g3(x) = x21 + x
2
2 + x

2
3 + 2x1 − x2 − x4 − 5.

Algorithm NFFM succeeds in finding a global minimizer x∗ = (0, 1, 1, 1)T with f (x∗) = −65. The computational results are
summarized in Table 3.2.
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Table 3.2
Computational results with initial point (1, 1, 1, 2.5).

NFFM
k µ xk f (xk) x∗k f (x∗k )

1 – (1, 1, 1, 2.5) 26.7500 (0.0000, 1.0000, 0.0000, 2.0000) −6.0000
2 0.1 (0.6078, 2.0003, 0.0003, 0.0319) −22.9117 (0.9289, 0.8620, 0.2453, 0.0803) −35.9939
3 0.01 (0.4012, 0.2524, 0.2288, 0.0000) −49.4733 (0.0000, 1.0000, 1.0000, 1.0000) −65.0000

Table 3.3
Computational results with initial point (−16,−1).

NFFM
k µ xk f (xk) x∗k f (x∗k )

1 – (−16,−1) 6.1184 (−15.0000, 0.0000) 5.7164
2 0.1 (−1.0585, 0.5165) 2.1433 (0.0001,−0.2094) −0.3690
3 0.01 (0.0007,−0.0435) −0.7470 (0.0000, 0.0000) −2.7183

Table 3.4
Computational results with initial point 6.

NFFM
k µ xk f (xk) x∗k f (x∗k )

1 – 6 2.9571 5.0000 2.0000
2 0.1 0.9681 1.0383 1.0029 1.0012

Table 3.5
Computational results with initial point−1.5.

NFFM
k µ xk f (xk) x∗k f (x∗k )

1 – −1.5 15.4856 −1.0000 3.0000
2 0.1 2.1416 2.1416 1.0000 1.0000

Problem 3.3.

min f (x) = −20 exp

(
−0.2

√
|x1| + |x2|

2

)
− exp

(
cos(2πx1)+ cos(2πx2)

2

)
+ 20

s.t. x21 + x
2
2 ≤ 300

2x1 + x2 ≤ 4
−30 ≤ xi ≤ 30, i = 1, 2.

Algorithm NFFM succeeds in finding a global minimizer x∗ = (0, 0)T with f (x∗) = −2.7183. The computational results are
summarized in Table 3.3.

Problem 3.4.

min f (x) =
∣∣∣∣x− 14

∣∣∣∣+ ∣∣∣∣sin(π (1+ x− 14
))∣∣∣∣+ 1

s.t. −10 ≤ x ≤ 10.

AlgorithmNFFM succeeds in finding an approximate globalminimizer x∗ = 1.0029with f (x∗) = 1.0012. The computational
results are summarized in Table 3.4.

Problem 3.5.
min f (x) = |x− 1|(1+ 10| sin(x+ 1)|)+ 1
s.t. −10 ≤ x ≤ 10.

AlgorithmNFFM succeeds in finding the globalminimizer x∗ = 1with f (x∗) = 1. The computational results are summarized
in Table 3.5.

Problem 3.6.

min f (x) =
5∑
i=1

i| cos((i+ 1)x+ i)| + 5

s.t. −10 ≤ x ≤ 10.
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Table 3.6
Computational results with initial point 3.0.

NFFM
k µ xk f (xk) x∗k f (x∗k )

1 – 3 14.6608 4.1406 12.4642
2 0.01 3.6169 11.8475 2.6556 11.5947
3 0.001 1.9523 9.8439 2.0219 6.7002

Table 3.7
Computational results with initial point (3, 3) for n = 2.

NFFM
k µ xk f (xk) x∗k f (x∗k )

1 – (3, 3) 5 (0.5000, 0.5000) 0.0000

Table 3.8
Computational results with initial point (5, 5, . . . , 5) for n = 10,m = 10.

NFFM
k µ xk f (xk) x∗k f (x∗k )

1 – (5, 5, 1823.8490 (1.0000, 0.5000, 9.3968
5, 5, 5, 0.5000, 0.5000, 0.5000,
5, 5, 5 0.5000, 0.5000, 0.5000
5, 5) 0.5000, 0.5000)

2 0.1 (1.0000, 0.4923, 0.9581 (1.0000, 0.5000, 0.0000
0.3741, 0.3411, 0.4908, 0.3333, 0.2500, 0.2000,
0.1613, 0.2356, 0.1201, 0.1667, 0.1429, 0.1250
0.1981, 0.1974) 0.1111, 0.1000)

AlgorithmNFFM succeeds in finding an approximate globalminimizer x∗ = 2.0219with f (x∗) = 6.7002. The computational
results are summarized in Table 3.6.

Problem 3.7.

min f (x) =
n∑
i=1

|xi − 0.5|

s.t. −5 ≤ xi ≤ 5, i = 1, 2, . . . , n.

Algorithm NFFM succeeds in finding the global minimizer x∗ = (0.5, 0.5, . . . , 0.5)T with f (x∗) = 0, for all n. The
computational results are summarized in Table 3.7, for n = 2.

Problem 3.8.

min f (x) = max
j=1,...,m

n∑
i=1

(ixi − 1)2

i+ j− 1
+ min
j=1,...,m

n∑
i=1

(ixi − 1)2

i+ j− 1
s.t. −10 ≤ xi ≤ 10, i = 1, . . . , n.

Algorithm NFFM succeeds in finding an approximate global minimizer x∗ = (1.0000, 0.5000, . . . , 0.1000)T with f (x∗) = 0.
The computational results are summarized in Table 3.8, for n = 10 andm = 10.

We give the following numerical examples to illustrate that Algorithm NFFM also adapts to smooth constrained global
optimization.

Problem 3.9.

min f (x) = −x1 − x2
s.t. x2 ≤ 2x41 − 8x

3
1 + 8x

2
1 + 2

x2 ≤ 4x41 − 32x
3
1 + 88x

2
1 − 96x1 + 36

0 ≤ x1 ≤ 3
0 ≤ x2 ≤ 4.

Algorithm NFFM succeeds in finding an approximate global minimizer x∗ = (2.3289, 3.1883)T with f (x∗) = −5.5091. This
problem is taken from [3]. The computational results are summarized in Table 3.9.
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Table 3.9
Computational results with initial point (0, 0).

NFFM
k r q xk f (xk) x∗k f (x∗k )

1 – – (0, 0) 0 (0.5992, 3.4391) −4.0828
2 0.1 1 (2.1653, 2.2547) −4.4200 (2.3289, 3.1883) −5.5091

Table 3.10
Computational results with initial point (6, 6, . . . , 6) and n = 7.

NFFM
k µ xk f (xk) x∗k f (x∗k )

1 – (6, 6, 78.5399 (0.9961,−2.0137, 39.9687
6, 6, 6, −2.9958,−2.9982,−2.9961,
6, 6) −3.0011,−2.9953)

2 0.1 (1.0241, 0.9999, 14.9230 (1.0036, 0.9999, 11.3654
0.9898,−0.2180, 0.2243, 1.0000, 1.0032, 0.2284,
−2.9832,−1.9997) −2.9343,−1.9997)

3 0.01 (0.0099, 0.9999, 0.4443 (1.0000, 1.0000, 0.0000
1.0029, 1.0024, 1.0026, 1.0000, 1.0000, 1.0000,
1.0000, 1.0078) 1.0000, 1.0000)

Problem 3.10.

min f (x) =
π

n
[10 sin2 πx1 + g(x)+ (xn − 1)2]

s.t. − 10 ≤ xi ≤ 10, i = 1, 2, . . . , n
where

g(x) =
n−1∑
i=1

[(xi − 1)2(1+ 10 sin2 πxi+1)].

Algorithm NFFM succeeds in finding the global minimizer x∗ = (1, 1, . . . , 1)T with f (x∗) = 0, for all n. The computational
results are summarized in Table 3.10, for n = 7.

Problem 3.11.
min f (x) = max

i=1,2,3
fi(x)+ max

i=4,5,6
fi(x)

s.t. − 10 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 10
where
f1(x) = x41 + x

2
2, f2(x) = (2− x1)2 + (2− x2)2, f3(x) = 2e−x1+x2 ,

f4(x) = x21 − 2x1 + x
2
2 − 4x2 + 4, f5(x) = 2x21 − 5x1 + x

2
2 − 2x2 + 4,

f6(x) = x21 + 2x
2
2 − 4x2 + 1.

For Problem 3.11 from [15] our algorithm did not succeed in finding the global minimizer. This is partly due to the fact
that, in smooth global optimization, the desirable search directions are frequently interrelated with gradient and the search
directions are deterministic; but in nonsmooth global optimization, the generalized gradient is a set and the searchdirections
frequently become indeterministic, then, the choice of search directions is more difficult and complicated. It remains to say
that in order to develop more effective algorithms for nonsmooth functions, much work has still to be done.

4. Comparison to other methods

We are now in a position to compare the proposed filled function method to some other methods.

4.1. Comparison to the branch-and-bound method

The branch-and-bound method works efficiently in nonsmooth global optimization. It aims to investigate the problem
(P) of finding the set of global minimizers and it is assumed that the number of minimizers is only finite.
The branch-and-boundmethod usually applies several interval techniqueswhich are called accelerating devices to reject

regions in which the optimum can be guaranteed not to lie. For this reason, the original box Ω gets subdivided, and the
subregions which cannot contain a global minimizer of objective function are discarded, while the other subregions are
divided again until the desired accuracy of the boxes is achieved.
In Table 4.1, the proposed filled function method are compared to the branch-and-bound method. The criteria for

comparison are the run-time and stopping-condition. The following notations are used: IM1 is the branch-and-bound
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Table 4.1
Comparison of the proposed filled function method and the branch-and-bound method.

Run-time (in s) Stopping-condition
Problem NFFM IM1 IM2 NFFM IM1 IM2

µ ε ε

Problem 3.4 0.0 0.020 0.0 10−8 10−8 10−10

Problem 3.5 0.0 0.020 10−8 10−8

Problem 3.6 0.0 0.430 0.0 10−8 10−8 10−10

Problem 3.3 0.120 97.05 10−8 10−3

Problem 3.7 0.020 21.26 10−8 10−4

method of Ratz [16]; IM2 is the branch-and-bound method of Csendes [17]; run-time is the CPU time in seconds to obtain
the final results, ε is the tolerance parameter of IM1 and IM2.
From Table 4.1, we observe the following results: the branch-and-boundmethod IM1 and IM2 are feasible for univariate

nonsmooth functions, but, under several variables case, they must choose appropriate tolerance parameter ε. In contrast,
the proposed filled function method overcome the shortcoming and obtain improvements. This is partly due to the fact
that, the implement of branch-and-bound method depends on the quality of the objective function: the upper bound and
the lower bound can be determined easily and appropriately. Under several variables case, the higher the dimension is, the
larger the number of the subregions is. The similar phenomenon occurs in smooth case.
If problem (P) has several global minimizers, theoretically, the branch-and-boundmethod can find all global minimizers

of the objective function. However, the proposed filled function method can only find a global minimizer in each algorithm
execution. Using several initial points, the proposed filled function method may find more global minimizers but cannot
guarantee to find all of them. Naturally, we have a question: for the proposed filled function method, can we design a
criterion by using the mechanism of the branch-and-bound method to try finding all global minimizers?

4.2. Comparison to the tunneling method

Tunneling for global optimization was introduced in [6]. Their tunneling method is composed of a sequence of cycles,
where each cycle has two phases: a local minimization phase and a tunneling phase. In the first phase, minimization
algorithms such as Newton’s method or steepest descent method are employed to find a local minimizer x∗1 of objective
function f (x). In the second phase, a tunneling function is defined,

T (x, x∗1) =
f (x)− f (x∗1)

[(x− x∗1)T(x− x
∗

1)]
α
. (4.1)

The tunneling phase searches for the root of T (x, x∗1). If we can get x̄ such that x̄ 6= x
∗

1 and T (x, x
∗

1) ≤ 0, i.e., f (x̄) ≤ f (x
∗

1),
then x̄ is a new starting point for the next iteration. The denominator of (4.1) is of a pole at x∗1 with power α which prevents
from x∗1 from being a zero of the tunneling function.
From above, we can see that the proposed filled function method is essentially similar to that for the tunneling method.

The only difference between a filled function and a tunneling function is the way used for finding in Phase 2.
The objective functions considered in [6] are of number of local minimizers varies between a few and several thousand.

The proposed filled function method is also able to find the global minimizer about such functions, such as Problems 3.2,
3.4, 3.9 and 3.10. Furthermore, it is assumed in this paper that the number of minimizers of problem (P) can be infinite, but
the number of different function values at the minimizers is finite. Thus, the proposed filled function method can find the
global minimizer for problems which have infinite minimizers, theoretically.
However, the tunneling method in [6] has a number of disadvantages:
1. The pole strength α is problem dependent. While searching for a zero, α should be incrementally increased until the

pole in the denominator of (4.1) becomes strong enough to eliminate the last local minimizer of higher order. Every increase
in α requires the algorithm to be restarted, leading to increased computational effort.
2. The tunneling algorithm may find another local minimizer x∗2 , such that f (x

∗

1) = f (x
∗

2). In this case, an additional pole
must be placed at the second local minimizer, and the tunneling process must be restarted.
3. Division by a pole causes smoothing of f (x) as x→∞. This smoothing increases with α, yielding a tunneling function

that becomes very flat. In this case, zeros can be difficult to detect correctly.
4. The tunneling algorithm may find another local minimizer x∗2 , such that f (x

∗

1) > f (x
∗

2). In this case, we have to give
another tunneling function and calculate its local minimizer. Thus, it will increase the calculation.
The difficulties associatedwith finding the zeros of (4.1) have beenpartly overcomeby the dynamical tunneling algorithm

of Yao [18]. However, this approach also has a number of deficiencies (details can see [11]).
Since the tunneling function and the filled function possess some commonproperties, in some sense, a tunneling function

can be viewed as a filled function, on the other hand, some filled functions can be looked on as tunneling functions. In this
sense, both tunneling function and filled function are unifiable. We can use either filled function or tunneling function for
finding a new initial point in the algorithm. Therefore, designing auxiliary functions combined with tunneling function and
filled function becomes interesting.
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5. Conclusion

In this study, we present a one-parameter filled function for nonsmooth constrained global optimization. Based on the
analytical properties, we propose a filled function algorithm. Numerical experiments show that this method is effective and
its parameters are easy to set.
The idea of finding a global minimizer by using the filled function can be explored in a number of fields such as face

recognition system, license plate recognition system, fingerprint identification and retina identification which belong to the
artificial intelligence. For example, in the face recognition system, ICP 3D data registration algorithm [19] and BP neural
network classifier [20] are two important components, but both of them have handicaps such as slow convergence or
easiness of getting into local optimization. By replacing the local search procedure in Algorithm NFFM by ICP algorithm
and BP neural network respectively, we can get an improved face recognition method.
From this point of view, a lot of operations can be defined and relations among them can be studied. This opens an

extensive area for research and, hoppingly, puts forward an interestingway for utilization of global optimization tomodeling
of phenomena. Extension of the filled function method in many fields such as engineering design, molecular biology, neural
network training and social science may constitute a part of future investigation.
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